Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define FILTER_PROCESSING_SCALAR
#include "FilterProcessingSIMD-inl.h"
#include "Logging.h"
namespace mozilla {
namespace gfx {
void FilterProcessing::ExtractAlpha_Scalar(const IntSize& size,
uint8_t* sourceData,
int32_t sourceStride,
uint8_t* alphaData,
int32_t alphaStride) {
for (int32_t y = 0; y < size.height; y++) {
for (int32_t x = 0; x < size.width; x++) {
int32_t sourceIndex = y * sourceStride + 4 * x;
int32_t targetIndex = y * alphaStride + x;
alphaData[targetIndex] =
sourceData[sourceIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
}
}
}
already_AddRefed<DataSourceSurface> FilterProcessing::ConvertToB8G8R8A8_Scalar(
SourceSurface* aSurface) {
return ConvertToB8G8R8A8_SIMD<simd::Scalaru8x16_t>(aSurface);
}
template <MorphologyOperator Operator>
static void ApplyMorphologyHorizontal_Scalar(
uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius) {
static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
Operator == MORPHOLOGY_OPERATOR_DILATE,
"unexpected morphology operator");
for (int32_t y = aDestRect.Y(); y < aDestRect.YMost(); y++) {
int32_t startX = aDestRect.X() - aRadius;
int32_t endX = aDestRect.X() + aRadius;
for (int32_t x = aDestRect.X(); x < aDestRect.XMost();
x++, startX++, endX++) {
int32_t sourceIndex = y * aSourceStride + 4 * startX;
uint8_t u[4];
for (size_t i = 0; i < 4; i++) {
u[i] = aSourceData[sourceIndex + i];
}
sourceIndex += 4;
for (int32_t ix = startX + 1; ix <= endX; ix++, sourceIndex += 4) {
for (size_t i = 0; i < 4; i++) {
if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
u[i] = umin(u[i], aSourceData[sourceIndex + i]);
} else {
u[i] = umax(u[i], aSourceData[sourceIndex + i]);
}
}
}
int32_t destIndex = y * aDestStride + 4 * x;
for (size_t i = 0; i < 4; i++) {
aDestData[destIndex + i] = u[i];
}
}
}
}
void FilterProcessing::ApplyMorphologyHorizontal_Scalar(
uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOp) {
if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
} else {
gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
}
}
template <MorphologyOperator Operator>
static void ApplyMorphologyVertical_Scalar(
uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius) {
static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
Operator == MORPHOLOGY_OPERATOR_DILATE,
"unexpected morphology operator");
int32_t startY = aDestRect.Y() - aRadius;
int32_t endY = aDestRect.Y() + aRadius;
for (int32_t y = aDestRect.Y(); y < aDestRect.YMost();
y++, startY++, endY++) {
for (int32_t x = aDestRect.X(); x < aDestRect.XMost(); x++) {
int32_t sourceIndex = startY * aSourceStride + 4 * x;
uint8_t u[4];
for (size_t i = 0; i < 4; i++) {
u[i] = aSourceData[sourceIndex + i];
}
sourceIndex += aSourceStride;
for (int32_t iy = startY + 1; iy <= endY;
iy++, sourceIndex += aSourceStride) {
for (size_t i = 0; i < 4; i++) {
if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
u[i] = umin(u[i], aSourceData[sourceIndex + i]);
} else {
u[i] = umax(u[i], aSourceData[sourceIndex + i]);
}
}
}
int32_t destIndex = y * aDestStride + 4 * x;
for (size_t i = 0; i < 4; i++) {
aDestData[destIndex + i] = u[i];
}
}
}
}
void FilterProcessing::ApplyMorphologyVertical_Scalar(
uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOp) {
if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
} else {
gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
}
}
already_AddRefed<DataSourceSurface> FilterProcessing::ApplyColorMatrix_Scalar(
DataSourceSurface* aInput, const Matrix5x4& aMatrix) {
return ApplyColorMatrix_SIMD<simd::Scalari32x4_t, simd::Scalari16x8_t,
simd::Scalaru8x16_t>(aInput, aMatrix);
}
void FilterProcessing::ApplyComposition_Scalar(DataSourceSurface* aSource,
DataSourceSurface* aDest,
CompositeOperator aOperator) {
return ApplyComposition_SIMD<simd::Scalari32x4_t, simd::Scalaru16x8_t,
simd::Scalaru8x16_t>(aSource, aDest, aOperator);
}
void FilterProcessing::SeparateColorChannels_Scalar(
const IntSize& size, uint8_t* sourceData, int32_t sourceStride,
uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data,
uint8_t* channel3Data, int32_t channelStride) {
for (int32_t y = 0; y < size.height; y++) {
for (int32_t x = 0; x < size.width; x++) {
int32_t sourceIndex = y * sourceStride + 4 * x;
int32_t targetIndex = y * channelStride + x;
channel0Data[targetIndex] = sourceData[sourceIndex];
channel1Data[targetIndex] = sourceData[sourceIndex + 1];
channel2Data[targetIndex] = sourceData[sourceIndex + 2];
channel3Data[targetIndex] = sourceData[sourceIndex + 3];
}
}
}
void FilterProcessing::CombineColorChannels_Scalar(
const IntSize& size, int32_t resultStride, uint8_t* resultData,
int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data,
uint8_t* channel2Data, uint8_t* channel3Data) {
for (int32_t y = 0; y < size.height; y++) {
for (int32_t x = 0; x < size.width; x++) {
int32_t resultIndex = y * resultStride + 4 * x;
int32_t channelIndex = y * channelStride + x;
resultData[resultIndex] = channel0Data[channelIndex];
resultData[resultIndex + 1] = channel1Data[channelIndex];
resultData[resultIndex + 2] = channel2Data[channelIndex];
resultData[resultIndex + 3] = channel3Data[channelIndex];
}
}
}
void FilterProcessing::DoPremultiplicationCalculation_Scalar(
const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride) {
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
int32_t inputIndex = y * aSourceStride + 4 * x;
int32_t targetIndex = y * aTargetStride + 4 * x;
uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
FastDivideBy255<uint8_t>(
aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] *
alpha);
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
FastDivideBy255<uint8_t>(
aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] *
alpha);
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
FastDivideBy255<uint8_t>(
aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] *
alpha);
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha;
}
}
}
void FilterProcessing::DoUnpremultiplicationCalculation_Scalar(
const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride) {
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
int32_t inputIndex = y * aSourceStride + 4 * x;
int32_t targetIndex = y * aTargetStride + 4 * x;
uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
uint16_t alphaFactor = sAlphaFactors[alpha];
// inputColor * alphaFactor + 128 is guaranteed to fit into uint16_t
// because the input is premultiplied and thus inputColor <= inputAlpha.
// The maximum value this can attain is 65520 (which is less than 65535)
// for color == alpha == 244:
// 244 * sAlphaFactors[244] + 128 == 244 * 268 + 128 == 65520
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] *
alphaFactor +
128) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] *
alphaFactor +
128) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] *
alphaFactor +
128) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha;
}
}
}
void FilterProcessing::DoOpacityCalculation_Scalar(
const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride, Float aValue) {
uint8_t alpha = uint8_t(roundf(255.f * aValue));
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
int32_t inputIndex = y * aSourceStride + 4 * x;
int32_t targetIndex = y * aTargetStride + 4 * x;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alpha) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alpha) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alpha) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] * alpha) >>
8;
}
}
}
void FilterProcessing::DoOpacityCalculationA8_Scalar(
const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride, Float aValue) {
uint8_t alpha = uint8_t(255.f * aValue);
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
int32_t inputIndex = y * aSourceStride;
int32_t targetIndex = y * aTargetStride;
aTargetData[targetIndex] =
FastDivideBy255<uint8_t>(aSourceData[inputIndex] * alpha);
}
}
}
already_AddRefed<DataSourceSurface> FilterProcessing::RenderTurbulence_Scalar(
const IntSize& aSize, const Point& aOffset, const Size& aBaseFrequency,
int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch,
const Rect& aTileRect) {
return RenderTurbulence_SIMD<simd::Scalarf32x4_t, simd::Scalari32x4_t,
simd::Scalaru8x16_t>(
aSize, aOffset, aBaseFrequency, aSeed, aNumOctaves, aType, aStitch,
aTileRect);
}
already_AddRefed<DataSourceSurface>
FilterProcessing::ApplyArithmeticCombine_Scalar(DataSourceSurface* aInput1,
DataSourceSurface* aInput2,
Float aK1, Float aK2, Float aK3,
Float aK4) {
return ApplyArithmeticCombine_SIMD<simd::Scalari32x4_t, simd::Scalari16x8_t,
simd::Scalaru8x16_t>(aInput1, aInput2, aK1,
aK2, aK3, aK4);
}
} // namespace gfx
} // namespace mozilla