DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (3dc70a33491f)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_GFX_MATRIX_H_
#define MOZILLA_GFX_MATRIX_H_

#include "Types.h"
#include "Triangle.h"
#include "Rect.h"
#include "Point.h"
#include "Quaternion.h"
#include <iosfwd>
#include <math.h>
#include "mozilla/Attributes.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/FloatingPoint.h"

namespace mozilla {
namespace gfx {

static inline bool FuzzyEqual(Float aV1, Float aV2) {
  // XXX - Check if fabs does the smart thing and just negates the sign bit.
  return fabs(aV2 - aV1) < 1e-6;
}

template <class T>
class BaseMatrix {
  // Alias that maps to either Point or PointDouble depending on whether T is a
  // float or a double.
  typedef PointTyped<UnknownUnits, T> MatrixPoint;
  // Same for size and rect
  typedef SizeTyped<UnknownUnits, T> MatrixSize;
  typedef RectTyped<UnknownUnits, T> MatrixRect;

 public:
  BaseMatrix() : _11(1.0f), _12(0), _21(0), _22(1.0f), _31(0), _32(0) {}
  BaseMatrix(T a11, T a12, T a21, T a22, T a31, T a32)
      : _11(a11), _12(a12), _21(a21), _22(a22), _31(a31), _32(a32) {}
  union {
    struct {
      T _11, _12;
      T _21, _22;
      T _31, _32;
    };
    T components[6];
  };

  template <class T2>
  explicit BaseMatrix(const BaseMatrix<T2>& aOther)
      : _11(aOther._11),
        _12(aOther._12),
        _21(aOther._21),
        _22(aOther._22),
        _31(aOther._31),
        _32(aOther._32) {}

  MOZ_ALWAYS_INLINE BaseMatrix Copy() const { return BaseMatrix<T>(*this); }

  friend std::ostream& operator<<(std::ostream& aStream,
                                  const BaseMatrix& aMatrix) {
    return aStream << "[ " << aMatrix._11 << " " << aMatrix._12 << "; "
                   << aMatrix._21 << " " << aMatrix._22 << "; " << aMatrix._31
                   << " " << aMatrix._32 << "; ]";
  }

  MatrixPoint TransformPoint(const MatrixPoint& aPoint) const {
    MatrixPoint retPoint;

    retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31;
    retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32;

    return retPoint;
  }

  MatrixSize TransformSize(const MatrixSize& aSize) const {
    MatrixSize retSize;

    retSize.width = aSize.width * _11 + aSize.height * _21;
    retSize.height = aSize.width * _12 + aSize.height * _22;

    return retSize;
  }

  /**
   * In most cases you probably want to use TransformBounds. This function
   * just transforms the top-left and size separately and constructs a rect
   * from those results.
   */
  MatrixRect TransformRect(const MatrixRect& aRect) const {
    return MatrixRect(TransformPoint(aRect.TopLeft()),
                      TransformSize(aRect.Size()));
  }

  GFX2D_API MatrixRect TransformBounds(const MatrixRect& aRect) const {
    int i;
    MatrixPoint quad[4];
    T min_x, max_x;
    T min_y, max_y;

    quad[0] = TransformPoint(aRect.TopLeft());
    quad[1] = TransformPoint(aRect.TopRight());
    quad[2] = TransformPoint(aRect.BottomLeft());
    quad[3] = TransformPoint(aRect.BottomRight());

    min_x = max_x = quad[0].x;
    min_y = max_y = quad[0].y;

    for (i = 1; i < 4; i++) {
      if (quad[i].x < min_x) min_x = quad[i].x;
      if (quad[i].x > max_x) max_x = quad[i].x;

      if (quad[i].y < min_y) min_y = quad[i].y;
      if (quad[i].y > max_y) max_y = quad[i].y;
    }

    return MatrixRect(min_x, min_y, max_x - min_x, max_y - min_y);
  }

  static BaseMatrix<T> Translation(T aX, T aY) {
    return BaseMatrix<T>(1.0f, 0.0f, 0.0f, 1.0f, aX, aY);
  }

  static BaseMatrix<T> Translation(MatrixPoint aPoint) {
    return Translation(aPoint.x, aPoint.y);
  }

  /**
   * Apply a translation to this matrix.
   *
   * The "Pre" in this method's name means that the translation is applied
   * -before- this matrix's existing transformation. That is, any vector that
   * is multiplied by the resulting matrix will first be translated, then be
   * transformed by the original transform.
   *
   * Calling this method will result in this matrix having the same value as
   * the result of:
   *
   *   BaseMatrix<T>::Translation(x, y) * this
   *
   * (Note that in performance critical code multiplying by the result of a
   * Translation()/Scaling() call is not recommended since that results in a
   * full matrix multiply involving 12 floating-point multiplications. Calling
   * this method would be preferred since it only involves four floating-point
   * multiplications.)
   */
  BaseMatrix<T>& PreTranslate(T aX, T aY) {
    _31 += _11 * aX + _21 * aY;
    _32 += _12 * aX + _22 * aY;

    return *this;
  }

  BaseMatrix<T>& PreTranslate(const MatrixPoint& aPoint) {
    return PreTranslate(aPoint.x, aPoint.y);
  }

  /**
   * Similar to PreTranslate, but the translation is applied -after- this
   * matrix's existing transformation instead of before it.
   *
   * This method is generally less used than PreTranslate since typically code
   * want to adjust an existing user space to device space matrix to create a
   * transform to device space from a -new- user space (translated from the
   * previous user space). In that case consumers will need to use the Pre*
   * variants of the matrix methods rather than using the Post* methods, since
   * the Post* methods add a transform to the device space end of the
   * transformation.
   */
  BaseMatrix<T>& PostTranslate(T aX, T aY) {
    _31 += aX;
    _32 += aY;
    return *this;
  }

  BaseMatrix<T>& PostTranslate(const MatrixPoint& aPoint) {
    return PostTranslate(aPoint.x, aPoint.y);
  }

  static BaseMatrix<T> Scaling(T aScaleX, T aScaleY) {
    return BaseMatrix<T>(aScaleX, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f);
  }

  /**
   * Similar to PreTranslate, but applies a scale instead of a translation.
   */
  BaseMatrix<T>& PreScale(T aX, T aY) {
    _11 *= aX;
    _12 *= aX;
    _21 *= aY;
    _22 *= aY;

    return *this;
  }

  /**
   * Similar to PostTranslate, but applies a scale instead of a translation.
   */
  BaseMatrix<T>& PostScale(T aScaleX, T aScaleY) {
    _11 *= aScaleX;
    _12 *= aScaleY;
    _21 *= aScaleX;
    _22 *= aScaleY;
    _31 *= aScaleX;
    _32 *= aScaleY;

    return *this;
  }

  GFX2D_API static BaseMatrix<T> Rotation(T aAngle);

  /**
   * Similar to PreTranslate, but applies a rotation instead of a translation.
   */
  BaseMatrix<T>& PreRotate(T aAngle) {
    return *this = BaseMatrix<T>::Rotation(aAngle) * *this;
  }

  bool Invert() {
    // Compute co-factors.
    T A = _22;
    T B = -_21;
    T C = _21 * _32 - _22 * _31;
    T D = -_12;
    T E = _11;
    T F = _31 * _12 - _11 * _32;

    T det = Determinant();

    if (!det) {
      return false;
    }

    T inv_det = 1 / det;

    _11 = inv_det * A;
    _12 = inv_det * D;
    _21 = inv_det * B;
    _22 = inv_det * E;
    _31 = inv_det * C;
    _32 = inv_det * F;

    return true;
  }

  BaseMatrix<T> Inverse() const {
    BaseMatrix<T> clone = *this;
    DebugOnly<bool> inverted = clone.Invert();
    MOZ_ASSERT(inverted,
               "Attempted to get the inverse of a non-invertible matrix");
    return clone;
  }

  T Determinant() const { return _11 * _22 - _12 * _21; }

  BaseMatrix<T> operator*(const BaseMatrix<T>& aMatrix) const {
    BaseMatrix<T> resultMatrix;

    resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21;
    resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22;
    resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21;
    resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22;
    resultMatrix._31 =
        this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31;
    resultMatrix._32 =
        this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32;

    return resultMatrix;
  }

  BaseMatrix<T>& operator*=(const BaseMatrix<T>& aMatrix) {
    *this = *this * aMatrix;
    return *this;
  }

  /**
   * Multiplies *this with aMatrix and returns the result.
   */
  Matrix4x4 operator*(const Matrix4x4& aMatrix) const;

  /**
   * Multiplies in the opposite order to operator=*.
   */
  BaseMatrix<T>& PreMultiply(const BaseMatrix<T>& aMatrix) {
    *this = aMatrix * *this;
    return *this;
  }

  /**
   * Please explicitly use either FuzzyEquals or ExactlyEquals.
   */
  bool operator==(const BaseMatrix<T>& other) const = delete;
  bool operator!=(const BaseMatrix<T>& other) const = delete;

  /* Returns true if the other matrix is fuzzy-equal to this matrix.
   * Note that this isn't a cheap comparison!
   */
  bool FuzzyEquals(const BaseMatrix<T>& o) const {
    return FuzzyEqual(_11, o._11) && FuzzyEqual(_12, o._12) &&
           FuzzyEqual(_21, o._21) && FuzzyEqual(_22, o._22) &&
           FuzzyEqual(_31, o._31) && FuzzyEqual(_32, o._32);
  }

  bool ExactlyEquals(const BaseMatrix<T>& o) const {
    return _11 == o._11 && _12 == o._12 && _21 == o._21 && _22 == o._22 &&
           _31 == o._31 && _32 == o._32;
  }

  /* Verifies that the matrix contains no Infs or NaNs. */
  bool IsFinite() const {
    return mozilla::IsFinite(_11) && mozilla::IsFinite(_12) &&
           mozilla::IsFinite(_21) && mozilla::IsFinite(_22) &&
           mozilla::IsFinite(_31) && mozilla::IsFinite(_32);
  }

  /* Returns true if the matrix is a rectilinear transformation (i.e.
   * grid-aligned rectangles are transformed to grid-aligned rectangles)
   */
  bool IsRectilinear() const {
    if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) {
      return true;
    } else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) {
      return true;
    }

    return false;
  }

  /**
   * Returns true if the matrix is anything other than a straight
   * translation by integers.
   */
  bool HasNonIntegerTranslation() const {
    return HasNonTranslation() || !FuzzyEqual(_31, floor(_31 + 0.5f)) ||
           !FuzzyEqual(_32, floor(_32 + 0.5f));
  }

  /**
   * Returns true if the matrix only has an integer translation.
   */
  bool HasOnlyIntegerTranslation() const { return !HasNonIntegerTranslation(); }

  /**
   * Returns true if the matrix has any transform other
   * than a straight translation.
   */
  bool HasNonTranslation() const {
    return !FuzzyEqual(_11, 1.0) || !FuzzyEqual(_22, 1.0) ||
           !FuzzyEqual(_12, 0.0) || !FuzzyEqual(_21, 0.0);
  }

  /**
   * Returns true if the matrix has any transform other
   * than a translation or a -1 y scale (y axis flip)
   */
  bool HasNonTranslationOrFlip() const {
    return !FuzzyEqual(_11, 1.0) ||
           (!FuzzyEqual(_22, 1.0) && !FuzzyEqual(_22, -1.0)) ||
           !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
  }

  /* Returns true if the matrix is an identity matrix.
   */
  bool IsIdentity() const {
    return _11 == 1.0f && _12 == 0.0f && _21 == 0.0f && _22 == 1.0f &&
           _31 == 0.0f && _32 == 0.0f;
  }

  /* Returns true if the matrix is singular.
   */
  bool IsSingular() const {
    T det = Determinant();
    return !mozilla::IsFinite(det) || det == 0;
  }

  GFX2D_API BaseMatrix<T>& NudgeToIntegers() {
    NudgeToInteger(&_11);
    NudgeToInteger(&_12);
    NudgeToInteger(&_21);
    NudgeToInteger(&_22);
    NudgeToInteger(&_31);
    NudgeToInteger(&_32);
    return *this;
  }

  bool IsTranslation() const {
    return FuzzyEqual(_11, 1.0f) && FuzzyEqual(_12, 0.0f) &&
           FuzzyEqual(_21, 0.0f) && FuzzyEqual(_22, 1.0f);
  }

  static bool FuzzyIsInteger(T aValue) {
    return FuzzyEqual(aValue, floorf(aValue + 0.5f));
  }

  bool IsIntegerTranslation() const {
    return IsTranslation() && FuzzyIsInteger(_31) && FuzzyIsInteger(_32);
  }

  bool IsAllIntegers() const {
    return FuzzyIsInteger(_11) && FuzzyIsInteger(_12) && FuzzyIsInteger(_21) &&
           FuzzyIsInteger(_22) && FuzzyIsInteger(_31) && FuzzyIsInteger(_32);
  }

  MatrixPoint GetTranslation() const { return MatrixPoint(_31, _32); }

  /**
   * Returns true if matrix is multiple of 90 degrees rotation with flipping,
   * scaling and translation.
   */
  bool PreservesAxisAlignedRectangles() const {
    return ((FuzzyEqual(_11, 0.0) && FuzzyEqual(_22, 0.0)) ||
            (FuzzyEqual(_12, 0.0) && FuzzyEqual(_21, 0.0)));
  }

  /**
   * Returns true if the matrix has any transform other
   * than a translation or scale; this is, if there is
   * rotation.
   */
  bool HasNonAxisAlignedTransform() const {
    return !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
  }

  /**
   * Returns true if the matrix has negative scaling (i.e. flip).
   */
  bool HasNegativeScaling() const { return (_11 < 0.0) || (_22 < 0.0); }

  /**
   * Computes the scale factors of this matrix; that is,
   * the amounts each basis vector is scaled by.
   * The xMajor parameter indicates if the larger scale is
   * to be assumed to be in the X direction or not.
   */
  MatrixSize ScaleFactors(bool xMajor) const {
    T det = Determinant();

    if (det == 0.0) {
      return MatrixSize(0.0, 0.0);
    }

    MatrixSize sz = xMajor ? MatrixSize(1.0, 0.0) : MatrixSize(0.0, 1.0);
    sz = TransformSize(sz);

    T major = sqrt(sz.width * sz.width + sz.height * sz.height);
    T minor = 0.0;

    // ignore mirroring
    if (det < 0.0) {
      det = -det;
    }

    if (major) {
      minor = det / major;
    }

    if (xMajor) {
      return MatrixSize(major, minor);
    }

    return MatrixSize(minor, major);
  }
};

typedef BaseMatrix<Float> Matrix;
typedef BaseMatrix<Double> MatrixDouble;

// Helper functions used by Matrix4x4Typed defined in Matrix.cpp
double SafeTangent(double aTheta);
double FlushToZero(double aVal);

template <class Units, class F>
Point4DTyped<Units, F> ComputePerspectivePlaneIntercept(
    const Point4DTyped<Units, F>& aFirst,
    const Point4DTyped<Units, F>& aSecond) {
  // This function will always return a point with a w value of 0.
  // The X, Y, and Z components will point towards an infinite vanishing
  // point.

  // We want to interpolate aFirst and aSecond to find the point intersecting
  // with the w=0 plane.

  // Since we know what we want the w component to be, we can rearrange the
  // interpolation equation and solve for t.
  float t = -aFirst.w / (aSecond.w - aFirst.w);

  // Use t to find the remainder of the components
  return aFirst + (aSecond - aFirst) * t;
}

template <class SourceUnits, class TargetUnits, class T>
class Matrix4x4Typed {
 public:
  typedef PointTyped<SourceUnits, T> SourcePoint;
  typedef PointTyped<TargetUnits, T> TargetPoint;
  typedef Point3DTyped<SourceUnits, T> SourcePoint3D;
  typedef Point3DTyped<TargetUnits, T> TargetPoint3D;
  typedef Point4DTyped<SourceUnits, T> SourcePoint4D;
  typedef Point4DTyped<TargetUnits, T> TargetPoint4D;
  typedef RectTyped<SourceUnits, T> SourceRect;
  typedef RectTyped<TargetUnits, T> TargetRect;

  Matrix4x4Typed()
      : _11(1.0f),
        _12(0.0f),
        _13(0.0f),
        _14(0.0f),
        _21(0.0f),
        _22(1.0f),
        _23(0.0f),
        _24(0.0f),
        _31(0.0f),
        _32(0.0f),
        _33(1.0f),
        _34(0.0f),
        _41(0.0f),
        _42(0.0f),
        _43(0.0f),
        _44(1.0f) {}

  Matrix4x4Typed(T a11, T a12, T a13, T a14, T a21, T a22, T a23, T a24, T a31,
                 T a32, T a33, T a34, T a41, T a42, T a43, T a44)
      : _11(a11),
        _12(a12),
        _13(a13),
        _14(a14),
        _21(a21),
        _22(a22),
        _23(a23),
        _24(a24),
        _31(a31),
        _32(a32),
        _33(a33),
        _34(a34),
        _41(a41),
        _42(a42),
        _43(a43),
        _44(a44) {}

  explicit Matrix4x4Typed(const T aArray[16]) {
    memcpy(components, aArray, sizeof(components));
  }

  Matrix4x4Typed(const Matrix4x4Typed& aOther) {
    memcpy(components, aOther.components, sizeof(components));
  }

  template <class T2>
  explicit Matrix4x4Typed(
      const Matrix4x4Typed<SourceUnits, TargetUnits, T2>& aOther)
      : _11(aOther._11),
        _12(aOther._12),
        _13(aOther._13),
        _14(aOther._14),
        _21(aOther._21),
        _22(aOther._22),
        _23(aOther._23),
        _24(aOther._24),
        _31(aOther._31),
        _32(aOther._32),
        _33(aOther._33),
        _34(aOther._34),
        _41(aOther._41),
        _42(aOther._42),
        _43(aOther._43),
        _44(aOther._44) {}

  union {
    struct {
      T _11, _12, _13, _14;
      T _21, _22, _23, _24;
      T _31, _32, _33, _34;
      T _41, _42, _43, _44;
    };
    T components[16];
  };

  friend std::ostream& operator<<(std::ostream& aStream,
                                  const Matrix4x4Typed& aMatrix) {
    const T* f = &aMatrix._11;
    aStream << "[ " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;"
            << std::endl;
    f += 4;
    aStream << "  " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;"
            << std::endl;
    f += 4;
    aStream << "  " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;"
            << std::endl;
    f += 4;
    aStream << "  " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ]"
            << std::endl;
    return aStream;
  }

  Point4DTyped<UnknownUnits, T>& operator[](int aIndex) {
    MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
    return *reinterpret_cast<Point4DTyped<UnknownUnits, T>*>((&_11) +
                                                             4 * aIndex);
  }
  const Point4DTyped<UnknownUnits, T>& operator[](int aIndex) const {
    MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
    return *reinterpret_cast<const Point4DTyped<UnknownUnits, T>*>((&_11) +
                                                                   4 * aIndex);
  }

  /**
   * Returns true if the matrix is isomorphic to a 2D affine transformation.
   */
  bool Is2D() const {
    if (_13 != 0.0f || _14 != 0.0f || _23 != 0.0f || _24 != 0.0f ||
        _31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f ||
        _43 != 0.0f || _44 != 1.0f) {
      return false;
    }
    return true;
  }

  bool Is2D(BaseMatrix<T>* aMatrix) const {
    if (!Is2D()) {
      return false;
    }
    if (aMatrix) {
      aMatrix->_11 = _11;
      aMatrix->_12 = _12;
      aMatrix->_21 = _21;
      aMatrix->_22 = _22;
      aMatrix->_31 = _41;
      aMatrix->_32 = _42;
    }
    return true;
  }

  BaseMatrix<T> As2D() const {
    MOZ_ASSERT(Is2D(), "Matrix is not a 2D affine transform");

    return BaseMatrix<T>(_11, _12, _21, _22, _41, _42);
  }

  bool CanDraw2D(BaseMatrix<T>* aMatrix = nullptr) const {
    if (_14 != 0.0f || _24 != 0.0f || _44 != 1.0f) {
      return false;
    }
    if (aMatrix) {
      aMatrix->_11 = _11;
      aMatrix->_12 = _12;
      aMatrix->_21 = _21;
      aMatrix->_22 = _22;
      aMatrix->_31 = _41;
      aMatrix->_32 = _42;
    }
    return true;
  }

  Matrix4x4Typed& ProjectTo2D() {
    _31 = 0.0f;
    _32 = 0.0f;
    _13 = 0.0f;
    _23 = 0.0f;
    _33 = 1.0f;
    _43 = 0.0f;
    _34 = 0.0f;
    // Some matrices, such as those derived from perspective transforms,
    // can modify _44 from 1, while leaving the rest of the fourth column
    // (_14, _24) at 0. In this case, after resetting the third row and
    // third column above, the value of _44 functions only to scale the
    // coordinate transform divide by W. The matrix can be converted to
    // a true 2D matrix by normalizing out the scaling effect of _44 on
    // the remaining components ahead of time.
    if (_14 == 0.0f && _24 == 0.0f && _44 != 1.0f && _44 != 0.0f) {
      T scale = 1.0f / _44;
      _11 *= scale;
      _12 *= scale;
      _21 *= scale;
      _22 *= scale;
      _41 *= scale;
      _42 *= scale;
      _44 = 1.0f;
    }
    return *this;
  }

  template <class F>
  Point4DTyped<TargetUnits, F> ProjectPoint(
      const PointTyped<SourceUnits, F>& aPoint) const {
    // Find a value for z that will transform to 0.

    // The transformed value of z is computed as:
    // z' = aPoint.x * _13 + aPoint.y * _23 + z * _33 + _43;

    // Solving for z when z' = 0 gives us:
    F z = -(aPoint.x * _13 + aPoint.y * _23 + _43) / _33;

    // Compute the transformed point
    return this->TransformPoint(
        Point4DTyped<SourceUnits, F>(aPoint.x, aPoint.y, z, 1));
  }

  template <class F>
  RectTyped<TargetUnits, F> ProjectRectBounds(
      const RectTyped<SourceUnits, F>& aRect,
      const RectTyped<TargetUnits, F>& aClip) const {
    // This function must never return std::numeric_limits<Float>::max() or any
    // other arbitrary large value in place of inifinity.  This often occurs
    // when aRect is an inversed projection matrix or when aRect is transformed
    // to be partly behind and in front of the camera (w=0 plane in homogenous
    // coordinates) - See Bug 1035611

    // Some call-sites will call RoundGfxRectToAppRect which clips both the
    // extents and dimensions of the rect to be bounded by nscoord_MAX.
    // If we return a Rect that, when converted to nscoords, has a width or
    // height greater than nscoord_MAX, RoundGfxRectToAppRect will clip the
    // overflow off both the min and max end of the rect after clipping the
    // extents of the rect, resulting in a translation of the rect towards the
    // infinite end.

    // The bounds returned by ProjectRectBounds are expected to be clipped only
    // on the edges beyond the bounds of the coordinate system; otherwise, the
    // clipped bounding box would be smaller than the correct one and result
    // bugs such as incorrect culling (eg. Bug 1073056)

    // To address this without requiring all code to work in homogenous
    // coordinates or interpret infinite values correctly, a specialized
    // clipping function is integrated into ProjectRectBounds.

    // Callers should pass an aClip value that represents the extents to clip
    // the result to, in the same coordinate system as aRect.
    Point4DTyped<TargetUnits, F> points[4];

    points[0] = ProjectPoint(aRect.TopLeft());
    points[1] = ProjectPoint(aRect.TopRight());
    points[2] = ProjectPoint(aRect.BottomRight());
    points[3] = ProjectPoint(aRect.BottomLeft());

    F min_x = std::numeric_limits<F>::max();
    F min_y = std::numeric_limits<F>::max();
    F max_x = -std::numeric_limits<F>::max();
    F max_y = -std::numeric_limits<F>::max();

    for (int i = 0; i < 4; i++) {
      // Only use points that exist above the w=0 plane
      if (points[i].HasPositiveWCoord()) {
        PointTyped<TargetUnits, F> point2d =
            aClip.ClampPoint(points[i].As2DPoint());
        min_x = std::min<F>(point2d.x, min_x);
        max_x = std::max<F>(point2d.x, max_x);
        min_y = std::min<F>(point2d.y, min_y);
        max_y = std::max<F>(point2d.y, max_y);
      }

      int next = (i == 3) ? 0 : i + 1;
      if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) {
        // If the line between two points crosses the w=0 plane, then
        // interpolate to find the point of intersection with the w=0 plane and
        // use that instead.
        Point4DTyped<TargetUnits, F> intercept =
            ComputePerspectivePlaneIntercept(points[i], points[next]);
        // Since intercept.w will always be 0 here, we interpret x,y,z as a
        // direction towards an infinite vanishing point.
        if (intercept.x < 0.0f) {
          min_x = aClip.X();
        } else if (intercept.x > 0.0f) {
          max_x = aClip.XMost();
        }
        if (intercept.y < 0.0f) {
          min_y = aClip.Y();
        } else if (intercept.y > 0.0f) {
          max_y = aClip.YMost();
        }
      }
    }

    if (max_x < min_x || max_y < min_y) {
      return RectTyped<TargetUnits, F>(0, 0, 0, 0);
    }

    return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
                                     max_y - min_y);
  }

  /**
   * TransformAndClipBounds transforms aRect as a bounding box, while clipping
   * the transformed bounds to the extents of aClip.
   */
  template <class F>
  RectTyped<TargetUnits, F> TransformAndClipBounds(
      const RectTyped<SourceUnits, F>& aRect,
      const RectTyped<TargetUnits, F>& aClip) const {
    PointTyped<UnknownUnits, F> verts[kTransformAndClipRectMaxVerts];
    size_t vertCount = TransformAndClipRect(aRect, aClip, verts);

    F min_x = std::numeric_limits<F>::max();
    F min_y = std::numeric_limits<F>::max();
    F max_x = -std::numeric_limits<F>::max();
    F max_y = -std::numeric_limits<F>::max();
    for (size_t i = 0; i < vertCount; i++) {
      min_x = std::min(min_x, verts[i].x);
      max_x = std::max(max_x, verts[i].x);
      min_y = std::min(min_y, verts[i].y);
      max_y = std::max(max_y, verts[i].y);
    }

    if (max_x < min_x || max_y < min_y) {
      return RectTyped<TargetUnits, F>(0, 0, 0, 0);
    }

    return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
                                     max_y - min_y);
  }

  template <class F>
  RectTyped<TargetUnits, F> TransformAndClipBounds(
      const TriangleTyped<SourceUnits, F>& aTriangle,
      const RectTyped<TargetUnits, F>& aClip) const {
    return TransformAndClipBounds(aTriangle.BoundingBox(), aClip);
  }

  /**
   * TransformAndClipRect projects a rectangle and clips against view frustum
   * clipping planes in homogenous space so that its projected vertices are
   * constrained within the 2d rectangle passed in aClip.
   * The resulting vertices are populated in aVerts.  aVerts must be
   * pre-allocated to hold at least kTransformAndClipRectMaxVerts Points.
   * The vertex count is returned by TransformAndClipRect.  It is possible to
   * emit fewer than 3 vertices, indicating that aRect will not be visible
   * within aClip.
   */
  template <class F>
  size_t TransformAndClipRect(const RectTyped<SourceUnits, F>& aRect,
                              const RectTyped<TargetUnits, F>& aClip,
                              PointTyped<TargetUnits, F>* aVerts) const {
    // Initialize a double-buffered array of points in homogenous space with
    // the input rectangle, aRect.
    Point4DTyped<UnknownUnits, F> points[2][kTransformAndClipRectMaxVerts];
    Point4DTyped<UnknownUnits, F>* dstPointStart = points[0];
    Point4DTyped<UnknownUnits, F>* dstPoint = dstPointStart;

    *dstPoint++ = TransformPoint(
        Point4DTyped<UnknownUnits, F>(aRect.X(), aRect.Y(), 0, 1));
    *dstPoint++ = TransformPoint(
        Point4DTyped<UnknownUnits, F>(aRect.XMost(), aRect.Y(), 0, 1));
    *dstPoint++ = TransformPoint(
        Point4DTyped<UnknownUnits, F>(aRect.XMost(), aRect.YMost(), 0, 1));
    *dstPoint++ = TransformPoint(
        Point4DTyped<UnknownUnits, F>(aRect.X(), aRect.YMost(), 0, 1));

    // View frustum clipping planes are described as normals originating from
    // the 0,0,0,0 origin.
    Point4DTyped<UnknownUnits, F> planeNormals[4];
    planeNormals[0] = Point4DTyped<UnknownUnits, F>(1.0, 0.0, 0.0, -aClip.X());
    planeNormals[1] =
        Point4DTyped<UnknownUnits, F>(-1.0, 0.0, 0.0, aClip.XMost());
    planeNormals[2] = Point4DTyped<UnknownUnits, F>(0.0, 1.0, 0.0, -aClip.Y());
    planeNormals[3] =
        Point4DTyped<UnknownUnits, F>(0.0, -1.0, 0.0, aClip.YMost());

    // Iterate through each clipping plane and clip the polygon.
    // For each clipping plane, we intersect the plane with all polygon edges.
    // Each pass can increase or decrease the number of points that make up the
    // current clipped polygon. We double buffer that set of points, alternating
    // between points[0] and points[1].
    for (int plane = 0; plane < 4; plane++) {
      planeNormals[plane].Normalize();
      Point4DTyped<UnknownUnits, F>* srcPoint = dstPointStart;
      Point4DTyped<UnknownUnits, F>* srcPointEnd = dstPoint;

      dstPointStart = points[~plane & 1];
      dstPoint = dstPointStart;

      // Iterate over the polygon edges. In each iteration the current edge is
      // the edge from prevPoint to srcPoint. If the two end points lie on
      // different sides of the plane, we have an intersection. Otherwise, the
      // edge is either completely "inside" the half-space created by the
      // clipping plane, and we add srcPoint, or it is completely "outside", and
      // we discard srcPoint.
      // We may create duplicated points in the polygon. We keep those around
      // until all clipping is done and then filter out duplicates at the end.
      Point4DTyped<UnknownUnits, F>* prevPoint = srcPointEnd - 1;
      F prevDot = planeNormals[plane].DotProduct(*prevPoint);
      while (srcPoint < srcPointEnd &&
             ((dstPoint - dstPointStart) < kTransformAndClipRectMaxVerts)) {
        F nextDot = planeNormals[plane].DotProduct(*srcPoint);

        if ((nextDot >= 0.0) != (prevDot >= 0.0)) {
          // An intersection with the clipping plane has been detected.
          // Interpolate to find the intersecting point and emit it.
          F t = -prevDot / (nextDot - prevDot);
          *dstPoint++ = *srcPoint * t + *prevPoint * (1.0 - t);
        }

        if (nextDot >= 0.0) {
          // Emit any source points that are on the positive side of the
          // clipping plane.
          *dstPoint++ = *srcPoint;
        }

        prevPoint = srcPoint++;
        prevDot = nextDot;
      }

      if (dstPoint == dstPointStart) {
        // No polygon points were produced, so the polygon has been
        // completely clipped away by the current clipping plane. Exit.
        break;
      }
    }

    Point4DTyped<UnknownUnits, F>* srcPoint = dstPointStart;
    Point4DTyped<UnknownUnits, F>* srcPointEnd = dstPoint;
    size_t vertCount = 0;
    while (srcPoint < srcPointEnd) {
      PointTyped<TargetUnits, F> p;
      if (srcPoint->w == 0.0) {
        // If a point lies on the intersection of the clipping planes at
        // (0,0,0,0), we must avoid a division by zero w component.
        p = PointTyped<TargetUnits, F>(0.0, 0.0);
      } else {
        p = srcPoint->As2DPoint();
      }
      // Emit only unique points
      if (vertCount == 0 || p != aVerts[vertCount - 1]) {
        aVerts[vertCount++] = p;
      }
      srcPoint++;
    }

    return vertCount;
  }

  static const int kTransformAndClipRectMaxVerts = 32;

  static Matrix4x4Typed From2D(const BaseMatrix<T>& aMatrix) {
    Matrix4x4Typed matrix;
    matrix._11 = aMatrix._11;
    matrix._12 = aMatrix._12;
    matrix._21 = aMatrix._21;
    matrix._22 = aMatrix._22;
    matrix._41 = aMatrix._31;
    matrix._42 = aMatrix._32;
    return matrix;
  }

  bool Is2DIntegerTranslation() const {
    return Is2D() && As2D().IsIntegerTranslation();
  }

  TargetPoint4D TransposeTransform4D(const SourcePoint4D& aPoint) const {
    Float x = aPoint.x * _11 + aPoint.y * _12 + aPoint.z * _13 + aPoint.w * _14;
    Float y = aPoint.x * _21 + aPoint.y * _22 + aPoint.z * _23 + aPoint.w * _24;
    Float z = aPoint.x * _31 + aPoint.y * _32 + aPoint.z * _33 + aPoint.w * _34;
    Float w = aPoint.x * _41 + aPoint.y * _42 + aPoint.z * _43 + aPoint.w * _44;

    return TargetPoint4D(x, y, z, w);
  }

  template <class F>
  Point4DTyped<TargetUnits, F> TransformPoint(
      const Point4DTyped<SourceUnits, F>& aPoint) const {
    Point4DTyped<TargetUnits, F> retPoint;

    retPoint.x =
        aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + aPoint.w * _41;
    retPoint.y =
        aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + aPoint.w * _42;
    retPoint.z =
        aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + aPoint.w * _43;
    retPoint.w =
        aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + aPoint.w * _44;

    return retPoint;
  }

  template <class F>
  Point3DTyped<TargetUnits, F> TransformPoint(
      const Point3DTyped<SourceUnits, F>& aPoint) const {
    Point3DTyped<TargetUnits, F> result;
    result.x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + _41;
    result.y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + _42;
    result.z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + _43;

    result /= (aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + _44);

    return result;
  }

  template <class F>
  PointTyped<TargetUnits, F> TransformPoint(
      const PointTyped<SourceUnits, F>& aPoint) const {
    Point4DTyped<SourceUnits, F> temp(aPoint.x, aPoint.y, 0, 1);
    return TransformPoint(temp).As2DPoint();
  }

  template <class F>
  GFX2D_API RectTyped<TargetUnits, F> TransformBounds(
      const RectTyped<SourceUnits, F>& aRect) const {
    PointTyped<TargetUnits, F> quad[4];
    F min_x, max_x;
    F min_y, max_y;

    quad[0] = TransformPoint(aRect.TopLeft());
    quad[1] = TransformPoint(aRect.TopRight());
    quad[2] = TransformPoint(aRect.BottomLeft());
    quad[3] = TransformPoint(aRect.BottomRight());

    min_x = max_x = quad[0].x;
    min_y = max_y = quad[0].y;

    for (int i = 1; i < 4; i++) {
      if (quad[i].x < min_x) {
        min_x = quad[i].x;
      }
      if (quad[i].x > max_x) {
        max_x = quad[i].x;
      }

      if (quad[i].y < min_y) {
        min_y = quad[i].y;
      }
      if (quad[i].y > max_y) {
        max_y = quad[i].y;
      }
    }

    return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
                                     max_y - min_y);
  }

  static Matrix4x4Typed Translation(T aX, T aY, T aZ) {
    return Matrix4x4Typed(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
                          0.0f, 1.0f, 0.0f, aX, aY, aZ, 1.0f);
  }

  static Matrix4x4Typed Translation(const TargetPoint3D& aP) {
    return Translation(aP.x, aP.y, aP.z);
  }

  static Matrix4x4Typed Translation(const TargetPoint& aP) {
    return Translation(aP.x, aP.y, 0);
  }

  /**
   * Apply a translation to this matrix.
   *
   * The "Pre" in this method's name means that the translation is applied
   * -before- this matrix's existing transformation. That is, any vector that
   * is multiplied by the resulting matrix will first be translated, then be
   * transformed by the original transform.
   *
   * Calling this method will result in this matrix having the same value as
   * the result of:
   *
   *   Matrix4x4::Translation(x, y) * this
   *
   * (Note that in performance critical code multiplying by the result of a
   * Translation()/Scaling() call is not recommended since that results in a
   * full matrix multiply involving 64 floating-point multiplications. Calling
   * this method would be preferred since it only involves 12 floating-point
   * multiplications.)
   */
  Matrix4x4Typed& PreTranslate(T aX, T aY, T aZ) {
    _41 += aX * _11 + aY * _21 + aZ * _31;
    _42 += aX * _12 + aY * _22 + aZ * _32;
    _43 += aX * _13 + aY * _23 + aZ * _33;
    _44 += aX * _14 + aY * _24 + aZ * _34;

    return *this;
  }

  Matrix4x4Typed& PreTranslate(const Point3DTyped<UnknownUnits, T>& aPoint) {
    return PreTranslate(aPoint.x, aPoint.y, aPoint.z);
  }

  /**
   * Similar to PreTranslate, but the translation is applied -after- this
   * matrix's existing transformation instead of before it.
   *
   * This method is generally less used than PreTranslate since typically code
   * wants to adjust an existing user space to device space matrix to create a
   * transform to device space from a -new- user space (translated from the
   * previous user space). In that case consumers will need to use the Pre*
   * variants of the matrix methods rather than using the Post* methods, since
   * the Post* methods add a transform to the device space end of the
   * transformation.
   */
  Matrix4x4Typed& PostTranslate(T aX, T aY, T aZ) {
    _11 += _14 * aX;
    _21 += _24 * aX;
    _31 += _34 * aX;
    _41 += _44 * aX;
    _12 += _14 * aY;
    _22 += _24 * aY;
    _32 += _34 * aY;
    _42 += _44 * aY;
    _13 += _14 * aZ;
    _23 += _24 * aZ;
    _33 += _34 * aZ;
    _43 += _44 * aZ;

    return *this;
  }

  Matrix4x4Typed& PostTranslate(const TargetPoint3D& aPoint) {
    return PostTranslate(aPoint.x, aPoint.y, aPoint.z);
  }

  Matrix4x4Typed& PostTranslate(const TargetPoint& aPoint) {
    return PostTranslate(aPoint.x, aPoint.y, 0);
  }

  static Matrix4x4Typed Scaling(T aScaleX, T aScaleY, T aScaleZ) {
    return Matrix4x4Typed(aScaleX, 0.0f, 0.0f, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f,
                          0.0f, 0.0f, aScaleZ, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  }

  /**
   * Similar to PreTranslate, but applies a scale instead of a translation.
   */
  Matrix4x4Typed& PreScale(T aX, T aY, T aZ) {
    _11 *= aX;
    _12 *= aX;
    _13 *= aX;
    _14 *= aX;
    _21 *= aY;
    _22 *= aY;
    _23 *= aY;
    _24 *= aY;
    _31 *= aZ;
    _32 *= aZ;
    _33 *= aZ;
    _34 *= aZ;

    return *this;
  }

  /**
   * Similar to PostTranslate, but applies a scale instead of a translation.
   */
  Matrix4x4Typed& PostScale(T aScaleX, T aScaleY, T aScaleZ) {
    _11 *= aScaleX;
    _21 *= aScaleX;
    _31 *= aScaleX;
    _41 *= aScaleX;
    _12 *= aScaleY;
    _22 *= aScaleY;
    _32 *= aScaleY;
    _42 *= aScaleY;
    _13 *= aScaleZ;
    _23 *= aScaleZ;
    _33 *= aScaleZ;
    _43 *= aScaleZ;

    return *this;
  }

  void SkewXY(T aSkew) { (*this)[1] += (*this)[0] * aSkew; }

  void SkewXZ(T aSkew) { (*this)[2] += (*this)[0] * aSkew; }

  void SkewYZ(T aSkew) { (*this)[2] += (*this)[1] * aSkew; }

  Matrix4x4Typed& ChangeBasis(const Point3DTyped<UnknownUnits, T>& aOrigin) {
    return ChangeBasis(aOrigin.x, aOrigin.y, aOrigin.z);
  }

  Matrix4x4Typed& ChangeBasis(T aX, T aY, T aZ) {
    // Translate to the origin before applying this matrix
    PreTranslate(-aX, -aY, -aZ);

    // Translate back into position after applying this matrix
    PostTranslate(aX, aY, aZ);

    return *this;
  }

  Matrix4x4Typed& Transpose() {
    std::swap(_12, _21);
    std::swap(_13, _31);
    std::swap(_14, _41);

    std::swap(_23, _32);
    std::swap(_24, _42);

    std::swap(_34, _43);

    return *this;
  }

  bool operator==(const Matrix4x4Typed& o) const {
    // XXX would be nice to memcmp here, but that breaks IEEE 754 semantics
    return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 &&
           _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 &&
           _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 &&
           _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44;
  }

  bool operator!=(const Matrix4x4Typed& o) const { return !((*this) == o); }

  template <typename NewTargetUnits>
  Matrix4x4Typed<SourceUnits, NewTargetUnits, T> operator*(
      const Matrix4x4Typed<TargetUnits, NewTargetUnits, T>& aMatrix) const {
    Matrix4x4Typed<SourceUnits, NewTargetUnits, T> matrix;

    matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _13 * aMatrix._31 +
                 _14 * aMatrix._41;
    matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _23 * aMatrix._31 +
                 _24 * aMatrix._41;
    matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _33 * aMatrix._31 +
                 _34 * aMatrix._41;
    matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _43 * aMatrix._31 +
                 _44 * aMatrix._41;
    matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _13 * aMatrix._32 +
                 _14 * aMatrix._42;
    matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _23 * aMatrix._32 +
                 _24 * aMatrix._42;
    matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _33 * aMatrix._32 +
                 _34 * aMatrix._42;
    matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _43 * aMatrix._32 +
                 _44 * aMatrix._42;
    matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23 + _13 * aMatrix._33 +
                 _14 * aMatrix._43;
    matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23 + _23 * aMatrix._33 +
                 _24 * aMatrix._43;
    matrix._33 = _31 * aMatrix._13 + _32 * aMatrix._23 + _33 * aMatrix._33 +
                 _34 * aMatrix._43;
    matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + _43 * aMatrix._33 +
                 _44 * aMatrix._43;
    matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24 + _13 * aMatrix._34 +
                 _14 * aMatrix._44;
    matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24 + _23 * aMatrix._34 +
                 _24 * aMatrix._44;
    matrix._34 = _31 * aMatrix._14 + _32 * aMatrix._24 + _33 * aMatrix._34 +
                 _34 * aMatrix._44;
    matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + _43 * aMatrix._34 +
                 _44 * aMatrix._44;

    return matrix;
  }

  Matrix4x4Typed& operator*=(
      const Matrix4x4Typed<TargetUnits, TargetUnits, T>& aMatrix) {
    *this = *this * aMatrix;
    return *this;
  }

  /* Returns true if the matrix is an identity matrix.
   */
  bool IsIdentity() const {
    return _11 == 1.0f && _12 == 0.0f && _13 == 0.0f && _14 == 0.0f &&
           _21 == 0.0f && _22 == 1.0f && _23 == 0.0f && _24 == 0.0f &&
           _31 == 0.0f && _32 == 0.0f && _33 == 1.0f && _34 == 0.0f &&
           _41 == 0.0f && _42 == 0.0f && _43 == 0.0f && _44 == 1.0f;
  }

  bool IsSingular() const { return Determinant() == 0.0; }

  T Determinant() const {
    return _14 * _23 * _32 * _41 - _13 * _24 * _32 * _41 -
           _14 * _22 * _33 * _41 + _12 * _24 * _33 * _41 +
           _13 * _22 * _34 * _41 - _12 * _23 * _34 * _41 -
           _14 * _23 * _31 * _42 + _13 * _24 * _31 * _42 +
           _14 * _21 * _33 * _42 - _11 * _24 * _33 * _42 -
           _13 * _21 * _34 * _42 + _11 * _23 * _34 * _42 +
           _14 * _22 * _31 * _43 - _12 * _24 * _31 * _43 -
           _14 * _21 * _32 * _43 + _11 * _24 * _32 * _43 +
           _12 * _21 * _34 * _43 - _11 * _22 * _34 * _43 -
           _13 * _22 * _31 * _44 + _12 * _23 * _31 * _44 +
           _13 * _21 * _32 * _44 - _11 * _23 * _32 * _44 -
           _12 * _21 * _33 * _44 + _11 * _22 * _33 * _44;
  }

  // Invert() is not unit-correct. Prefer Inverse() where possible.
  bool Invert() {
    T det = Determinant();
    if (!det) {
      return false;
    }

    Matrix4x4Typed<SourceUnits, TargetUnits, T> result;
    result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 -
                 _22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44;
    result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 +
                 _12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44;
    result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 -
                 _12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44;
    result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 +
                 _12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34;
    result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 +
                 _21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44;
    result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 -
                 _11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44;
    result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 +
                 _11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44;
    result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 -
                 _11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34;
    result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 -
                 _21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44;
    result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 +
                 _11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44;
    result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 -
                 _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
    result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 +
                 _11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34;
    result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 +
                 _21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43;
    result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 -
                 _11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43;
    result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 +
                 _11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43;
    result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 -
                 _11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33;

    result._11 /= det;
    result._12 /= det;
    result._13 /= det;
    result._14 /= det;
    result._21 /= det;
    result._22 /= det;
    result._23 /= det;
    result._24 /= det;
    result._31 /= det;
    result._32 /= det;
    result._33 /= det;
    result._34 /= det;
    result._41 /= det;
    result._42 /= det;
    result._43 /= det;
    result._44 /= det;
    *this = result;

    return true;
  }

  Matrix4x4Typed<TargetUnits, SourceUnits, T> Inverse() const {
    typedef Matrix4x4Typed<TargetUnits, SourceUnits, T> InvertedMatrix;
    InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix());
    DebugOnly<bool> inverted = clone.Invert();
    MOZ_ASSERT(inverted,
               "Attempted to get the inverse of a non-invertible matrix");
    return clone;
  }

  Maybe<Matrix4x4Typed<TargetUnits, SourceUnits, T>> MaybeInverse() const {
    typedef Matrix4x4Typed<TargetUnits, SourceUnits, T> InvertedMatrix;
    InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix());
    if (clone.Invert()) {
      return Some(clone);
    }
    return Nothing();
  }

  void Normalize() {
    for (int i = 0; i < 4; i++) {
      for (int j = 0; j < 4; j++) {
        (*this)[i][j] /= (*this)[3][3];
      }
    }
  }

  bool FuzzyEqual(const Matrix4x4Typed& o) const {
    return gfx::FuzzyEqual(_11, o._11) && gfx::FuzzyEqual(_12, o._12) &&
           gfx::FuzzyEqual(_13, o._13) && gfx::FuzzyEqual(_14, o._14) &&
           gfx::FuzzyEqual(_21, o._21) && gfx::FuzzyEqual(_22, o._22) &&
           gfx::FuzzyEqual(_23, o._23) && gfx::FuzzyEqual(_24, o._24) &&
           gfx::FuzzyEqual(_31, o._31) && gfx::FuzzyEqual(_32, o._32) &&
           gfx::FuzzyEqual(_33, o._33) && gfx::FuzzyEqual(_34, o._34) &&
           gfx::FuzzyEqual(_41, o._41) && gfx::FuzzyEqual(_42, o._42) &&
           gfx::FuzzyEqual(_43, o._43) && gfx::FuzzyEqual(_44, o._44);
  }

  bool FuzzyEqualsMultiplicative(const Matrix4x4Typed& o) const {
    return ::mozilla::FuzzyEqualsMultiplicative(_11, o._11) &&
           ::mozilla::FuzzyEqualsMultiplicative(_12, o._12) &&
           ::mozilla::FuzzyEqualsMultiplicative(_13, o._13) &&
           ::mozilla::FuzzyEqualsMultiplicative(_14, o._14) &&
           ::mozilla::FuzzyEqualsMultiplicative(_21, o._21) &&
           ::mozilla::FuzzyEqualsMultiplicative(_22, o._22) &&
           ::mozilla::FuzzyEqualsMultiplicative(_23, o._23) &&
           ::mozilla::FuzzyEqualsMultiplicative(_24, o._24) &&
           ::mozilla::FuzzyEqualsMultiplicative(_31, o._31) &&
           ::mozilla::FuzzyEqualsMultiplicative(_32, o._32) &&
           ::mozilla::FuzzyEqualsMultiplicative(_33, o._33) &&
           ::mozilla::FuzzyEqualsMultiplicative(_34, o._34) &&
           ::mozilla::FuzzyEqualsMultiplicative(_41, o._41) &&
           ::mozilla::FuzzyEqualsMultiplicative(_42, o._42) &&
           ::mozilla::FuzzyEqualsMultiplicative(_43, o._43) &&
           ::mozilla::FuzzyEqualsMultiplicative(_44, o._44);
  }

  bool IsBackfaceVisible() const {
    // Inverse()._33 < 0;
    T det = Determinant();
    T __33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 -
             _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
    return (__33 * det) < 0;
  }

  Matrix4x4Typed& NudgeToIntegersFixedEpsilon() {
    NudgeToInteger(&_11);
    NudgeToInteger(&_12);
    NudgeToInteger(&_13);
    NudgeToInteger(&_14);
    NudgeToInteger(&_21);
    NudgeToInteger(&_22);
    NudgeToInteger(&_23);
    NudgeToInteger(&_24);
    NudgeToInteger(&_31);
    NudgeToInteger(&_32);
    NudgeToInteger(&_33);
    NudgeToInteger(&_34);
    static const float error = 1e-5f;
    NudgeToInteger(&_41, error);
    NudgeToInteger(&_42, error);
    NudgeToInteger(&_43, error);
    NudgeToInteger(&_44, error);
    return *this;
  }

  Point4D TransposedVector(int aIndex) const {
    MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
    return Point4DTyped<UnknownUnits, T>(*((&_11) + aIndex), *((&_21) + aIndex),
                                         *((&_31) + aIndex),
                                         *((&_41) + aIndex));
  }

  void SetTransposedVector(int aIndex, Point4DTyped<UnknownUnits, T>& aVector) {
    MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
    *((&_11) + aIndex) = aVector.x;
    *((&_21) + aIndex) = aVector.y;
    *((&_31) + aIndex) = aVector.z;
    *((&_41) + aIndex) = aVector.w;
  }

  bool Decompose(Point3DTyped<UnknownUnits, T>& translation,
                 BaseQuaternion<T>& rotation,
                 Point3DTyped<UnknownUnits, T>& scale) const {
    // Ensure matrix can be normalized
    if (gfx::FuzzyEqual(_44, 0.0f)) {
      return false;
    }
    Matrix4x4Typed mat = *this;
    mat.Normalize();
    if (HasPerspectiveComponent()) {
      // We do not support projection matrices
      return false;
    }

    // Extract translation
    translation.x = mat._41;
    translation.y = mat._42;
    translation.z = mat._43;

    // Remove translation
    mat._41 = 0.0f;
    mat._42 = 0.0f;
    mat._43 = 0.0f;

    // Extract scale
    scale.x = sqrtf(_11 * _11 + _21 * _21 + _31 * _31);
    scale.y = sqrtf(_12 * _12 + _22 * _22 + _32 * _32);
    scale.z = sqrtf(_13 * _13 + _23 * _23 + _33 * _33);

    // Remove scale
    if (gfx::FuzzyEqual(scale.x, 0.0f) || gfx::FuzzyEqual(scale.y, 0.0f) ||
        gfx::FuzzyEqual(scale.z, 0.0f)) {
      // We do not support matrices with a zero scale component
      return false;
    }
    T invXS = 1.0f / scale.x;
    T invYS = 1.0f / scale.y;
    T invZS = 1.0f / scale.z;
    mat._11 *= invXS;
    mat._21 *= invXS;
    mat._31 *= invXS;
    mat._12 *= invYS;
    mat._22 *= invYS;
    mat._32 *= invYS;
    mat._13 *= invZS;
    mat._23 *= invZS;
    mat._33 *= invZS;

    // Extract rotation
    rotation.SetFromRotationMatrix(mat);
    return true;
  }

  // Sets this matrix to a rotation matrix given by aQuat.
  // This quaternion *MUST* be normalized!
  // Implemented in Quaternion.cpp
  void SetRotationFromQuaternion(const BaseQuaternion<T>& q) {
    const T x2 = q.x + q.x, y2 = q.y + q.y, z2 = q.z + q.z;
    const T xx = q.x * x2, xy = q.x * y2, xz = q.x * z2;
    const T yy = q.y * y2, yz = q.y * z2, zz = q.z * z2;
    const T wx = q.w * x2, wy = q.w * y2, wz = q.w * z2;

    _11 = 1.0f - (yy + zz);
    _21 = xy + wz;
    _31 = xz - wy;
    _41 = 0.0f;

    _12 = xy - wz;
    _22 = 1.0f - (xx + zz);
    _32 = yz + wx;
    _42 = 0.0f;

    _13 = xz + wy;
    _23 = yz - wx;
    _33 = 1.0f - (xx + yy);
    _43 = 0.0f;

    _14 = _42 = _43 = 0.0f;
    _44 = 1.0f;
  }

  // Set all the members of the matrix to NaN
  void SetNAN() {
    _11 = UnspecifiedNaN<T>();
    _21 = UnspecifiedNaN<T>();
    _31 = UnspecifiedNaN<T>();
    _41 = UnspecifiedNaN<T>();
    _12 = UnspecifiedNaN<T>();
    _22 = UnspecifiedNaN<T>();
    _32 = UnspecifiedNaN<T>();
    _42 = UnspecifiedNaN<T>();
    _13 = UnspecifiedNaN<T>();
    _23 = UnspecifiedNaN<T>();
    _33 = UnspecifiedNaN<T>();
    _43 = UnspecifiedNaN<T>();
    _14 = UnspecifiedNaN<T>();
    _24 = UnspecifiedNaN<T>();
    _34 = UnspecifiedNaN<T>();
    _44 = UnspecifiedNaN<T>();
  }

  void SkewXY(double aXSkew, double aYSkew) {
    // XXX Is double precision really necessary here
    T tanX = SafeTangent(aXSkew);
    T tanY = SafeTangent(aYSkew);
    T temp;

    temp = _11;
    _11 += tanY * _21;
    _21 += tanX * temp;

    temp = _12;
    _12 += tanY * _22;
    _22 += tanX * temp;

    temp = _13;
    _13 += tanY * _23;
    _23 += tanX * temp;

    temp = _14;
    _14 += tanY * _24;
    _24 += tanX * temp;
  }

  void RotateX(double aTheta) {
    // XXX Is double precision really necessary here
    double cosTheta = FlushToZero(cos(aTheta));
    double sinTheta = FlushToZero(sin(aTheta));

    T temp;

    temp = _21;
    _21 = cosTheta * _21 + sinTheta * _31;
    _31 = -sinTheta * temp + cosTheta * _31;

    temp = _22;
    _22 = cosTheta * _22 + sinTheta * _32;
    _32 = -sinTheta * temp + cosTheta * _32;

    temp = _23;
    _23 = cosTheta * _23 + sinTheta * _33;
    _33 = -sinTheta * temp + cosTheta * _33;

    temp = _24;
    _24 = cosTheta * _24 + sinTheta * _34;
    _34 = -sinTheta * temp + cosTheta * _34;
  }

  void RotateY(double aTheta) {
    // XXX Is double precision really necessary here
    double cosTheta = FlushToZero(cos(aTheta));
    double sinTheta = FlushToZero(sin(aTheta));

    T temp;

    temp = _11;
    _11 = cosTheta * _11 + -sinTheta * _31;
    _31 = sinTheta * temp + cosTheta * _31;

    temp = _12;
    _12 = cosTheta * _12 + -sinTheta * _32;
    _32 = sinTheta * temp + cosTheta * _32;

    temp = _13;
    _13 = cosTheta * _13 + -sinTheta * _33;
    _33 = sinTheta * temp + cosTheta * _33;

    temp = _14;
    _14 = cosTheta * _14 + -sinTheta * _34;
    _34 = sinTheta * temp + cosTheta * _34;
  }

  void RotateZ(double aTheta) {
    // XXX Is double precision really necessary here
    double cosTheta = FlushToZero(cos(aTheta));
    double sinTheta = FlushToZero(sin(aTheta));

    T temp;

    temp = _11;
    _11 = cosTheta * _11 + sinTheta * _21;
    _21 = -sinTheta * temp + cosTheta * _21;

    temp = _12;
    _12 = cosTheta * _12 + sinTheta * _22;
    _22 = -sinTheta * temp + cosTheta * _22;

    temp = _13;
    _13 = cosTheta * _13 + sinTheta * _23;
    _23 = -sinTheta * temp + cosTheta * _23;

    temp = _14;
    _14 = cosTheta * _14 + sinTheta * _24;
    _24 = -sinTheta * temp + cosTheta * _24;
  }

  // Sets this matrix to a rotation matrix about a
  // vector [x,y,z] by angle theta. The vector is normalized
  // to a unit vector.
  // https://drafts.csswg.org/css-transforms-2/#Rotate3dDefined
  void SetRotateAxisAngle(double aX, double aY, double aZ, double aTheta) {
    Point3DTyped<UnknownUnits, T> vector(aX, aY, aZ);
    if (!vector.Length()) {
      return;
    }
    vector.RobustNormalize();

    double x = vector.x;
    double y = vector.y;
    double z = vector.z;

    double cosTheta = FlushToZero(cos(aTheta));
    double sinTheta = FlushToZero(sin(aTheta));

    // sin(aTheta / 2) * cos(aTheta / 2)
    double sc = sinTheta / 2;
    // pow(sin(aTheta / 2), 2)
    double sq = (1 - cosTheta) / 2;

    _11 = 1 - 2 * (y * y + z * z) * sq;
    _12 = 2 * (x * y * sq + z * sc);
    _13 = 2 * (x * z * sq - y * sc);
    _14 = 0.0f;
    _21 = 2 * (x * y * sq - z * sc);
    _22 = 1 - 2 * (x * x + z * z) * sq;
    _23 = 2 * (y * z * sq + x * sc);
    _24 = 0.0f;
    _31 = 2 * (x * z * sq + y * sc);
    _32 = 2 * (y * z * sq - x * sc);
    _33 = 1 - 2 * (x * x + y * y) * sq;
    _34 = 0.0f;
    _41 = 0.0f;
    _42 = 0.0f;
    _43 = 0.0f;
    _44 = 1.0f;
  }

  void Perspective(T aDepth) {
    MOZ_ASSERT(aDepth > 0.0f, "Perspective must be positive!");
    _31 += -1.0 / aDepth * _41;
    _32 += -1.0 / aDepth * _42;
    _33 += -1.0 / aDepth * _43;
    _34 += -1.0 / aDepth * _44;
  }

  Point3D GetNormalVector() const {
    // Define a plane in transformed space as the transformations
    // of 3 points on the z=0 screen plane.
    Point3DTyped<UnknownUnits, T> a =
        TransformPoint(Point3DTyped<UnknownUnits, T>(0, 0, 0));
    Point3DTyped<UnknownUnits, T> b =
        TransformPoint(Point3DTyped<UnknownUnits, T>(0, 1, 0));
    Point3DTyped<UnknownUnits, T> c =
        TransformPoint(Point3DTyped<UnknownUnits, T>(1, 0, 0));

    // Convert to two vectors on the surface of the plane.
    Point3DTyped<UnknownUnits, T> ab = b - a;
    Point3DTyped<UnknownUnits, T> ac = c - a;

    return ac.CrossProduct(ab);
  }

  /**
   * Returns true if the matrix has any transform other
   * than a straight translation.
   */
  bool HasNonTranslation() const {
    return !gfx::FuzzyEqual(_11, 1.0) || !gfx::FuzzyEqual(_22, 1.0) ||
           !gfx::FuzzyEqual(_12, 0.0) || !gfx::FuzzyEqual(_21, 0.0) ||
           !gfx::FuzzyEqual(_13, 0.0) || !gfx::FuzzyEqual(_23, 0.0) ||
           !gfx::FuzzyEqual(_31, 0.0) || !gfx::FuzzyEqual(_32, 0.0) ||
           !gfx::FuzzyEqual(_33, 1.0);
  }

  /**
   * Returns true if the matrix is anything other than a straight
   * translation by integers.
   */
  bool HasNonIntegerTranslation() const {
    return HasNonTranslation() || !gfx::FuzzyEqual(_41, floor(_41 + 0.5)) ||
           !gfx::FuzzyEqual(_42, floor(_42 + 0.5)) ||
           !gfx::FuzzyEqual(_43, floor(_43 + 0.5));
  }

  /**
   * Return true if the matrix is with perspective (w).
   */
  bool HasPerspectiveComponent() const {
    return _14 != 0 || _24 != 0 || _34 != 0 || _44 != 1;
  }

  /* Returns true if the matrix is a rectilinear transformation (i.e.
   * grid-aligned rectangles are transformed to grid-aligned rectangles).
   * This should only be called on 2D matrices.
   */
  bool IsRectilinear() const {
    MOZ_ASSERT(Is2D());
    if (gfx::FuzzyEqual(_12, 0) && gfx::FuzzyEqual(_21, 0)) {
      return true;
    } else if (gfx::FuzzyEqual(_22, 0) && gfx::FuzzyEqual(_11, 0)) {
      return true;
    }
    return false;
  }

  /**
   * Convert between typed and untyped matrices.
   */
  Matrix4x4 ToUnknownMatrix() const {
    return Matrix4x4{_11, _12, _13, _14, _21, _22, _23, _24,
                     _31, _32, _33, _34, _41, _42, _43, _44};
  }
  static Matrix4x4Typed FromUnknownMatrix(const Matrix4x4& aUnknown) {
    return Matrix4x4Typed{
        aUnknown._11, aUnknown._12, aUnknown._13, aUnknown._14,
        aUnknown._21, aUnknown._22, aUnknown._23, aUnknown._24,
        aUnknown._31, aUnknown._32, aUnknown._33, aUnknown._34,
        aUnknown._41, aUnknown._42, aUnknown._43, aUnknown._44};
  }
  /**
   * For convenience, overload FromUnknownMatrix() for Maybe<Matrix>.
   */
  static Maybe<Matrix4x4Typed> FromUnknownMatrix(
      const Maybe<Matrix4x4>& aUnknown) {
    if (aUnknown.isSome()) {
      return Some(FromUnknownMatrix(*aUnknown));
    }
    return Nothing();
  }
};

typedef Matrix4x4Typed<UnknownUnits, UnknownUnits> Matrix4x4;
typedef Matrix4x4Typed<UnknownUnits, UnknownUnits, double> Matrix4x4Double;

// This typedef is for IPDL, which can't reference a template-id directly.
typedef Maybe<Matrix4x4> MaybeMatrix4x4;

class Matrix5x4 {
 public:
  Matrix5x4()
      : _11(1.0f),
        _12(0),
        _13(0),
        _14(0),
        _21(0),
        _22(1.0f),
        _23(0),
        _24(0),
        _31(0),
        _32(0),
        _33(1.0f),
        _34(0),
        _41(0),
        _42(0),
        _43(0),
        _44(1.0f),
        _51(0),
        _52(0),
        _53(0),
        _54(0) {}
  Matrix5x4(Float a11, Float a12, Float a13, Float a14, Float a21, Float a22,
            Float a23, Float a24, Float a31, Float a32, Float a33, Float a34,
            Float a41, Float a42, Float a43, Float a44, Float a51, Float a52,
            Float a53, Float a54)
      : _11(a11),
        _12(a12),
        _13(a13),
        _14(a14),
        _21(a21),
        _22(a22),
        _23(a23),
        _24(a24),
        _31(a31),
        _32(a32),
        _33(a33),
        _34(a34),
        _41(a41),
        _42(a42),
        _43(a43),
        _44(a44),
        _51(a51),
        _52(a52),
        _53(a53),
        _54(a54) {}

  bool operator==(const Matrix5x4& o) const {
    return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 &&
           _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 &&
           _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 &&
           _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44 &&
           _51 == o._51 && _52 == o._52 && _53 == o._53 && _54 == o._54;
  }

  bool operator!=(const Matrix5x4& aMatrix) const {
    return !(*this == aMatrix);
  }

  Matrix5x4 operator*(const Matrix5x4& aMatrix) const {
    Matrix5x4 resultMatrix;

    resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21 +
                       this->_13 * aMatrix._31 + this->_14 * aMatrix._41;
    resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22 +
                       this->_13 * aMatrix._32 + this->_14 * aMatrix._42;
    resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23 +
                       this->_13 * aMatrix._33 + this->_14 * aMatrix._43;
    resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24 +
                       this->_13 * aMatrix._34 + this->_14 * aMatrix._44;
    resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21 +
                       this->_23 * aMatrix._31 + this->_24 * aMatrix._41;
    resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22 +
                       this->_23 * aMatrix._32 + this->_24 * aMatrix._42;
    resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23 +
                       this->_23 * aMatrix._33 + this->_24 * aMatrix._43;
    resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24 +
                       this->_23 * aMatrix._34 + this->_24 * aMatrix._44;
    resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 +
                       this->_33 * aMatrix._31 + this->_34 * aMatrix._41;
    resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 +
                       this->_33 * aMatrix._32 + this->_34 * aMatrix._42;
    resultMatrix._33 = this->_31 * aMatrix._13 + this->_32 * aMatrix._23 +
                       this->_33 * aMatrix._33 + this->_34 * aMatrix._43;
    resultMatrix._34 = this->_31 * aMatrix._14 + this->_32 * aMatrix._24 +
                       this->_33 * aMatrix._34 + this->_34 * aMatrix._44;
    resultMatrix._41 = this->_41 * aMatrix._11 + this->_42 * aMatrix._21 +
                       this->_43 * aMatrix._31 + this->_44 * aMatrix._41;
    resultMatrix._42 = this->_41 * aMatrix._12 + this->_42 * aMatrix._22 +
                       this->_43 * aMatrix._32 + this->_44 * aMatrix._42;
    resultMatrix._43 = this->_41 * aMatrix._13 + this->_42 * aMatrix._23 +
                       this->_43 * aMatrix._33 + this->_44 * aMatrix._43;
    resultMatrix._44 = this->_41 * aMatrix._14 + this->_42 * aMatrix._24 +
                       this->_43 * aMatrix._34 + this->_44 * aMatrix._44;
    resultMatrix._51 = this->_51 * aMatrix._11 + this->_52 * aMatrix._21 +
                       this->_53 * aMatrix._31 + this->_54 * aMatrix._41 +
                       aMatrix._51;
    resultMatrix._52 = this->_51 * aMatrix._12 + this->_52 * aMatrix._22 +
                       this->_53 * aMatrix._32 + this->_54 * aMatrix._42 +
                       aMatrix._52;
    resultMatrix._53 = this->_51 * aMatrix._13 + this->_52 * aMatrix._23 +
                       this->_53 * aMatrix._33 + this->_54 * aMatrix._43 +
                       aMatrix._53;
    resultMatrix._54 = this->_51 * aMatrix._14 + this->_52 * aMatrix._24 +
                       this->_53 * aMatrix._34 + this->_54 * aMatrix._44 +
                       aMatrix._54;

    return resultMatrix;
  }

  Matrix5x4& operator*=(const Matrix5x4& aMatrix) {
    *this = *this * aMatrix;
    return *this;
  }

  union {
    struct {
      Float _11, _12, _13, _14;
      Float _21, _22, _23, _24;
      Float _31, _32, _33, _34;
      Float _41, _42, _43, _44;
      Float _51, _52, _53, _54;
    };
    Float components[20];
  };
};

/* This Matrix class will carry one additional type field in order to
 * track what type of 4x4 matrix we're dealing with, it can then execute
 * simplified versions of certain operations when applicable.
 * This does not allow access to the parent class directly, as a caller
 * could then mutate the parent class without updating the type.
 */
template <typename SourceUnits, typename TargetUnits>
class Matrix4x4TypedFlagged
    : protected Matrix4x4Typed<SourceUnits, TargetUnits> {
 public:
  using Parent = Matrix4x4Typed<SourceUnits, TargetUnits>;
  using TargetPoint = PointTyped<TargetUnits>;
  using Parent::_11;
  using Parent::_12;
  using Parent::_13;
  using Parent::_14;
  using Parent::_21;
  using Parent::_22;
  using Parent::_23;
  using Parent::_24;
  using Parent::_31;
  using Parent::_32;
  using Parent::_33;
  using Parent::_34;
  using Parent::_41;
  using Parent::_42;
  using Parent::_43;
  using Parent::_44;

  Matrix4x4TypedFlagged() : mType(MatrixType::Identity) {}

  Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21,
                        Float a22, Float a23, Float a24, Float a31, Float a32,
                        Float a33, Float a34, Float a41, Float a42, Float a43,
                        Float a44)
      : Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41,
               a42, a43, a44) {
    Analyze();
  }

  MOZ_IMPLICIT Matrix4x4TypedFlagged(const Parent& aOther) : Parent(aOther) {
    Analyze();
  }

  template <class F>
  PointTyped<TargetUnits, F> TransformPoint(
      const PointTyped<SourceUnits, F>& aPoint) const {
    if (mType == MatrixType::Identity) {
      return aPoint;
    }

    if (mType == MatrixType::Simple) {
      return TransformPointSimple(aPoint);
    }

    return Parent::TransformPoint(aPoint);
  }

  template <class F>
  RectTyped<TargetUnits, F> TransformAndClipBounds(
      const RectTyped<SourceUnits, F>& aRect,
      const RectTyped<TargetUnits, F>& aClip) const {
    if (mType == MatrixType::Identity) {
      const RectTyped<SourceUnits, F>& clipped = aRect.Intersect(aClip);
      return RectTyped<TargetUnits, F>(clipped.X(), clipped.Y(),
                                       clipped.Width(), clipped.Height());
    }

    if (mType == MatrixType::Simple) {
      PointTyped<UnknownUnits, F> p1 = TransformPointSimple(aRect.TopLeft());
      PointTyped<UnknownUnits, F> p2 = TransformPointSimple(aRect.TopRight());
      PointTyped<UnknownUnits, F> p3 = TransformPointSimple(aRect.BottomLeft());
      PointTyped<UnknownUnits, F> p4 =
          TransformPointSimple(aRect.BottomRight());

      F min_x = std::min(std::min(std::min(p1.x, p2.x), p3.x), p4.x);
      F max_x = std::max(std::max(std::max(p1.x, p2.x), p3.x), p4.x);
      F min_y = std::min(std::min(std::min(p1.y, p2.y), p3.y), p4.y);
      F max_y = std::max(std::max(std::max(p1.y, p2.y), p3.y), p4.y);

      TargetPoint topLeft(std::max(min_x, aClip.x), std::max(min_y, aClip.y));
      F xMost = std::min(max_x, aClip.XMost()) - topLeft.x;
      F yMost = std::min(max_y, aClip.YMost()) - topLeft.y;

      return RectTyped<TargetUnits, F>(topLeft.x, topLeft.y, xMost, yMost);
    }
    return Parent::TransformAndClipBounds(aRect, aClip);
  }

  bool FuzzyEqual(const Parent& o) const { return Parent::FuzzyEqual(o); }

  bool FuzzyEqual(const Matrix4x4TypedFlagged& o) const {
    if (mType == MatrixType::Identity && o.mType == MatrixType::Identity) {
      return true;
    }
    return Parent::FuzzyEqual(o);
  }

  Matrix4x4TypedFlagged& PreTranslate(Float aX, Float aY, Float aZ) {
    if (mType == MatrixType::Identity) {
      _41 = aX;
      _42 = aY;
      _43 = aZ;

      if (!aZ) {
        mType = MatrixType::Simple;
        return *this;
      }
      mType = MatrixType::Full;
      return *this;
    }

    Parent::PreTranslate(aX, aY, aZ);

    if (aZ != 0) {
      mType = MatrixType::Full;
    }

    return *this;
  }

  Matrix4x4TypedFlagged& PostTranslate(Float aX, Float aY, Float aZ) {
    if (mType == MatrixType::Identity) {
      _41 = aX;
      _42 = aY;
      _43 = aZ;

      if (!aZ) {
        mType = MatrixType::Simple;
        return *this;
      }
      mType = MatrixType::Full;
      return *this;
    }

    Parent::PostTranslate(aX, aY, aZ);

    if (aZ != 0) {
      mType = MatrixType::Full;
    }

    return *this;
  }

  Matrix4x4TypedFlagged& ChangeBasis(Float aX, Float aY, Float aZ) {
    // Translate to the origin before applying this matrix
    PreTranslate(-aX, -aY, -aZ);

    // Translate back into position after applying this matrix
    PostTranslate(aX, aY, aZ);

    return *this;
  }

  bool IsIdentity() const { return mType == MatrixType::Identity; }

  template <class F>
  Point4DTyped<TargetUnits, F> ProjectPoint(
      const PointTyped<SourceUnits, F>& aPoint) const {
    if (mType == MatrixType::Identity) {
      return Point4DTyped<TargetUnits, F>(aPoint.x, aPoint.y, 0, 1);
    }

    if (mType == MatrixType::Simple) {
      TargetPoint point = TransformPointSimple(aPoint);
      return Point4DTyped<TargetUnits, F>(point.x, point.y, 0, 1);
    }

    return Parent::ProjectPoint(aPoint);
  }

  Matrix4x4TypedFlagged& ProjectTo2D() {
    if (mType == MatrixType::Full) {
      Parent::ProjectTo2D();
    }
    return *this;
  }

  bool IsSingular() const {
    if (mType == MatrixType::Identity) {
      return false;
    }
    return Parent::Determinant() == 0.0;
  }

  bool Invert() {
    if (mType == MatrixType::Identity) {
      return true;
    }

    return Parent::Invert();
  }

  Matrix4x4TypedFlagged<TargetUnits, SourceUnits> Inverse() const {
    typedef Matrix4x4TypedFlagged<TargetUnits, SourceUnits> InvertedMatrix;
    InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix());
    if (mType == MatrixType::Identity) {
      return clone;
    }
    DebugOnly<bool> inverted = clone.Invert();
    MOZ_ASSERT(inverted,
               "Attempted to get the inverse of a non-invertible matrix");

    // Inverting a 2D Matrix should result in a 2D matrix, ergo mType doesn't
    // change.
    return clone;
  }

  template <typename NewTargetUnits>
  bool operator==(
      const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
    if (mType == MatrixType::Identity &&
        aMatrix.mType == MatrixType::Identity) {
      return true;
    }
    // Depending on the usage it may make sense to compare more flags.
    return Parent::operator==(aMatrix);
  }

  template <typename NewTargetUnits>
  bool operator!=(
      const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
    if (mType == MatrixType::Identity &&
        aMatrix.mType == MatrixType::Identity) {
      return false;
    }
    // Depending on the usage it may make sense to compare more flags.
    return Parent::operator!=(aMatrix);
  }

  template <typename NewTargetUnits>
  Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> operator*(
      const Matrix4x4Typed<TargetUnits, NewTargetUnits>& aMatrix) const {
    if (mType == MatrixType::Identity) {
      return aMatrix;
    }

    if (mType == MatrixType::Simple) {
      Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
      matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
      matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
      matrix._31 = aMatrix._31;
      matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21;
      matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
      matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
      matrix._32 = aMatrix._32;
      matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22;
      matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23;
      matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23;
      matrix._33 = aMatrix._33;
      matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23;
      matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24;
      matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24;
      matrix._34 = aMatrix._34;
      matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44;
      matrix.Analyze();
      return matrix;
    }

    return Parent::operator*(aMatrix);
  }

  template <typename NewTargetUnits>
  Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> operator*(
      const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
    if (mType == MatrixType::Identity) {
      return aMatrix;
    }

    if (aMatrix.mType == MatrixType::Identity) {
      return Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits>::
          FromUnknownMatrix(this->ToUnknownMatrix());
    }

    if (mType == MatrixType::Simple && aMatrix.mType == MatrixType::Simple) {
      Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
      matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
      matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
      matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
      matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
      matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
      matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
      matrix.mType = MatrixType::Simple;
      return matrix;
    } else if (mType == MatrixType::Simple) {
      Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
      matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
      matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
      matrix._31 = aMatrix._31;
      matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
      matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
      matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
      matrix._32 = aMatrix._32;
      matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
      matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23;
      matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23;
      matrix._33 = aMatrix._33;
      matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + aMatrix._43;
      matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24;
      matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24;
      matrix._34 = aMatrix._34;
      matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44;
      matrix.mType = MatrixType::Full;
      return matrix;
    } else if (aMatrix.mType == MatrixType::Simple) {
      Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
      matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _14 * aMatrix._41;
      matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _24 * aMatrix._41;
      matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _34 * aMatrix._41;
      matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _44 * aMatrix._41;
      matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _14 * aMatrix._42;
      matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _24 * aMatrix._42;
      matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _34 * aMatrix._42;
      matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _44 * aMatrix._42;
      matrix._13 = _13;
      matrix._23 = _23;
      matrix._33 = _33;
      matrix._43 = _43;
      matrix._14 = _14;
      matrix._24 = _24;
      matrix._34 = _34;
      matrix._44 = _44;
      matrix.mType = MatrixType::Full;
      return matrix;
    }

    return Parent::operator*(aMatrix);
  }

  bool Is2D() const { return mType != MatrixType::Full; }

  bool CanDraw2D(Matrix* aMatrix = nullptr) const {
    if (mType != MatrixType::Full) {
      if (aMatrix) {
        aMatrix->_11 = _11;
        aMatrix->_12 = _12;
        aMatrix->_21 = _21;
        aMatrix->_22 = _22;
        aMatrix->_31 = _41;
        aMatrix->_32 = _42;
      }
      return true;
    }
    return Parent::CanDraw2D(aMatrix);
  }

  bool Is2D(Matrix* aMatrix) const {
    if (!Is2D()) {
      return false;
    }
    if (aMatrix) {
      aMatrix->_11 = _11;
      aMatrix->_12 = _12;
      aMatrix->_21 = _21;
      aMatrix->_22 = _22;
      aMatrix->_31 = _41;
      aMatrix->_32 = _42;
    }
    return true;
  }

  template <class F>
  RectTyped<TargetUnits, F> ProjectRectBounds(
      const RectTyped<SourceUnits, F>& aRect,
      const RectTyped<TargetUnits, F>& aClip) const {
    return Parent::ProjectRectBounds(aRect, aClip);
  }

  const Parent& GetMatrix() const { return *this; }

 private:
  enum class MatrixType : uint8_t {
    Identity,
    Simple,  // 2x3 Matrix
    Full     // 4x4 Matrix
  };

  Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21,
                        Float a22, Float a23, Float a24, Float a31, Float a32,
                        Float a33, Float a34, Float a41, Float a42, Float a43,
                        Float a44,
                        typename Matrix4x4TypedFlagged::MatrixType aType)
      : Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41,
               a42, a43, a44) {
    mType = aType;
  }
  static Matrix4x4TypedFlagged FromUnknownMatrix(
      const Matrix4x4Flagged& aUnknown) {
    return Matrix4x4TypedFlagged{
        aUnknown._11, aUnknown._12,  aUnknown._13, aUnknown._14, aUnknown._21,
        aUnknown._22, aUnknown._23,  aUnknown._24, aUnknown._31, aUnknown._32,
        aUnknown._33, aUnknown._34,  aUnknown._41, aUnknown._42, aUnknown._43,
        aUnknown._44, aUnknown.mType};
  }
  Matrix4x4Flagged ToUnknownMatrix() const {
    return Matrix4x4Flagged{_11, _12, _13, _14, _21, _22, _23, _24,  _31,
                            _32, _33, _34, _41, _42, _43, _44, mType};
  }

  template <class F>
  PointTyped<TargetUnits, F> TransformPointSimple(
      const PointTyped<SourceUnits, F>& aPoint) const {
    PointTyped<SourceUnits, F> temp;
    temp.x = aPoint.x * _11 + aPoint.y * +_21 + _41;
    temp.y = aPoint.x * _12 + aPoint.y * +_22 + _42;
    return temp;
  }

  void Analyze() {
    if (Parent::IsIdentity()) {
      mType = MatrixType::Identity;
      return;
    }

    if (Parent::Is2D()) {
      mType = MatrixType::Simple;
      return;
    }

    mType = MatrixType::Full;
  }

  MatrixType mType;
};

using Matrix4x4Flagged = Matrix4x4TypedFlagged<UnknownUnits, UnknownUnits>;

}  // namespace gfx
}  // namespace mozilla

#endif /* MOZILLA_GFX_MATRIX_H_ */