DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "WebAuthnCoseIdentifiers.h"
#include "mozilla/dom/U2FSoftTokenManager.h"
#include "CryptoBuffer.h"
#include "mozilla/Base64.h"
#include "mozilla/Casting.h"
#include "nsNSSComponent.h"
#include "nsThreadUtils.h"
#include "pk11pub.h"
#include "prerror.h"
#include "secerr.h"
#include "WebCryptoCommon.h"

#define PREF_U2F_NSSTOKEN_COUNTER "security.webauth.softtoken_counter"

namespace mozilla {
namespace dom {

using namespace mozilla;
using mozilla::dom::CreateECParamsForCurve;

const nsCString U2FSoftTokenManager::mSecretNickname =
    NS_LITERAL_CSTRING("U2F_NSSTOKEN");

namespace {
NS_NAMED_LITERAL_CSTRING(kAttestCertSubjectName, "CN=Firefox U2F Soft Token");

// This U2F-compatible soft token uses FIDO U2F-compatible ECDSA keypairs
// on the SEC_OID_SECG_EC_SECP256R1 curve. When asked to Register, it will
// generate and return a new keypair KP, where the private component is wrapped
// using AES-KW with the 128-bit mWrappingKey to make an opaque "key handle".
// In other words, Register yields { KP_pub, AES-KW(KP_priv, key=mWrappingKey) }
//
// The value mWrappingKey is long-lived; it is persisted as part of the NSS DB
// for the current profile. The attestation certificates that are produced are
// ephemeral to counteract profiling. They have little use for a soft-token
// at any rate, but are required by the specification.

const uint32_t kParamLen = 32;
const uint32_t kPublicKeyLen = 65;
const uint32_t kWrappedKeyBufLen = 256;
const uint32_t kWrappingKeyByteLen = 128 / 8;
const uint32_t kSaltByteLen = 64 / 8;
const uint32_t kVersion1KeyHandleLen = 162;
NS_NAMED_LITERAL_STRING(kEcAlgorithm, WEBCRYPTO_NAMED_CURVE_P256);

const PRTime kOneDay = PRTime(PR_USEC_PER_SEC) * PRTime(60)  // sec
                       * PRTime(60)                          // min
                       * PRTime(24);                         // hours
const PRTime kExpirationSlack = kOneDay;  // Pre-date for clock skew
const PRTime kExpirationLife = kOneDay;

static mozilla::LazyLogModule gNSSTokenLog("webauth_u2f");

enum SoftTokenHandle {
  Version1 = 0,
};

}  // namespace

U2FSoftTokenManager::U2FSoftTokenManager(uint32_t aCounter)
    : mInitialized(false), mCounter(aCounter) {}

/**
 * Gets the first key with the given nickname from the given slot. Any other
 * keys found are not returned.
 * PK11_GetNextSymKey() should not be called on the returned key.
 *
 * @param aSlot Slot to search.
 * @param aNickname Nickname the key should have.
 * @return The first key found. nullptr if no key could be found.
 */
static UniquePK11SymKey GetSymKeyByNickname(const UniquePK11SlotInfo& aSlot,
                                            const nsCString& aNickname) {
  MOZ_ASSERT(aSlot);
  if (NS_WARN_IF(!aSlot)) {
    return nullptr;
  }

  MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
          ("Searching for a symmetric key named %s", aNickname.get()));

  UniquePK11SymKey keyListHead(
      PK11_ListFixedKeysInSlot(aSlot.get(), const_cast<char*>(aNickname.get()),
                               /* wincx */ nullptr));
  if (NS_WARN_IF(!keyListHead)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Debug, ("Symmetric key not found."));
    return nullptr;
  }

  // Sanity check PK11_ListFixedKeysInSlot() only returns keys with the correct
  // nickname.
  MOZ_ASSERT(aNickname ==
             UniquePORTString(PK11_GetSymKeyNickname(keyListHead.get())).get());
  MOZ_LOG(gNSSTokenLog, LogLevel::Debug, ("Symmetric key found!"));

  // Free any remaining keys in the key list.
  UniquePK11SymKey freeKey(PK11_GetNextSymKey(keyListHead.get()));
  while (freeKey) {
    freeKey = UniquePK11SymKey(PK11_GetNextSymKey(freeKey.get()));
  }

  return keyListHead;
}

static nsresult GenEcKeypair(const UniquePK11SlotInfo& aSlot,
                             /*out*/ UniqueSECKEYPrivateKey& aPrivKey,
                             /*out*/ UniqueSECKEYPublicKey& aPubKey) {
  MOZ_ASSERT(aSlot);
  if (NS_WARN_IF(!aSlot)) {
    return NS_ERROR_INVALID_ARG;
  }

  UniquePLArenaPool arena(PORT_NewArena(DER_DEFAULT_CHUNKSIZE));
  if (NS_WARN_IF(!arena)) {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  // Set the curve parameters; keyParams belongs to the arena memory space
  SECItem* keyParams = CreateECParamsForCurve(kEcAlgorithm, arena.get());
  if (NS_WARN_IF(!keyParams)) {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  // Generate a key pair
  CK_MECHANISM_TYPE mechanism = CKM_EC_KEY_PAIR_GEN;

  SECKEYPublicKey* pubKeyRaw;
  aPrivKey = UniqueSECKEYPrivateKey(
      PK11_GenerateKeyPair(aSlot.get(), mechanism, keyParams, &pubKeyRaw,
                           /* ephemeral */ false, false,
                           /* wincx */ nullptr));
  aPubKey = UniqueSECKEYPublicKey(pubKeyRaw);
  pubKeyRaw = nullptr;
  if (NS_WARN_IF(!aPrivKey.get() || !aPubKey.get())) {
    return NS_ERROR_FAILURE;
  }

  // Check that the public key has the correct length
  if (NS_WARN_IF(aPubKey->u.ec.publicValue.len != kPublicKeyLen)) {
    return NS_ERROR_FAILURE;
  }

  return NS_OK;
}

nsresult U2FSoftTokenManager::GetOrCreateWrappingKey(
    const UniquePK11SlotInfo& aSlot) {
  MOZ_ASSERT(aSlot);
  if (NS_WARN_IF(!aSlot)) {
    return NS_ERROR_INVALID_ARG;
  }

  // Search for an existing wrapping key. If we find it,
  // store it for later and mark ourselves initialized.
  mWrappingKey = GetSymKeyByNickname(aSlot, mSecretNickname);
  if (mWrappingKey) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Debug, ("U2F Soft Token Key found."));
    mInitialized = true;
    return NS_OK;
  }

  MOZ_LOG(gNSSTokenLog, LogLevel::Info,
          ("No keys found. Generating new U2F Soft Token wrapping key."));

  // We did not find an existing wrapping key, so we generate one in the
  // persistent database (e.g, Token).
  mWrappingKey = UniquePK11SymKey(PK11_TokenKeyGenWithFlags(
      aSlot.get(), CKM_AES_KEY_GEN,
      /* default params */ nullptr, kWrappingKeyByteLen,
      /* empty keyid */ nullptr,
      /* flags */ CKF_WRAP | CKF_UNWRAP,
      /* attributes */ PK11_ATTR_TOKEN | PK11_ATTR_PRIVATE,
      /* wincx */ nullptr));

  if (NS_WARN_IF(!mWrappingKey)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to store wrapping key, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }

  SECStatus srv =
      PK11_SetSymKeyNickname(mWrappingKey.get(), mSecretNickname.get());
  if (NS_WARN_IF(srv != SECSuccess)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to set nickname, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }

  MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
          ("Key stored, nickname set to %s.", mSecretNickname.get()));

  GetMainThreadEventTarget()->Dispatch(NS_NewRunnableFunction(
      "dom::U2FSoftTokenManager::GetOrCreateWrappingKey", []() {
        MOZ_ASSERT(NS_IsMainThread());
        Preferences::SetUint(PREF_U2F_NSSTOKEN_COUNTER, 0);
      }));

  return NS_OK;
}

static nsresult GetAttestationCertificate(
    const UniquePK11SlotInfo& aSlot,
    /*out*/ UniqueSECKEYPrivateKey& aAttestPrivKey,
    /*out*/ UniqueCERTCertificate& aAttestCert) {
  MOZ_ASSERT(aSlot);
  if (NS_WARN_IF(!aSlot)) {
    return NS_ERROR_INVALID_ARG;
  }

  UniqueSECKEYPublicKey pubKey;

  // Construct an ephemeral keypair for this Attestation Certificate
  nsresult rv = GenEcKeypair(aSlot, aAttestPrivKey, pubKey);
  if (NS_WARN_IF(NS_FAILED(rv) || !aAttestPrivKey || !pubKey)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to gen keypair, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }

  // Construct the Attestation Certificate itself
  UniqueCERTName subjectName(CERT_AsciiToName(kAttestCertSubjectName.get()));
  if (NS_WARN_IF(!subjectName)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to set subject name, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }

  UniqueCERTSubjectPublicKeyInfo spki(
      SECKEY_CreateSubjectPublicKeyInfo(pubKey.get()));
  if (NS_WARN_IF(!spki)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to set SPKI, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }

  UniqueCERTCertificateRequest certreq(
      CERT_CreateCertificateRequest(subjectName.get(), spki.get(), nullptr));
  if (NS_WARN_IF(!certreq)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to gen CSR, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }

  PRTime now = PR_Now();
  PRTime notBefore = now - kExpirationSlack;
  PRTime notAfter = now + kExpirationLife;

  UniqueCERTValidity validity(CERT_CreateValidity(notBefore, notAfter));
  if (NS_WARN_IF(!validity)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to gen validity, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }

  unsigned long serial;
  unsigned char* serialBytes =
      mozilla::BitwiseCast<unsigned char*, unsigned long*>(&serial);
  SECStatus srv =
      PK11_GenerateRandomOnSlot(aSlot.get(), serialBytes, sizeof(serial));
  if (NS_WARN_IF(srv != SECSuccess)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to gen serial, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }
  // Ensure that the most significant bit isn't set (which would
  // indicate a negative number, which isn't valid for serial
  // numbers).
  serialBytes[0] &= 0x7f;
  // Also ensure that the least significant bit on the most
  // significant byte is set (to prevent a leading zero byte,
  // which also wouldn't be valid).
  serialBytes[0] |= 0x01;

  aAttestCert = UniqueCERTCertificate(CERT_CreateCertificate(
      serial, subjectName.get(), validity.get(), certreq.get()));
  if (NS_WARN_IF(!aAttestCert)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to gen certificate, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }

  PLArenaPool* arena = aAttestCert->arena;

  srv = SECOID_SetAlgorithmID(arena, &aAttestCert->signature,
                              SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE,
                              /* wincx */ nullptr);
  if (NS_WARN_IF(srv != SECSuccess)) {
    return NS_ERROR_FAILURE;
  }

  // Set version to X509v3.
  *(aAttestCert->version.data) = SEC_CERTIFICATE_VERSION_3;
  aAttestCert->version.len = 1;

  SECItem innerDER = {siBuffer, nullptr, 0};
  if (NS_WARN_IF(!SEC_ASN1EncodeItem(arena, &innerDER, aAttestCert.get(),
                                     SEC_ASN1_GET(CERT_CertificateTemplate)))) {
    return NS_ERROR_FAILURE;
  }

  SECItem* signedCert = PORT_ArenaZNew(arena, SECItem);
  if (NS_WARN_IF(!signedCert)) {
    return NS_ERROR_FAILURE;
  }

  srv = SEC_DerSignData(arena, signedCert, innerDER.data, innerDER.len,
                        aAttestPrivKey.get(),
                        SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE);
  if (NS_WARN_IF(srv != SECSuccess)) {
    return NS_ERROR_FAILURE;
  }
  aAttestCert->derCert = *signedCert;

  MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
          ("U2F Soft Token attestation certificate generated."));
  return NS_OK;
}

// Set up the context for the soft U2F Token. This is called by NSS
// initialization.
nsresult U2FSoftTokenManager::Init() {
  // If we've already initialized, just return.
  if (mInitialized) {
    return NS_OK;
  }

  UniquePK11SlotInfo slot(PK11_GetInternalKeySlot());
  MOZ_ASSERT(slot.get());

  // Search for an existing wrapping key, or create one.
  nsresult rv = GetOrCreateWrappingKey(slot);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return rv;
  }

  mInitialized = true;
  MOZ_LOG(gNSSTokenLog, LogLevel::Debug, ("U2F Soft Token initialized."));
  return NS_OK;
}

// Convert a Private Key object into an opaque key handle, using AES Key Wrap
// with the long-lived aPersistentKey mixed with aAppParam to convert aPrivKey.
// The key handle's format is version || saltLen || salt || wrappedPrivateKey
static UniqueSECItem KeyHandleFromPrivateKey(
    const UniquePK11SlotInfo& aSlot, const UniquePK11SymKey& aPersistentKey,
    uint8_t* aAppParam, uint32_t aAppParamLen,
    const UniqueSECKEYPrivateKey& aPrivKey) {
  MOZ_ASSERT(aSlot);
  MOZ_ASSERT(aPersistentKey);
  MOZ_ASSERT(aAppParam);
  MOZ_ASSERT(aPrivKey);
  if (NS_WARN_IF(!aSlot || !aPersistentKey || !aPrivKey || !aAppParam)) {
    return nullptr;
  }

  // Generate a random salt
  uint8_t saltParam[kSaltByteLen];
  SECStatus srv =
      PK11_GenerateRandomOnSlot(aSlot.get(), saltParam, sizeof(saltParam));
  if (NS_WARN_IF(srv != SECSuccess)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to generate a salt, NSS error #%d", PORT_GetError()));
    return nullptr;
  }

  // Prepare the HKDF (https://tools.ietf.org/html/rfc5869)
  CK_NSS_HKDFParams hkdfParams = {true, saltParam, sizeof(saltParam),
                                  true, aAppParam, aAppParamLen};
  SECItem kdfParams = {siBuffer, (unsigned char*)&hkdfParams,
                       sizeof(hkdfParams)};

  // Derive a wrapping key from aPersistentKey, the salt, and the aAppParam.
  // CKM_AES_KEY_GEN and CKA_WRAP are key type and usage attributes of the
  // derived symmetric key and don't matter because we ignore them anyway.
  UniquePK11SymKey wrapKey(
      PK11_Derive(aPersistentKey.get(), CKM_NSS_HKDF_SHA256, &kdfParams,
                  CKM_AES_KEY_GEN, CKA_WRAP, kWrappingKeyByteLen));
  if (NS_WARN_IF(!wrapKey.get())) {
    MOZ_LOG(
        gNSSTokenLog, LogLevel::Warning,
        ("Failed to derive a wrapping key, NSS error #%d", PORT_GetError()));
    return nullptr;
  }

  UniqueSECItem wrappedKey(::SECITEM_AllocItem(/* default arena */ nullptr,
                                               /* no buffer */ nullptr,
                                               kWrappedKeyBufLen));
  if (NS_WARN_IF(!wrappedKey)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning, ("Failed to allocate memory"));
    return nullptr;
  }

  UniqueSECItem param(PK11_ParamFromIV(CKM_NSS_AES_KEY_WRAP_PAD,
                                       /* default IV */ nullptr));

  srv =
      PK11_WrapPrivKey(aSlot.get(), wrapKey.get(), aPrivKey.get(),
                       CKM_NSS_AES_KEY_WRAP_PAD, param.get(), wrappedKey.get(),
                       /* wincx */ nullptr);
  if (NS_WARN_IF(srv != SECSuccess)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to wrap U2F key, NSS error #%d", PORT_GetError()));
    return nullptr;
  }

  // Concatenate the salt and the wrapped Private Key together
  mozilla::dom::CryptoBuffer keyHandleBuf;
  if (NS_WARN_IF(!keyHandleBuf.SetCapacity(
          wrappedKey.get()->len + sizeof(saltParam) + 2, mozilla::fallible))) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning, ("Failed to allocate memory"));
    return nullptr;
  }

  // It's OK to ignore the return values here because we're writing into
  // pre-allocated space
  (void)keyHandleBuf.AppendElement(SoftTokenHandle::Version1,
                                   mozilla::fallible);
  (void)keyHandleBuf.AppendElement(sizeof(saltParam), mozilla::fallible);
  (void)keyHandleBuf.AppendElements(saltParam, sizeof(saltParam),
                                    mozilla::fallible);
  keyHandleBuf.AppendSECItem(wrappedKey.get());

  UniqueSECItem keyHandle(::SECITEM_AllocItem(nullptr, nullptr, 0));
  if (NS_WARN_IF(!keyHandle)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning, ("Failed to allocate memory"));
    return nullptr;
  }

  if (NS_WARN_IF(!keyHandleBuf.ToSECItem(/* default arena */ nullptr,
                                         keyHandle.get()))) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning, ("Failed to allocate memory"));
    return nullptr;
  }
  return keyHandle;
}

// Convert an opaque key handle aKeyHandle back into a Private Key object, using
// the long-lived aPersistentKey mixed with aAppParam and the AES Key Wrap
// algorithm.
static UniqueSECKEYPrivateKey PrivateKeyFromKeyHandle(
    const UniquePK11SlotInfo& aSlot, const UniquePK11SymKey& aPersistentKey,
    uint8_t* aKeyHandle, uint32_t aKeyHandleLen, uint8_t* aAppParam,
    uint32_t aAppParamLen) {
  MOZ_ASSERT(aSlot);
  MOZ_ASSERT(aPersistentKey);
  MOZ_ASSERT(aKeyHandle);
  MOZ_ASSERT(aAppParam);
  MOZ_ASSERT(aAppParamLen == SHA256_LENGTH);
  if (NS_WARN_IF(!aSlot || !aPersistentKey || !aKeyHandle || !aAppParam ||
                 aAppParamLen != SHA256_LENGTH)) {
    return nullptr;
  }

  // As we only support one key format ourselves (right now), fail early if
  // we aren't that length
  if (NS_WARN_IF(aKeyHandleLen != kVersion1KeyHandleLen)) {
    return nullptr;
  }

  if (NS_WARN_IF(aKeyHandle[0] != SoftTokenHandle::Version1)) {
    // Unrecognized version
    return nullptr;
  }

  uint8_t saltLen = aKeyHandle[1];
  uint8_t* saltPtr = aKeyHandle + 2;
  if (NS_WARN_IF(saltLen != kSaltByteLen)) {
    return nullptr;
  }

  // Prepare the HKDF (https://tools.ietf.org/html/rfc5869)
  CK_NSS_HKDFParams hkdfParams = {true, saltPtr,   saltLen,
                                  true, aAppParam, aAppParamLen};
  SECItem kdfParams = {siBuffer, (unsigned char*)&hkdfParams,
                       sizeof(hkdfParams)};

  // Derive a wrapping key from aPersistentKey, the salt, and the aAppParam.
  // CKM_AES_KEY_GEN and CKA_WRAP are key type and usage attributes of the
  // derived symmetric key and don't matter because we ignore them anyway.
  UniquePK11SymKey wrapKey(
      PK11_Derive(aPersistentKey.get(), CKM_NSS_HKDF_SHA256, &kdfParams,
                  CKM_AES_KEY_GEN, CKA_WRAP, kWrappingKeyByteLen));
  if (NS_WARN_IF(!wrapKey.get())) {
    MOZ_LOG(
        gNSSTokenLog, LogLevel::Warning,
        ("Failed to derive a wrapping key, NSS error #%d", PORT_GetError()));
    return nullptr;
  }

  uint8_t wrappedLen = aKeyHandleLen - saltLen - 2;
  uint8_t* wrappedPtr = aKeyHandle + saltLen + 2;

  ScopedAutoSECItem wrappedKeyItem(wrappedLen);
  memcpy(wrappedKeyItem.data, wrappedPtr, wrappedKeyItem.len);

  ScopedAutoSECItem pubKey(kPublicKeyLen);

  UniqueSECItem param(PK11_ParamFromIV(CKM_NSS_AES_KEY_WRAP_PAD,
                                       /* default IV */ nullptr));

  CK_ATTRIBUTE_TYPE usages[] = {CKA_SIGN};
  int usageCount = 1;

  UniqueSECKEYPrivateKey unwrappedKey(
      PK11_UnwrapPrivKey(aSlot.get(), wrapKey.get(), CKM_NSS_AES_KEY_WRAP_PAD,
                         param.get(), &wrappedKeyItem,
                         /* no nickname */ nullptr,
                         /* discard pubkey */ &pubKey,
                         /* not permanent */ false,
                         /* non-exportable */ true, CKK_EC, usages, usageCount,
                         /* wincx */ nullptr));
  if (NS_WARN_IF(!unwrappedKey)) {
    // Not our key.
    MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
            ("Could not unwrap key handle, NSS Error #%d", PORT_GetError()));
    return nullptr;
  }

  return unwrappedKey;
}

// IsRegistered determines if the provided key handle is usable by this token.
nsresult U2FSoftTokenManager::IsRegistered(const nsTArray<uint8_t>& aKeyHandle,
                                           const nsTArray<uint8_t>& aAppParam,
                                           bool& aResult) {
  if (!mInitialized) {
    nsresult rv = Init();
    if (NS_WARN_IF(NS_FAILED(rv))) {
      return rv;
    }
  }

  UniquePK11SlotInfo slot(PK11_GetInternalSlot());
  MOZ_ASSERT(slot.get());

  // Decode the key handle
  UniqueSECKEYPrivateKey privKey = PrivateKeyFromKeyHandle(
      slot, mWrappingKey, const_cast<uint8_t*>(aKeyHandle.Elements()),
      aKeyHandle.Length(), const_cast<uint8_t*>(aAppParam.Elements()),
      aAppParam.Length());
  aResult = privKey.get() != nullptr;
  return NS_OK;
}

// A U2F Register operation causes a new key pair to be generated by the token.
// The token then returns the public key of the key pair, and a handle to the
// private key, which is a fancy way of saying "key wrapped private key", as
// well as the generated attestation certificate and a signature using that
// certificate's private key.
//
// The KeyHandleFromPrivateKey and PrivateKeyFromKeyHandle methods perform
// the actual key wrap/unwrap operations.
//
// The format of the return registration data is as follows:
//
// Bytes  Value
// 1      0x05
// 65     public key
// 1      key handle length
// *      key handle
// ASN.1  attestation certificate
// *      attestation signature
//
RefPtr<U2FRegisterPromise> U2FSoftTokenManager::Register(
    const WebAuthnMakeCredentialInfo& aInfo, bool aForceNoneAttestation) {
  if (!mInitialized) {
    nsresult rv = Init();
    if (NS_WARN_IF(NS_FAILED(rv))) {
      return U2FRegisterPromise::CreateAndReject(rv, __func__);
    }
  }

  if (aInfo.Extra().isSome()) {
    const auto& extra = aInfo.Extra().ref();
    const WebAuthnAuthenticatorSelection& sel = extra.AuthenticatorSelection();

    UserVerificationRequirement userVerificaitonRequirement =
        sel.userVerificationRequirement();

    bool requireUserVerification =
        userVerificaitonRequirement == UserVerificationRequirement::Required;

    bool requirePlatformAttachment = false;
    if (sel.authenticatorAttachment().isSome()) {
      const AuthenticatorAttachment authenticatorAttachment =
          sel.authenticatorAttachment().value();
      if (authenticatorAttachment == AuthenticatorAttachment::Platform) {
        requirePlatformAttachment = true;
      }
    }

    // The U2F softtoken neither supports resident keys or
    // user verification, nor is it a platform authenticator.
    if (sel.requireResidentKey() || requireUserVerification ||
        requirePlatformAttachment) {
      return U2FRegisterPromise::CreateAndReject(NS_ERROR_DOM_NOT_ALLOWED_ERR,
                                                 __func__);
    }

    nsTArray<CoseAlg> coseAlgos;
    for (const auto& coseAlg : extra.coseAlgs()) {
      switch (static_cast<CoseAlgorithmIdentifier>(coseAlg.alg())) {
        case CoseAlgorithmIdentifier::ES256:
          coseAlgos.AppendElement(coseAlg);
          break;
        default:
          continue;
      }
    }

    // Only if no algorithms were specified, default to the one the soft token
    // supports.
    if (extra.coseAlgs().IsEmpty()) {
      coseAlgos.AppendElement(
          static_cast<int32_t>(CoseAlgorithmIdentifier::ES256));
    }

    // If there are no acceptable/supported algorithms, reject the promise.
    if (coseAlgos.IsEmpty()) {
      return U2FRegisterPromise::CreateAndReject(NS_ERROR_DOM_NOT_SUPPORTED_ERR,
                                                 __func__);
    }
  }

  CryptoBuffer rpIdHash, clientDataHash;
  NS_ConvertUTF16toUTF8 rpId(aInfo.RpId());
  nsresult rv = BuildTransactionHashes(rpId, aInfo.ClientDataJSON(), rpIdHash,
                                       clientDataHash);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_DOM_UNKNOWN_ERR,
                                               __func__);
  }

  // Optional exclusion list.
  for (const WebAuthnScopedCredential& cred : aInfo.ExcludeList()) {
    bool isRegistered = false;
    nsresult rv = IsRegistered(cred.id(), rpIdHash, isRegistered);
    if (NS_FAILED(rv)) {
      return U2FRegisterPromise::CreateAndReject(rv, __func__);
    }
    if (isRegistered) {
      return U2FRegisterPromise::CreateAndReject(NS_ERROR_DOM_INVALID_STATE_ERR,
                                                 __func__);
    }
  }

  // We should already have a wrapping key
  MOZ_ASSERT(mWrappingKey);

  UniquePK11SlotInfo slot(PK11_GetInternalSlot());
  MOZ_ASSERT(slot.get());

  // Construct a one-time-use Attestation Certificate
  UniqueSECKEYPrivateKey attestPrivKey;
  UniqueCERTCertificate attestCert;
  rv = GetAttestationCertificate(slot, attestPrivKey, attestCert);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }
  MOZ_ASSERT(attestCert);
  MOZ_ASSERT(attestPrivKey);

  // Generate a new keypair; the private will be wrapped into a Key Handle
  UniqueSECKEYPrivateKey privKey;
  UniqueSECKEYPublicKey pubKey;
  rv = GenEcKeypair(slot, privKey, pubKey);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  // The key handle will be the result of keywrap(privKey, key=mWrappingKey)
  UniqueSECItem keyHandleItem = KeyHandleFromPrivateKey(
      slot, mWrappingKey, const_cast<uint8_t*>(rpIdHash.Elements()),
      rpIdHash.Length(), privKey);
  if (NS_WARN_IF(!keyHandleItem.get())) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  // Sign the challenge using the Attestation privkey (from attestCert)
  mozilla::dom::CryptoBuffer signedDataBuf;
  if (NS_WARN_IF(!signedDataBuf.SetCapacity(
          1 + rpIdHash.Length() + clientDataHash.Length() + keyHandleItem->len +
              kPublicKeyLen,
          mozilla::fallible))) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY,
                                               __func__);
  }

  // // It's OK to ignore the return values here because we're writing into
  // // pre-allocated space
  (void)signedDataBuf.AppendElement(0x00, mozilla::fallible);
  (void)signedDataBuf.AppendElements(rpIdHash, mozilla::fallible);
  (void)signedDataBuf.AppendElements(clientDataHash, mozilla::fallible);
  signedDataBuf.AppendSECItem(keyHandleItem.get());
  signedDataBuf.AppendSECItem(pubKey->u.ec.publicValue);

  ScopedAutoSECItem signatureItem;
  SECStatus srv = SEC_SignData(&signatureItem, signedDataBuf.Elements(),
                               signedDataBuf.Length(), attestPrivKey.get(),
                               SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE);
  if (NS_WARN_IF(srv != SECSuccess)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Signature failure: %d", PORT_GetError()));
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  // Serialize the registration data
  mozilla::dom::CryptoBuffer registrationBuf;
  if (NS_WARN_IF(!registrationBuf.SetCapacity(
          1 + kPublicKeyLen + 1 + keyHandleItem->len +
              attestCert.get()->derCert.len + signatureItem.len,
          mozilla::fallible))) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY,
                                               __func__);
  }
  (void)registrationBuf.AppendElement(0x05, mozilla::fallible);
  registrationBuf.AppendSECItem(pubKey->u.ec.publicValue);
  (void)registrationBuf.AppendElement(keyHandleItem->len, mozilla::fallible);
  registrationBuf.AppendSECItem(keyHandleItem.get());
  registrationBuf.AppendSECItem(attestCert.get()->derCert);
  registrationBuf.AppendSECItem(signatureItem);

  CryptoBuffer keyHandleBuf;
  if (!keyHandleBuf.AppendSECItem(keyHandleItem.get())) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  CryptoBuffer attestCertBuf;
  if (!attestCertBuf.AppendSECItem(attestCert.get()->derCert)) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  CryptoBuffer signatureBuf;
  if (!signatureBuf.AppendSECItem(signatureItem)) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  CryptoBuffer pubKeyBuf;
  if (!pubKeyBuf.AppendSECItem(pubKey->u.ec.publicValue)) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  CryptoBuffer attObj;
  rv = AssembleAttestationObject(rpIdHash, pubKeyBuf, keyHandleBuf,
                                 attestCertBuf, signatureBuf,
                                 aForceNoneAttestation, attObj);
  if (NS_FAILED(rv)) {
    return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  nsTArray<WebAuthnExtensionResult> extensions;
  WebAuthnMakeCredentialResult result(aInfo.ClientDataJSON(), attObj,
                                      keyHandleBuf, registrationBuf,
                                      extensions);
  return U2FRegisterPromise::CreateAndResolve(std::move(result), __func__);
}

bool U2FSoftTokenManager::FindRegisteredKeyHandle(
    const nsTArray<nsTArray<uint8_t>>& aAppIds,
    const nsTArray<WebAuthnScopedCredential>& aCredentials,
    /*out*/ nsTArray<uint8_t>& aKeyHandle,
    /*out*/ nsTArray<uint8_t>& aAppId) {
  for (const nsTArray<uint8_t>& app_id : aAppIds) {
    for (const WebAuthnScopedCredential& cred : aCredentials) {
      bool isRegistered = false;
      nsresult rv = IsRegistered(cred.id(), app_id, isRegistered);
      if (NS_SUCCEEDED(rv) && isRegistered) {
        aKeyHandle.Assign(cred.id());
        aAppId.Assign(app_id);
        return true;
      }
    }
  }

  return false;
}

// A U2F Sign operation creates a signature over the "param" arguments (plus
// some other stuff) using the private key indicated in the key handle argument.
//
// The format of the signed data is as follows:
//
//  32    Application parameter
//  1     User presence (0x01)
//  4     Counter
//  32    Challenge parameter
//
// The format of the signature data is as follows:
//
//  1     User presence
//  4     Counter
//  *     Signature
//
RefPtr<U2FSignPromise> U2FSoftTokenManager::Sign(
    const WebAuthnGetAssertionInfo& aInfo) {
  if (!mInitialized) {
    nsresult rv = Init();
    if (NS_WARN_IF(NS_FAILED(rv))) {
      return U2FSignPromise::CreateAndReject(rv, __func__);
    }
  }

  CryptoBuffer rpIdHash, clientDataHash;
  NS_ConvertUTF16toUTF8 rpId(aInfo.RpId());
  nsresult rv = BuildTransactionHashes(rpId, aInfo.ClientDataJSON(), rpIdHash,
                                       clientDataHash);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return U2FSignPromise::CreateAndReject(NS_ERROR_DOM_UNKNOWN_ERR, __func__);
  }

  nsTArray<nsTArray<uint8_t>> appIds;
  appIds.AppendElement(std::move(rpIdHash));

  if (aInfo.Extra().isSome()) {
    const auto& extra = aInfo.Extra().ref();

    UserVerificationRequirement userVerificaitonReq =
        extra.userVerificationRequirement();

    // The U2F softtoken doesn't support user verification.
    if (userVerificaitonReq == UserVerificationRequirement::Required) {
      return U2FSignPromise::CreateAndReject(NS_ERROR_DOM_NOT_ALLOWED_ERR,
                                             __func__);
    }

    // Process extensions.
    for (const WebAuthnExtension& ext : extra.Extensions()) {
      if (ext.type() == WebAuthnExtension::TWebAuthnExtensionAppId) {
        appIds.AppendElement(ext.get_WebAuthnExtensionAppId().AppId().Clone());
      }
    }
  }

  nsTArray<uint8_t> chosenAppId;
  nsTArray<uint8_t> keyHandle;

  // Fail if we can't find a valid key handle.
  if (!FindRegisteredKeyHandle(appIds, aInfo.AllowList(), keyHandle,
                               chosenAppId)) {
    return U2FSignPromise::CreateAndReject(NS_ERROR_DOM_INVALID_STATE_ERR,
                                           __func__);
  }

  MOZ_ASSERT(mWrappingKey);

  UniquePK11SlotInfo slot(PK11_GetInternalSlot());
  MOZ_ASSERT(slot.get());

  if (NS_WARN_IF((clientDataHash.Length() != kParamLen) ||
                 (chosenAppId.Length() != kParamLen))) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Parameter lengths are wrong! challenge=%d app=%d expected=%d",
             (uint32_t)clientDataHash.Length(), (uint32_t)chosenAppId.Length(),
             kParamLen));

    return U2FSignPromise::CreateAndReject(NS_ERROR_ILLEGAL_VALUE, __func__);
  }

  // Decode the key handle
  UniqueSECKEYPrivateKey privKey = PrivateKeyFromKeyHandle(
      slot, mWrappingKey, const_cast<uint8_t*>(keyHandle.Elements()),
      keyHandle.Length(), const_cast<uint8_t*>(chosenAppId.Elements()),
      chosenAppId.Length());
  if (NS_WARN_IF(!privKey.get())) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning, ("Couldn't get the priv key!"));
    return U2FSignPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  // Increment the counter and turn it into a SECItem
  mCounter += 1;
  ScopedAutoSECItem counterItem(4);
  counterItem.data[0] = (mCounter >> 24) & 0xFF;
  counterItem.data[1] = (mCounter >> 16) & 0xFF;
  counterItem.data[2] = (mCounter >> 8) & 0xFF;
  counterItem.data[3] = (mCounter >> 0) & 0xFF;
  uint32_t counter = mCounter;
  GetMainThreadEventTarget()->Dispatch(
      NS_NewRunnableFunction("dom::U2FSoftTokenManager::Sign", [counter]() {
        MOZ_ASSERT(NS_IsMainThread());
        Preferences::SetUint(PREF_U2F_NSSTOKEN_COUNTER, counter);
      }));

  // Compute the signature
  mozilla::dom::CryptoBuffer signedDataBuf;
  if (NS_WARN_IF(!signedDataBuf.SetCapacity(1 + 4 + (2 * kParamLen),
                                            mozilla::fallible))) {
    return U2FSignPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
  }

  // It's OK to ignore the return values here because we're writing into
  // pre-allocated space
  (void)signedDataBuf.AppendElements(chosenAppId.Elements(),
                                     chosenAppId.Length(), mozilla::fallible);
  (void)signedDataBuf.AppendElement(0x01, mozilla::fallible);
  signedDataBuf.AppendSECItem(counterItem);
  (void)signedDataBuf.AppendElements(
      clientDataHash.Elements(), clientDataHash.Length(), mozilla::fallible);

  if (MOZ_LOG_TEST(gNSSTokenLog, LogLevel::Debug)) {
    nsAutoCString base64;
    nsresult rv =
        Base64URLEncode(signedDataBuf.Length(), signedDataBuf.Elements(),
                        Base64URLEncodePaddingPolicy::Omit, base64);
    if (NS_WARN_IF(NS_FAILED(rv))) {
      return U2FSignPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
    }

    MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
            ("U2F Token signing bytes (base64): %s", base64.get()));
  }

  ScopedAutoSECItem signatureItem;
  SECStatus srv = SEC_SignData(&signatureItem, signedDataBuf.Elements(),
                               signedDataBuf.Length(), privKey.get(),
                               SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE);
  if (NS_WARN_IF(srv != SECSuccess)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Signature failure: %d", PORT_GetError()));
    return U2FSignPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  // Assemble the signature data into a buffer for return
  mozilla::dom::CryptoBuffer signatureDataBuf;
  if (NS_WARN_IF(!signatureDataBuf.SetCapacity(
          1 + counterItem.len + signatureItem.len, mozilla::fallible))) {
    return U2FSignPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
  }

  // It's OK to ignore the return values here because we're writing into
  // pre-allocated space
  (void)signatureDataBuf.AppendElement(0x01, mozilla::fallible);
  signatureDataBuf.AppendSECItem(counterItem);
  signatureDataBuf.AppendSECItem(signatureItem);

  nsTArray<WebAuthnExtensionResult> extensions;

  if (chosenAppId != rpIdHash) {
    // Indicate to the RP that we used the FIDO appId.
    extensions.AppendElement(WebAuthnExtensionResultAppId(true));
  }

  CryptoBuffer counterBuf;
  if (!counterBuf.AppendSECItem(counterItem)) {
    return U2FSignPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
  }

  CryptoBuffer signatureBuf;
  if (!signatureBuf.AppendSECItem(signatureItem)) {
    return U2FSignPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
  }

  CryptoBuffer chosenAppIdBuf;
  if (!chosenAppIdBuf.Assign(chosenAppId)) {
    return U2FSignPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
  }

  CryptoBuffer authenticatorData;
  CryptoBuffer emptyAttestationData;
  rv = AssembleAuthenticatorData(chosenAppIdBuf, 0x01, counterBuf,
                                 emptyAttestationData, authenticatorData);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return U2FSignPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
  }

  nsTArray<uint8_t> userHandle;

  WebAuthnGetAssertionResult result(aInfo.ClientDataJSON(), keyHandle,
                                    signatureBuf, authenticatorData, extensions,
                                    signatureDataBuf, userHandle);
  return U2FSignPromise::CreateAndResolve(std::move(result), __func__);
}

void U2FSoftTokenManager::Cancel() {
  // This implementation is sync, requests can't be aborted.
}

}  // namespace dom
}  // namespace mozilla