DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (960f50c2e0a9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/ArrayUtils.h"
#include "gfxCoreTextShaper.h"
#include "gfxMacFont.h"
#include "gfxFontUtils.h"
#include "gfxTextRun.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/UniquePtrExtensions.h"

#include <algorithm>

#include <dlfcn.h>

using namespace mozilla;

// standard font descriptors that we construct the first time they're needed
CTFontDescriptorRef gfxCoreTextShaper::sDefaultFeaturesDescriptor = nullptr;
CTFontDescriptorRef gfxCoreTextShaper::sSmallCapsDescriptor = nullptr;
CTFontDescriptorRef gfxCoreTextShaper::sDisableLigaturesDescriptor = nullptr;
CTFontDescriptorRef gfxCoreTextShaper::sSmallCapDisableLigDescriptor = nullptr;
CTFontDescriptorRef gfxCoreTextShaper::sIndicFeaturesDescriptor = nullptr;
CTFontDescriptorRef gfxCoreTextShaper::sIndicDisableLigaturesDescriptor = nullptr;

// Helper to create a CFDictionary with the right attributes for shaping our
// text, including imposing the given directionality.
CFDictionaryRef
gfxCoreTextShaper::CreateAttrDict(bool aRightToLeft)
{
    // Because we always shape unidirectional runs, and may have applied
    // directional overrides, we want to force a direction rather than
    // allowing CoreText to do its own unicode-based bidi processing.
    SInt16 dirOverride = kCTWritingDirectionOverride |
                         (aRightToLeft ? kCTWritingDirectionRightToLeft
                                       : kCTWritingDirectionLeftToRight);
    CFNumberRef dirNumber =
        ::CFNumberCreate(kCFAllocatorDefault,
                         kCFNumberSInt16Type, &dirOverride);
    CFArrayRef dirArray =
        ::CFArrayCreate(kCFAllocatorDefault,
                        (const void **) &dirNumber, 1,
                        &kCFTypeArrayCallBacks);
    ::CFRelease(dirNumber);
    CFTypeRef attrs[] = { kCTFontAttributeName, kCTWritingDirectionAttributeName };
    CFTypeRef values[] = { mCTFont, dirArray };
    CFDictionaryRef attrDict =
        ::CFDictionaryCreate(kCFAllocatorDefault,
                             attrs, values, ArrayLength(attrs),
                             &kCFTypeDictionaryKeyCallBacks,
                             &kCFTypeDictionaryValueCallBacks);
    ::CFRelease(dirArray);
    return attrDict;
}

gfxCoreTextShaper::gfxCoreTextShaper(gfxMacFont *aFont)
    : gfxFontShaper(aFont)
    , mAttributesDictLTR(nullptr)
    , mAttributesDictRTL(nullptr)
{
    // Create our CTFontRef
    mCTFont = CreateCTFontWithFeatures(aFont->GetAdjustedSize(),
                                       GetDefaultFeaturesDescriptor());
}

gfxCoreTextShaper::~gfxCoreTextShaper()
{
    if (mAttributesDictLTR) {
        ::CFRelease(mAttributesDictLTR);
    }
    if (mAttributesDictRTL) {
        ::CFRelease(mAttributesDictRTL);
    }
    if (mCTFont) {
        ::CFRelease(mCTFont);
    }
}

static bool
IsBuggyIndicScript(unicode::Script aScript)
{
    return aScript == unicode::Script::BENGALI ||
           aScript == unicode::Script::KANNADA ||
           aScript == unicode::Script::ORIYA ||
           aScript == unicode::Script::KHMER;
}

bool
gfxCoreTextShaper::ShapeText(DrawTarget      *aDrawTarget,
                             const char16_t *aText,
                             uint32_t         aOffset,
                             uint32_t         aLength,
                             Script           aScript,
                             bool             aVertical,
                             RoundingFlags    aRounding,
                             gfxShapedText   *aShapedText)
{
    // Create a CFAttributedString with text and style info, so we can use CoreText to lay it out.
    bool isRightToLeft = aShapedText->IsRightToLeft();
    const UniChar* text = reinterpret_cast<const UniChar*>(aText);

    CFStringRef stringObj =
        ::CFStringCreateWithCharactersNoCopy(kCFAllocatorDefault,
                                             text, aLength,
                                             kCFAllocatorNull);

    // Figure out whether we should try to set the AAT small-caps feature:
    // examine OpenType tags for the requested style, and see if 'smcp' is
    // among them.
    const gfxFontStyle *style = mFont->GetStyle();
    gfxFontEntry *entry = mFont->GetFontEntry();
    auto handleFeatureTag = [](const uint32_t& aTag, uint32_t& aValue,
                               void *aUserArg) -> void {
        if (aTag == HB_TAG('s','m','c','p') && aValue) {
            *static_cast<bool*>(aUserArg) = true;
        }
    };
    bool addSmallCaps = false;
    MergeFontFeatures(style,
                      entry->mFeatureSettings,
                      false,
                      entry->FamilyName(),
                      false,
                      handleFeatureTag,
                      &addSmallCaps);

    // Get an attributes dictionary suitable for shaping text in the
    // current direction, creating it if necessary.
    CFDictionaryRef attrObj =
        isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR;
    if (!attrObj) {
        attrObj = CreateAttrDict(isRightToLeft);
        (isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR) = attrObj;
    }

    CTFontRef tempCTFont = nullptr;
    if (IsBuggyIndicScript(aScript)) {
        // To work around buggy Indic AAT fonts shipped with OS X,
        // we re-enable the Line Initial Smart Swashes feature that is needed
        // for "split vowels" to work in at least Bengali and Kannada fonts.
        // Affected fonts include Bangla MN, Bangla Sangam MN, Kannada MN,
        // Kannada Sangam MN. See bugs 686225, 728557, 953231, 1145515.
        // Also applies to Oriya and Khmer, see bug 1370927 and bug 1403166.
        tempCTFont =
            CreateCTFontWithFeatures(::CTFontGetSize(mCTFont),
                                     aShapedText->DisableLigatures()
                                         ? GetIndicDisableLigaturesDescriptor()
                                         : GetIndicFeaturesDescriptor());
    } else if (aShapedText->DisableLigatures()) {
        // For letterspacing (or maybe other situations) we need to make
        // a copy of the CTFont with the ligature feature disabled.
        tempCTFont =
            CreateCTFontWithFeatures(::CTFontGetSize(mCTFont),
                                     addSmallCaps
                                         ? GetSmallCapDisableLigDescriptor()
                                         : GetDisableLigaturesDescriptor());
    } else if (addSmallCaps) {
        tempCTFont =
            CreateCTFontWithFeatures(::CTFontGetSize(mCTFont),
                                     GetSmallCapsDescriptor());
    }

    // For the disabled-ligature, buggy-indic-font or small-caps case, replace
    // the standard CTFont in the attribute dictionary with a tweaked version.
    CFMutableDictionaryRef mutableAttr = nullptr;
    if (tempCTFont) {
        mutableAttr = ::CFDictionaryCreateMutableCopy(kCFAllocatorDefault, 2,
                                                      attrObj);
        ::CFDictionaryReplaceValue(mutableAttr,
                                   kCTFontAttributeName, tempCTFont);
        // Having created the dict, we're finished with our temporary
        // Indic and/or ligature-disabled or small-caps CTFontRef.
        ::CFRelease(tempCTFont);
        attrObj = mutableAttr;
    }

    // Now we can create an attributed string
    CFAttributedStringRef attrStringObj =
        ::CFAttributedStringCreate(kCFAllocatorDefault, stringObj, attrObj);
    ::CFRelease(stringObj);

    // Create the CoreText line from our string, then we're done with it
    CTLineRef line = ::CTLineCreateWithAttributedString(attrStringObj);
    ::CFRelease(attrStringObj);

    // and finally retrieve the glyph data and store into the gfxTextRun
    CFArrayRef glyphRuns = ::CTLineGetGlyphRuns(line);
    uint32_t numRuns = ::CFArrayGetCount(glyphRuns);

    // Iterate through the glyph runs.
    bool success = true;
    for (uint32_t runIndex = 0; runIndex < numRuns; runIndex++) {
        CTRunRef aCTRun =
            (CTRunRef)::CFArrayGetValueAtIndex(glyphRuns, runIndex);
        CFRange range = ::CTRunGetStringRange(aCTRun);
        CFDictionaryRef runAttr = ::CTRunGetAttributes(aCTRun);
        if (runAttr != attrObj) {
            // If Core Text manufactured a new dictionary, this may indicate
            // unexpected font substitution. In that case, we fail (and fall
            // back to harfbuzz shaping)...
            const void* font1 =
                ::CFDictionaryGetValue(attrObj, kCTFontAttributeName);
            const void* font2 =
                ::CFDictionaryGetValue(runAttr, kCTFontAttributeName);
            if (font1 != font2) {
                // ...except that if the fallback was only for a variation
                // selector or join control that is otherwise unsupported,
                // we just ignore it.
                if (range.length == 1) {
                    char16_t ch = aText[range.location];
                    if (gfxFontUtils::IsJoinControl(ch) ||
                        gfxFontUtils::IsVarSelector(ch)) {
                        continue;
                    }
                }
                NS_WARNING("unexpected font fallback in Core Text");
                success = false;
                break;
            }
        }
        if (SetGlyphsFromRun(aShapedText, aOffset, aLength, aCTRun) != NS_OK) {
            success = false;
            break;
        }
    }

    if (mutableAttr) {
        ::CFRelease(mutableAttr);
    }
    ::CFRelease(line);

    return success;
}

#define SMALL_GLYPH_RUN 128 // preallocated size of our auto arrays for per-glyph data;
                            // some testing indicates that 90%+ of glyph runs will fit
                            // without requiring a separate allocation

nsresult
gfxCoreTextShaper::SetGlyphsFromRun(gfxShapedText *aShapedText,
                                    uint32_t       aOffset,
                                    uint32_t       aLength,
                                    CTRunRef       aCTRun)
{
    typedef gfxShapedText::CompressedGlyph CompressedGlyph;

    int32_t direction = aShapedText->IsRightToLeft() ? -1 : 1;

    int32_t numGlyphs = ::CTRunGetGlyphCount(aCTRun);
    if (numGlyphs == 0) {
        return NS_OK;
    }

    int32_t wordLength = aLength;

    // character offsets get really confusing here, as we have to keep track of
    // (a) the text in the actual textRun we're constructing
    // (c) the string that was handed to CoreText, which contains the text of the font run
    // (d) the CTRun currently being processed, which may be a sub-run of the CoreText line

    // get the source string range within the CTLine's text
    CFRange stringRange = ::CTRunGetStringRange(aCTRun);
    // skip the run if it is entirely outside the actual range of the font run
    if (stringRange.location + stringRange.length <= 0 ||
        stringRange.location >= wordLength) {
        return NS_OK;
    }

    // retrieve the laid-out glyph data from the CTRun
    UniquePtr<CGGlyph[]> glyphsArray;
    UniquePtr<CGPoint[]> positionsArray;
    UniquePtr<CFIndex[]> glyphToCharArray;
    const CGGlyph* glyphs = nullptr;
    const CGPoint* positions = nullptr;
    const CFIndex* glyphToChar = nullptr;

    // Testing indicates that CTRunGetGlyphsPtr (almost?) always succeeds,
    // and so allocating a new array and copying data with CTRunGetGlyphs
    // will be extremely rare.
    // If this were not the case, we could use an AutoTArray<> to
    // try and avoid the heap allocation for small runs.
    // It's possible that some future change to CoreText will mean that
    // CTRunGetGlyphsPtr fails more often; if this happens, AutoTArray<>
    // may become an attractive option.
    glyphs = ::CTRunGetGlyphsPtr(aCTRun);
    if (!glyphs) {
        glyphsArray = MakeUniqueFallible<CGGlyph[]>(numGlyphs);
        if (!glyphsArray) {
            return NS_ERROR_OUT_OF_MEMORY;
        }
        ::CTRunGetGlyphs(aCTRun, ::CFRangeMake(0, 0), glyphsArray.get());
        glyphs = glyphsArray.get();
    }

    positions = ::CTRunGetPositionsPtr(aCTRun);
    if (!positions) {
        positionsArray = MakeUniqueFallible<CGPoint[]>(numGlyphs);
        if (!positionsArray) {
            return NS_ERROR_OUT_OF_MEMORY;
        }
        ::CTRunGetPositions(aCTRun, ::CFRangeMake(0, 0), positionsArray.get());
        positions = positionsArray.get();
    }

    // Remember that the glyphToChar indices relate to the CoreText line,
    // not to the beginning of the textRun, the font run,
    // or the stringRange of the glyph run
    glyphToChar = ::CTRunGetStringIndicesPtr(aCTRun);
    if (!glyphToChar) {
        glyphToCharArray = MakeUniqueFallible<CFIndex[]>(numGlyphs);
        if (!glyphToCharArray) {
            return NS_ERROR_OUT_OF_MEMORY;
        }
        ::CTRunGetStringIndices(aCTRun, ::CFRangeMake(0, 0), glyphToCharArray.get());
        glyphToChar = glyphToCharArray.get();
    }

    double runWidth = ::CTRunGetTypographicBounds(aCTRun, ::CFRangeMake(0, 0),
                                                  nullptr, nullptr, nullptr);

    AutoTArray<gfxShapedText::DetailedGlyph,1> detailedGlyphs;
    CompressedGlyph* charGlyphs = aShapedText->GetCharacterGlyphs() + aOffset;

    // CoreText gives us the glyphindex-to-charindex mapping, which relates each glyph
    // to a source text character; we also need the charindex-to-glyphindex mapping to
    // find the glyph for a given char. Note that some chars may not map to any glyph
    // (ligature continuations), and some may map to several glyphs (eg Indic split vowels).
    // We set the glyph index to NO_GLYPH for chars that have no associated glyph, and we
    // record the last glyph index for cases where the char maps to several glyphs,
    // so that our clumping will include all the glyph fragments for the character.

    // The charToGlyph array is indexed by char position within the stringRange of the glyph run.

    static const int32_t NO_GLYPH = -1;
    AutoTArray<int32_t,SMALL_GLYPH_RUN> charToGlyphArray;
    if (!charToGlyphArray.SetLength(stringRange.length, fallible)) {
        return NS_ERROR_OUT_OF_MEMORY;
    }
    int32_t *charToGlyph = charToGlyphArray.Elements();
    for (int32_t offset = 0; offset < stringRange.length; ++offset) {
        charToGlyph[offset] = NO_GLYPH;
    }
    for (int32_t i = 0; i < numGlyphs; ++i) {
        int32_t loc = glyphToChar[i] - stringRange.location;
        if (loc >= 0 && loc < stringRange.length) {
            charToGlyph[loc] = i;
        }
    }

    // Find character and glyph clumps that correspond, allowing for ligatures,
    // indic reordering, split glyphs, etc.
    //
    // The idea is that we'll find a character sequence starting at the first char of stringRange,
    // and extend it until it includes the character associated with the first glyph;
    // we also extend it as long as there are "holes" in the range of glyphs. So we
    // will eventually have a contiguous sequence of characters, starting at the beginning
    // of the range, that map to a contiguous sequence of glyphs, starting at the beginning
    // of the glyph array. That's a clump; then we update the starting positions and repeat.
    //
    // NB: In the case of RTL layouts, we iterate over the stringRange in reverse.
    //

    // This may find characters that fall outside the range 0:wordLength,
    // so we won't necessarily use everything we find here.

    bool isRightToLeft = aShapedText->IsRightToLeft();
    int32_t glyphStart = 0; // looking for a clump that starts at this glyph index
    int32_t charStart = isRightToLeft ?
        stringRange.length - 1 : 0; // and this char index (in the stringRange of the glyph run)

    while (glyphStart < numGlyphs) { // keep finding groups until all glyphs are accounted for
        bool inOrder = true;
        int32_t charEnd = glyphToChar[glyphStart] - stringRange.location;
        NS_WARNING_ASSERTION(
            charEnd >= 0 && charEnd < stringRange.length,
            "glyph-to-char mapping points outside string range");
        // clamp charEnd to the valid range of the string
        charEnd = std::max(charEnd, 0);
        charEnd = std::min(charEnd, int32_t(stringRange.length));

        int32_t glyphEnd = glyphStart;
        int32_t charLimit = isRightToLeft ? -1 : stringRange.length;
        do {
            // This is normally executed once for each iteration of the outer loop,
            // but in unusual cases where the character/glyph association is complex,
            // the initial character range might correspond to a non-contiguous
            // glyph range with "holes" in it. If so, we will repeat this loop to
            // extend the character range until we have a contiguous glyph sequence.
            NS_ASSERTION((direction > 0 && charEnd < charLimit) ||
                         (direction < 0 && charEnd > charLimit),
                         "no characters left in range?");
            charEnd += direction;
            while (charEnd != charLimit && charToGlyph[charEnd] == NO_GLYPH) {
                charEnd += direction;
            }

            // find the maximum glyph index covered by the clump so far
            if (isRightToLeft) {
                for (int32_t i = charStart; i > charEnd; --i) {
                    if (charToGlyph[i] != NO_GLYPH) {
                        // update extent of glyph range
                        glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
                    }
                }
            } else {
                for (int32_t i = charStart; i < charEnd; ++i) {
                    if (charToGlyph[i] != NO_GLYPH) {
                        // update extent of glyph range
                        glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
                    }
                }
            }

            if (glyphEnd == glyphStart + 1) {
                // for the common case of a single-glyph clump, we can skip the following checks
                break;
            }

            if (glyphEnd == glyphStart) {
                // no glyphs, try to extend the clump
                continue;
            }

            // check whether all glyphs in the range are associated with the characters
            // in our clump; if not, we have a discontinuous range, and should extend it
            // unless we've reached the end of the text
            bool allGlyphsAreWithinCluster = true;
            int32_t prevGlyphCharIndex = charStart;
            for (int32_t i = glyphStart; i < glyphEnd; ++i) {
                int32_t glyphCharIndex = glyphToChar[i] - stringRange.location;
                if (isRightToLeft) {
                    if (glyphCharIndex > charStart || glyphCharIndex <= charEnd) {
                        allGlyphsAreWithinCluster = false;
                        break;
                    }
                    if (glyphCharIndex > prevGlyphCharIndex) {
                        inOrder = false;
                    }
                    prevGlyphCharIndex = glyphCharIndex;
                } else {
                    if (glyphCharIndex < charStart || glyphCharIndex >= charEnd) {
                        allGlyphsAreWithinCluster = false;
                        break;
                    }
                    if (glyphCharIndex < prevGlyphCharIndex) {
                        inOrder = false;
                    }
                    prevGlyphCharIndex = glyphCharIndex;
                }
            }
            if (allGlyphsAreWithinCluster) {
                break;
            }
        } while (charEnd != charLimit);

        NS_WARNING_ASSERTION(glyphStart < glyphEnd,
                             "character/glyph clump contains no glyphs!");
        if (glyphStart == glyphEnd) {
            ++glyphStart; // make progress - avoid potential infinite loop
            charStart = charEnd;
            continue;
        }

        NS_WARNING_ASSERTION(charStart != charEnd,
                             "character/glyph clump contains no characters!");
        if (charStart == charEnd) {
            glyphStart = glyphEnd; // this is bad - we'll discard the glyph(s),
                                   // as there's nowhere to attach them
            continue;
        }

        // Now charStart..charEnd is a ligature clump, corresponding to glyphStart..glyphEnd;
        // Set baseCharIndex to the char we'll actually attach the glyphs to (1st of ligature),
        // and endCharIndex to the limit (position beyond the last char),
        // adjusting for the offset of the stringRange relative to the textRun.
        int32_t baseCharIndex, endCharIndex;
        if (isRightToLeft) {
            while (charEnd >= 0 && charToGlyph[charEnd] == NO_GLYPH) {
                charEnd--;
            }
            baseCharIndex = charEnd + stringRange.location + 1;
            endCharIndex = charStart + stringRange.location + 1;
        } else {
            while (charEnd < stringRange.length && charToGlyph[charEnd] == NO_GLYPH) {
                charEnd++;
            }
            baseCharIndex = charStart + stringRange.location;
            endCharIndex = charEnd + stringRange.location;
        }

        // Then we check if the clump falls outside our actual string range; if so, just go to the next.
        if (endCharIndex <= 0 || baseCharIndex >= wordLength) {
            glyphStart = glyphEnd;
            charStart = charEnd;
            continue;
        }
        // Ensure we won't try to go beyond the valid length of the word's text
        baseCharIndex = std::max(baseCharIndex, 0);
        endCharIndex = std::min(endCharIndex, wordLength);

        // Now we're ready to set the glyph info in the textRun; measure the glyph width
        // of the first (perhaps only) glyph, to see if it is "Simple"
        int32_t appUnitsPerDevUnit = aShapedText->GetAppUnitsPerDevUnit();
        double toNextGlyph;
        if (glyphStart < numGlyphs-1) {
            toNextGlyph = positions[glyphStart+1].x - positions[glyphStart].x;
        } else {
            toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x;
        }
        int32_t advance = int32_t(toNextGlyph * appUnitsPerDevUnit);

        // Check if it's a simple one-to-one mapping
        int32_t glyphsInClump = glyphEnd - glyphStart;
        if (glyphsInClump == 1 &&
            gfxTextRun::CompressedGlyph::IsSimpleGlyphID(glyphs[glyphStart]) &&
            gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance) &&
            charGlyphs[baseCharIndex].IsClusterStart() &&
            positions[glyphStart].y == 0.0)
        {
            charGlyphs[baseCharIndex].SetSimpleGlyph(advance,
                                                     glyphs[glyphStart]);
        } else {
            // collect all glyphs in a list to be assigned to the first char;
            // there must be at least one in the clump, and we already measured its advance,
            // hence the placement of the loop-exit test and the measurement of the next glyph
            while (true) {
                gfxTextRun::DetailedGlyph *details = detailedGlyphs.AppendElement();
                details->mGlyphID = glyphs[glyphStart];
                details->mOffset.y = -positions[glyphStart].y * appUnitsPerDevUnit;
                details->mAdvance = advance;
                if (++glyphStart >= glyphEnd) {
                   break;
                }
                if (glyphStart < numGlyphs-1) {
                    toNextGlyph = positions[glyphStart+1].x - positions[glyphStart].x;
                } else {
                    toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x;
                }
                advance = int32_t(toNextGlyph * appUnitsPerDevUnit);
            }

            bool isClusterStart = charGlyphs[baseCharIndex].IsClusterStart();
            aShapedText->SetGlyphs(aOffset + baseCharIndex,
                                   CompressedGlyph::MakeComplex(isClusterStart, true,
                                                                detailedGlyphs.Length()),
                                   detailedGlyphs.Elements());

            detailedGlyphs.Clear();
        }

        // the rest of the chars in the group are ligature continuations, no associated glyphs
        while (++baseCharIndex != endCharIndex && baseCharIndex < wordLength) {
            CompressedGlyph &shapedTextGlyph = charGlyphs[baseCharIndex];
            NS_ASSERTION(!shapedTextGlyph.IsSimpleGlyph(), "overwriting a simple glyph");
            shapedTextGlyph.SetComplex(inOrder && shapedTextGlyph.IsClusterStart(), false, 0);
        }

        glyphStart = glyphEnd;
        charStart = charEnd;
    }

    return NS_OK;
}

#undef SMALL_GLYPH_RUN

// Construct the font attribute descriptor that we'll apply by default when
// creating a CTFontRef. This will turn off line-edge swashes by default,
// because we don't know the actual line breaks when doing glyph shaping.

// We also cache feature descriptors for shaping with disabled ligatures, and
// for buggy Indic AAT font workarounds, created on an as-needed basis.

#define MAX_FEATURES  5 // max used by any of our Get*Descriptor functions

CTFontDescriptorRef
gfxCoreTextShaper::CreateFontFeaturesDescriptor(
    const std::pair<SInt16,SInt16> aFeatures[],
    size_t aCount)
{
    MOZ_ASSERT(aCount <= MAX_FEATURES);

    CFDictionaryRef featureSettings[MAX_FEATURES];

    for (size_t i = 0; i < aCount; i++) {
        CFNumberRef type = ::CFNumberCreate(kCFAllocatorDefault,
                                            kCFNumberSInt16Type,
                                            &aFeatures[i].first);
        CFNumberRef selector = ::CFNumberCreate(kCFAllocatorDefault,
                                                kCFNumberSInt16Type,
                                                &aFeatures[i].second);

        CFTypeRef keys[]   = { kCTFontFeatureTypeIdentifierKey,
                               kCTFontFeatureSelectorIdentifierKey };
        CFTypeRef values[] = { type, selector };
        featureSettings[i] =
            ::CFDictionaryCreate(kCFAllocatorDefault,
                                 (const void **) keys,
                                 (const void **) values,
                                 ArrayLength(keys),
                                 &kCFTypeDictionaryKeyCallBacks,
                                 &kCFTypeDictionaryValueCallBacks);

        ::CFRelease(selector);
        ::CFRelease(type);
    }

    CFArrayRef featuresArray =
        ::CFArrayCreate(kCFAllocatorDefault,
                        (const void **) featureSettings,
                        aCount, // not ArrayLength(featureSettings), as we
                                // may not have used all the allocated slots
                        &kCFTypeArrayCallBacks);

    for (size_t i = 0; i < aCount; i++) {
        ::CFRelease(featureSettings[i]);
    }

    const CFTypeRef attrKeys[]   = { kCTFontFeatureSettingsAttribute };
    const CFTypeRef attrValues[] = { featuresArray };
    CFDictionaryRef attributesDict =
        ::CFDictionaryCreate(kCFAllocatorDefault,
                             (const void **) attrKeys,
                             (const void **) attrValues,
                             ArrayLength(attrKeys),
                             &kCFTypeDictionaryKeyCallBacks,
                             &kCFTypeDictionaryValueCallBacks);
    ::CFRelease(featuresArray);

    CTFontDescriptorRef descriptor =
        ::CTFontDescriptorCreateWithAttributes(attributesDict);
    ::CFRelease(attributesDict);

    return descriptor;
}

CTFontDescriptorRef
gfxCoreTextShaper::GetDefaultFeaturesDescriptor()
{
    if (sDefaultFeaturesDescriptor == nullptr) {
        const std::pair<SInt16,SInt16> kDefaultFeatures[] = {
            { kSmartSwashType, kLineInitialSwashesOffSelector },
            { kSmartSwashType, kLineFinalSwashesOffSelector }
        };
        static_assert(ArrayLength(kDefaultFeatures) <= MAX_FEATURES,
                      "need to increase MAX_FEATURES");
        sDefaultFeaturesDescriptor =
            CreateFontFeaturesDescriptor(kDefaultFeatures,
                                         ArrayLength(kDefaultFeatures));
    }
    return sDefaultFeaturesDescriptor;
}

CTFontDescriptorRef
gfxCoreTextShaper::GetSmallCapsDescriptor()
{
    if (sSmallCapsDescriptor == nullptr) {
        const std::pair<SInt16,SInt16> kSmallCaps[] = {
            { kSmartSwashType, kLineInitialSwashesOffSelector },
            { kSmartSwashType, kLineFinalSwashesOffSelector },
            { kLetterCaseType, kSmallCapsSelector },
            { kLowerCaseType, kLowerCaseSmallCapsSelector }
        };
        static_assert(ArrayLength(kSmallCaps) <= MAX_FEATURES,
                      "need to increase MAX_FEATURES");
        sSmallCapsDescriptor =
            CreateFontFeaturesDescriptor(kSmallCaps,
                                         ArrayLength(kSmallCaps));
    }
    return sSmallCapsDescriptor;
}

CTFontDescriptorRef
gfxCoreTextShaper::GetDisableLigaturesDescriptor()
{
    if (sDisableLigaturesDescriptor == nullptr) {
        const std::pair<SInt16,SInt16> kDisableLigatures[] = {
            { kSmartSwashType, kLineInitialSwashesOffSelector },
            { kSmartSwashType, kLineFinalSwashesOffSelector },
            { kLigaturesType, kCommonLigaturesOffSelector }
        };
        static_assert(ArrayLength(kDisableLigatures) <= MAX_FEATURES,
                      "need to increase MAX_FEATURES");
        sDisableLigaturesDescriptor =
            CreateFontFeaturesDescriptor(kDisableLigatures,
                                         ArrayLength(kDisableLigatures));
    }
    return sDisableLigaturesDescriptor;
}

CTFontDescriptorRef
gfxCoreTextShaper::GetSmallCapDisableLigDescriptor()
{
    if (sSmallCapDisableLigDescriptor == nullptr) {
        const std::pair<SInt16,SInt16> kFeatures[] = {
            { kSmartSwashType, kLineInitialSwashesOffSelector },
            { kSmartSwashType, kLineFinalSwashesOffSelector },
            { kLigaturesType, kCommonLigaturesOffSelector },
            { kLetterCaseType, kSmallCapsSelector },
            { kLowerCaseType, kLowerCaseSmallCapsSelector }
        };
        static_assert(ArrayLength(kFeatures) <= MAX_FEATURES,
                      "need to increase MAX_FEATURES");
        sSmallCapDisableLigDescriptor =
            CreateFontFeaturesDescriptor(kFeatures,
                                         ArrayLength(kFeatures));
    }
    return sSmallCapDisableLigDescriptor;
}

CTFontDescriptorRef
gfxCoreTextShaper::GetIndicFeaturesDescriptor()
{
    if (sIndicFeaturesDescriptor == nullptr) {
        const std::pair<SInt16,SInt16> kIndicFeatures[] = {
            { kSmartSwashType, kLineFinalSwashesOffSelector }
        };
        static_assert(ArrayLength(kIndicFeatures) <= MAX_FEATURES,
                      "need to increase MAX_FEATURES");
        sIndicFeaturesDescriptor =
            CreateFontFeaturesDescriptor(kIndicFeatures,
                                         ArrayLength(kIndicFeatures));
    }
    return sIndicFeaturesDescriptor;
}

CTFontDescriptorRef
gfxCoreTextShaper::GetIndicDisableLigaturesDescriptor()
{
    if (sIndicDisableLigaturesDescriptor == nullptr) {
        const std::pair<SInt16,SInt16> kIndicDisableLigatures[] = {
            { kSmartSwashType, kLineFinalSwashesOffSelector },
            { kLigaturesType, kCommonLigaturesOffSelector }
        };
        static_assert(ArrayLength(kIndicDisableLigatures) <= MAX_FEATURES,
                      "need to increase MAX_FEATURES");
        sIndicDisableLigaturesDescriptor =
            CreateFontFeaturesDescriptor(kIndicDisableLigatures,
                                         ArrayLength(kIndicDisableLigatures));
    }
    return sIndicDisableLigaturesDescriptor;
}

CTFontRef
gfxCoreTextShaper::CreateCTFontWithFeatures(CGFloat aSize,
                                            CTFontDescriptorRef aDescriptor)
{
    CGFontRef cgFont = static_cast<gfxMacFont*>(mFont)->GetCGFontRef();
    return gfxMacFont::CreateCTFontFromCGFontWithVariations(cgFont, aSize,
                                                            aDescriptor);
}

void
gfxCoreTextShaper::Shutdown() // [static]
{
    if (sIndicDisableLigaturesDescriptor != nullptr) {
        ::CFRelease(sIndicDisableLigaturesDescriptor);
        sIndicDisableLigaturesDescriptor = nullptr;
    }
    if (sIndicFeaturesDescriptor != nullptr) {
        ::CFRelease(sIndicFeaturesDescriptor);
        sIndicFeaturesDescriptor = nullptr;
    }
    if (sDisableLigaturesDescriptor != nullptr) {
        ::CFRelease(sDisableLigaturesDescriptor);
        sDisableLigaturesDescriptor = nullptr;
    }
    if (sDefaultFeaturesDescriptor != nullptr) {
        ::CFRelease(sDefaultFeaturesDescriptor);
        sDefaultFeaturesDescriptor = nullptr;
    }
}