Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "IpcResourceUpdateQueue.h"
#include <string.h>
#include <algorithm>
#include "mozilla/Maybe.h"
#include "mozilla/ipc/SharedMemory.h"
#include "mozilla/layers/PTextureChild.h"
#include "mozilla/layers/WebRenderBridgeChild.h"
namespace mozilla {
namespace wr {
using namespace mozilla::layers;
ShmSegmentsWriter::ShmSegmentsWriter(layers::WebRenderBridgeChild* aAllocator,
size_t aChunkSize)
: mShmAllocator(aAllocator), mCursor(0), mChunkSize(aChunkSize) {
MOZ_ASSERT(mShmAllocator);
}
ShmSegmentsWriter::~ShmSegmentsWriter() { Clear(); }
ShmSegmentsWriter::ShmSegmentsWriter(ShmSegmentsWriter&& aOther) noexcept
: mSmallAllocs(std::move(aOther.mSmallAllocs)),
mLargeAllocs(std::move(aOther.mLargeAllocs)),
mShmAllocator(aOther.mShmAllocator),
mCursor(aOther.mCursor),
mChunkSize(aOther.mChunkSize) {
aOther.mCursor = 0;
}
ShmSegmentsWriter& ShmSegmentsWriter::operator=(
ShmSegmentsWriter&& aOther) noexcept {
MOZ_ASSERT(IsEmpty(), "Will forget existing updates!");
Clear();
mSmallAllocs = std::move(aOther.mSmallAllocs);
mLargeAllocs = std::move(aOther.mLargeAllocs);
mShmAllocator = aOther.mShmAllocator;
mCursor = aOther.mCursor;
mChunkSize = aOther.mChunkSize;
aOther.mCursor = 0;
return *this;
}
layers::OffsetRange ShmSegmentsWriter::Write(Range<uint8_t> aBytes) {
const size_t start = mCursor;
const size_t length = aBytes.length();
if (length >= mChunkSize * 4) {
auto range = AllocLargeChunk(length);
if (range.length()) {
// Allocation was successful
uint8_t* dstPtr = mLargeAllocs.LastElement().get<uint8_t>();
memcpy(dstPtr, aBytes.begin().get(), length);
}
return range;
}
int remainingBytesToCopy = length;
size_t srcCursor = 0;
size_t dstCursor = mCursor;
size_t currAllocLen = mSmallAllocs.Length();
while (remainingBytesToCopy > 0) {
if (dstCursor >= mSmallAllocs.Length() * mChunkSize) {
if (!AllocChunk()) {
// Allocation failed, so roll back to the state at the start of this
// Write() call and abort.
while (mSmallAllocs.Length() > currAllocLen) {
RefCountedShmem shm = mSmallAllocs.PopLastElement();
RefCountedShm::Dealloc(mShmAllocator, shm);
}
MOZ_ASSERT(mSmallAllocs.Length() == currAllocLen);
return layers::OffsetRange(0, start, 0);
}
// Allocation succeeded, so dstCursor should now be pointing to
// something inside the allocation buffer
MOZ_ASSERT(dstCursor < (mSmallAllocs.Length() * mChunkSize));
}
const size_t dstMaxOffset = mChunkSize * mSmallAllocs.Length();
const size_t dstBaseOffset = mChunkSize * (mSmallAllocs.Length() - 1);
MOZ_ASSERT(dstCursor >= dstBaseOffset);
MOZ_ASSERT(dstCursor <= dstMaxOffset);
size_t availableRange = dstMaxOffset - dstCursor;
size_t copyRange = std::min<int>(availableRange, remainingBytesToCopy);
uint8_t* srcPtr = &aBytes[srcCursor];
uint8_t* dstPtr = RefCountedShm::GetBytes(mSmallAllocs.LastElement()) +
(dstCursor - dstBaseOffset);
memcpy(dstPtr, srcPtr, copyRange);
srcCursor += copyRange;
dstCursor += copyRange;
remainingBytesToCopy -= copyRange;
// sanity check
MOZ_ASSERT(remainingBytesToCopy >= 0);
}
mCursor += length;
return layers::OffsetRange(0, start, length);
}
bool ShmSegmentsWriter::AllocChunk() {
RefCountedShmem shm;
if (!mShmAllocator->AllocResourceShmem(mChunkSize, shm)) {
gfxCriticalNote << "ShmSegmentsWriter failed to allocate chunk #"
<< mSmallAllocs.Length();
MOZ_ASSERT(false, "ShmSegmentsWriter fails to allocate chunk");
return false;
}
RefCountedShm::AddRef(shm);
mSmallAllocs.AppendElement(shm);
return true;
}
layers::OffsetRange ShmSegmentsWriter::AllocLargeChunk(size_t aSize) {
ipc::Shmem shm;
if (!mShmAllocator->AllocShmem(aSize, &shm)) {
gfxCriticalNote
<< "ShmSegmentsWriter failed to allocate large chunk of size " << aSize;
MOZ_ASSERT(false, "ShmSegmentsWriter fails to allocate large chunk");
return layers::OffsetRange(0, 0, 0);
}
mLargeAllocs.AppendElement(shm);
return layers::OffsetRange(mLargeAllocs.Length(), 0, aSize);
}
void ShmSegmentsWriter::Flush(nsTArray<RefCountedShmem>& aSmallAllocs,
nsTArray<ipc::Shmem>& aLargeAllocs) {
MOZ_ASSERT(aSmallAllocs.IsEmpty());
MOZ_ASSERT(aLargeAllocs.IsEmpty());
aSmallAllocs = std::move(mSmallAllocs);
aLargeAllocs = std::move(mLargeAllocs);
mCursor = 0;
}
bool ShmSegmentsWriter::IsEmpty() const { return mCursor == 0; }
void ShmSegmentsWriter::Clear() {
if (mShmAllocator) {
IpcResourceUpdateQueue::ReleaseShmems(mShmAllocator, mSmallAllocs);
IpcResourceUpdateQueue::ReleaseShmems(mShmAllocator, mLargeAllocs);
}
mCursor = 0;
}
ShmSegmentsReader::ShmSegmentsReader(
const nsTArray<RefCountedShmem>& aSmallShmems,
const nsTArray<ipc::Shmem>& aLargeShmems)
: mSmallAllocs(aSmallShmems), mLargeAllocs(aLargeShmems), mChunkSize(0) {
if (mSmallAllocs.IsEmpty()) {
return;
}
mChunkSize = RefCountedShm::GetSize(mSmallAllocs[0]);
// Check that all shmems are readable and have the same size. If anything
// isn't right, set mChunkSize to zero which signifies that the reader is
// in an invalid state and Read calls will return false;
for (const auto& shm : mSmallAllocs) {
if (!RefCountedShm::IsValid(shm) ||
RefCountedShm::GetSize(shm) != mChunkSize ||
RefCountedShm::GetBytes(shm) == nullptr) {
mChunkSize = 0;
return;
}
}
for (const auto& shm : mLargeAllocs) {
if (!shm.IsReadable() || shm.get<uint8_t>() == nullptr) {
mChunkSize = 0;
return;
}
}
}
bool ShmSegmentsReader::ReadLarge(const layers::OffsetRange& aRange,
wr::Vec<uint8_t>& aInto) {
// source = zero is for small allocs.
MOZ_RELEASE_ASSERT(aRange.source() != 0);
if (aRange.source() > mLargeAllocs.Length()) {
return false;
}
size_t id = aRange.source() - 1;
const ipc::Shmem& shm = mLargeAllocs[id];
if (shm.Size<uint8_t>() < aRange.length()) {
return false;
}
uint8_t* srcPtr = shm.get<uint8_t>();
aInto.PushBytes(Range<uint8_t>(srcPtr, aRange.length()));
return true;
}
bool ShmSegmentsReader::Read(const layers::OffsetRange& aRange,
wr::Vec<uint8_t>& aInto) {
if (aRange.length() == 0) {
return true;
}
if (aRange.source() != 0) {
return ReadLarge(aRange, aInto);
}
if (mChunkSize == 0) {
return false;
}
if (aRange.start() + aRange.length() > mChunkSize * mSmallAllocs.Length()) {
return false;
}
size_t initialLength = aInto.Length();
size_t srcCursor = aRange.start();
size_t remainingBytesToCopy = aRange.length();
while (remainingBytesToCopy > 0) {
const size_t shm_idx = srcCursor / mChunkSize;
const size_t ptrOffset = srcCursor % mChunkSize;
const size_t copyRange =
std::min(remainingBytesToCopy, mChunkSize - ptrOffset);
uint8_t* srcPtr =
RefCountedShm::GetBytes(mSmallAllocs[shm_idx]) + ptrOffset;
aInto.PushBytes(Range<uint8_t>(srcPtr, copyRange));
srcCursor += copyRange;
remainingBytesToCopy -= copyRange;
}
return aInto.Length() - initialLength == aRange.length();
}
Maybe<Range<uint8_t>> ShmSegmentsReader::GetReadPointerLarge(
const layers::OffsetRange& aRange) {
// source = zero is for small allocs.
MOZ_RELEASE_ASSERT(aRange.source() != 0);
if (aRange.source() > mLargeAllocs.Length()) {
return Nothing();
}
size_t id = aRange.source() - 1;
const ipc::Shmem& shm = mLargeAllocs[id];
if (shm.Size<uint8_t>() < aRange.length()) {
return Nothing();
}
uint8_t* srcPtr = shm.get<uint8_t>();
return Some(Range<uint8_t>(srcPtr, aRange.length()));
}
Maybe<Range<uint8_t>> ShmSegmentsReader::GetReadPointer(
const layers::OffsetRange& aRange) {
if (aRange.length() == 0) {
return Some(Range<uint8_t>());
}
if (aRange.source() != 0) {
return GetReadPointerLarge(aRange);
}
if (mChunkSize == 0 ||
aRange.start() + aRange.length() > mChunkSize * mSmallAllocs.Length()) {
return Nothing();
}
size_t srcCursor = aRange.start();
size_t remainingBytesToCopy = aRange.length();
const size_t shm_idx = srcCursor / mChunkSize;
const size_t ptrOffset = srcCursor % mChunkSize;
// Return nothing if we can't return a pointer to the full range
if (mChunkSize - ptrOffset < remainingBytesToCopy) {
return Nothing();
}
uint8_t* srcPtr = RefCountedShm::GetBytes(mSmallAllocs[shm_idx]) + ptrOffset;
return Some(Range<uint8_t>(srcPtr, remainingBytesToCopy));
}
IpcResourceUpdateQueue::IpcResourceUpdateQueue(
layers::WebRenderBridgeChild* aAllocator, size_t aChunkSize)
: mWriter(aAllocator, aChunkSize) {}
IpcResourceUpdateQueue::IpcResourceUpdateQueue(
IpcResourceUpdateQueue&& aOther) noexcept
: mWriter(std::move(aOther.mWriter)),
mUpdates(std::move(aOther.mUpdates)) {}
IpcResourceUpdateQueue& IpcResourceUpdateQueue::operator=(
IpcResourceUpdateQueue&& aOther) noexcept {
MOZ_ASSERT(IsEmpty(), "Will forget existing updates!");
mWriter = std::move(aOther.mWriter);
mUpdates = std::move(aOther.mUpdates);
return *this;
}
void IpcResourceUpdateQueue::ReplaceResources(IpcResourceUpdateQueue&& aOther) {
MOZ_ASSERT(IsEmpty(), "Will forget existing updates!");
mWriter = std::move(aOther.mWriter);
mUpdates = std::move(aOther.mUpdates);
}
bool IpcResourceUpdateQueue::AddImage(ImageKey key,
const ImageDescriptor& aDescriptor,
Range<uint8_t> aBytes) {
auto bytes = mWriter.Write(aBytes);
if (!bytes.length()) {
return false;
}
mUpdates.AppendElement(layers::OpAddImage(aDescriptor, bytes, 0, key));
return true;
}
bool IpcResourceUpdateQueue::AddBlobImage(BlobImageKey key,
const ImageDescriptor& aDescriptor,
Range<uint8_t> aBytes,
ImageIntRect aVisibleRect) {
MOZ_RELEASE_ASSERT(aDescriptor.width > 0 && aDescriptor.height > 0);
auto bytes = mWriter.Write(aBytes);
if (!bytes.length()) {
return false;
}
mUpdates.AppendElement(
layers::OpAddBlobImage(aDescriptor, bytes, aVisibleRect, 0, key));
return true;
}
void IpcResourceUpdateQueue::AddSharedExternalImage(wr::ExternalImageId aExtId,
wr::ImageKey aKey) {
mUpdates.AppendElement(layers::OpAddSharedExternalImage(aExtId, aKey));
}
void IpcResourceUpdateQueue::PushExternalImageForTexture(
wr::ExternalImageId aExtId, wr::ImageKey aKey,
layers::TextureClient* aTexture, bool aIsUpdate) {
MOZ_ASSERT(aTexture);
MOZ_ASSERT(aTexture->GetIPDLActor());
MOZ_RELEASE_ASSERT(aTexture->GetIPDLActor()->GetIPCChannel() ==
mWriter.WrBridge()->GetIPCChannel());
mUpdates.AppendElement(layers::OpPushExternalImageForTexture(
aExtId, aKey, WrapNotNull(aTexture->GetIPDLActor()), aIsUpdate));
}
bool IpcResourceUpdateQueue::UpdateImageBuffer(
ImageKey aKey, const ImageDescriptor& aDescriptor, Range<uint8_t> aBytes) {
auto bytes = mWriter.Write(aBytes);
if (!bytes.length()) {
return false;
}
mUpdates.AppendElement(layers::OpUpdateImage(aDescriptor, bytes, aKey));
return true;
}
bool IpcResourceUpdateQueue::UpdateBlobImage(BlobImageKey aKey,
const ImageDescriptor& aDescriptor,
Range<uint8_t> aBytes,
ImageIntRect aVisibleRect,
ImageIntRect aDirtyRect) {
MOZ_ASSERT(aVisibleRect.width > 0 && aVisibleRect.height > 0);
auto bytes = mWriter.Write(aBytes);
if (!bytes.length()) {
return false;
}
mUpdates.AppendElement(layers::OpUpdateBlobImage(aDescriptor, bytes, aKey,
aVisibleRect, aDirtyRect));
return true;
}
void IpcResourceUpdateQueue::UpdateSharedExternalImage(
wr::ExternalImageId aExtId, wr::ImageKey aKey, ImageIntRect aDirtyRect) {
mUpdates.AppendElement(
layers::OpUpdateSharedExternalImage(aExtId, aKey, aDirtyRect));
}
void IpcResourceUpdateQueue::SetBlobImageVisibleArea(
wr::BlobImageKey aKey, const ImageIntRect& aArea) {
mUpdates.AppendElement(layers::OpSetBlobImageVisibleArea(aArea, aKey));
}
void IpcResourceUpdateQueue::DeleteImage(ImageKey aKey) {
mUpdates.AppendElement(layers::OpDeleteImage(aKey));
}
void IpcResourceUpdateQueue::DeleteBlobImage(BlobImageKey aKey) {
mUpdates.AppendElement(layers::OpDeleteBlobImage(aKey));
}
bool IpcResourceUpdateQueue::AddRawFont(wr::FontKey aKey, Range<uint8_t> aBytes,
uint32_t aIndex) {
auto bytes = mWriter.Write(aBytes);
if (!bytes.length()) {
return false;
}
mUpdates.AppendElement(layers::OpAddRawFont(bytes, aIndex, aKey));
return true;
}
bool IpcResourceUpdateQueue::AddFontDescriptor(wr::FontKey aKey,
Range<uint8_t> aBytes,
uint32_t aIndex) {
auto bytes = mWriter.Write(aBytes);
if (!bytes.length()) {
return false;
}
mUpdates.AppendElement(layers::OpAddFontDescriptor(bytes, aIndex, aKey));
return true;
}
void IpcResourceUpdateQueue::DeleteFont(wr::FontKey aKey) {
mUpdates.AppendElement(layers::OpDeleteFont(aKey));
}
void IpcResourceUpdateQueue::AddFontInstance(
wr::FontInstanceKey aKey, wr::FontKey aFontKey, float aGlyphSize,
const wr::FontInstanceOptions* aOptions,
const wr::FontInstancePlatformOptions* aPlatformOptions,
Range<const gfx::FontVariation> aVariations) {
auto bytes = mWriter.WriteAsBytes(aVariations);
mUpdates.AppendElement(layers::OpAddFontInstance(
aOptions ? Some(*aOptions) : Nothing(),
aPlatformOptions ? Some(*aPlatformOptions) : Nothing(), bytes, aKey,
aFontKey, aGlyphSize));
}
void IpcResourceUpdateQueue::DeleteFontInstance(wr::FontInstanceKey aKey) {
mUpdates.AppendElement(layers::OpDeleteFontInstance(aKey));
}
void IpcResourceUpdateQueue::Flush(
nsTArray<layers::OpUpdateResource>& aUpdates,
nsTArray<layers::RefCountedShmem>& aSmallAllocs,
nsTArray<ipc::Shmem>& aLargeAllocs) {
aUpdates = std::move(mUpdates);
mWriter.Flush(aSmallAllocs, aLargeAllocs);
}
bool IpcResourceUpdateQueue::IsEmpty() const {
if (mUpdates.Length() == 0) {
MOZ_ASSERT(mWriter.IsEmpty());
return true;
}
return false;
}
void IpcResourceUpdateQueue::Clear() {
mWriter.Clear();
mUpdates.Clear();
}
// static
void IpcResourceUpdateQueue::ReleaseShmems(
ipc::IProtocol* aShmAllocator, nsTArray<layers::RefCountedShmem>& aShms) {
for (auto& shm : aShms) {
if (RefCountedShm::IsValid(shm) && RefCountedShm::Release(shm) == 0) {
RefCountedShm::Dealloc(aShmAllocator, shm);
}
}
aShms.Clear();
}
// static
void IpcResourceUpdateQueue::ReleaseShmems(ipc::IProtocol* aShmAllocator,
nsTArray<ipc::Shmem>& aShms) {
for (auto& shm : aShms) {
aShmAllocator->DeallocShmem(shm);
}
aShms.Clear();
}
} // namespace wr
} // namespace mozilla