DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d03b538b6b41)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
/* jshint moz: true, esnext: true */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

'use strict';

ChromeUtils.import('resource://gre/modules/Services.jsm');
ChromeUtils.import('resource://gre/modules/XPCOMUtils.jsm');

XPCOMUtils.defineLazyGetter(this, 'gDOMBundle', () =>
  Services.strings.createBundle('chrome://global/locale/dom/dom.properties'));

XPCOMUtils.defineLazyGlobalGetters(this, ['crypto']);

var EXPORTED_SYMBOLS = ['PushCrypto', 'concatArray'];

var UTF8 = new TextEncoder('utf-8');

var ECDH_KEY = { name: 'ECDH', namedCurve: 'P-256' };
var ECDSA_KEY =  { name: 'ECDSA', namedCurve: 'P-256' };

// A default keyid with a name that won't conflict with a real keyid.
var DEFAULT_KEYID = '';

/** Localized error property names. */

// `Encryption` header missing or malformed.
const BAD_ENCRYPTION_HEADER = 'PushMessageBadEncryptionHeader';
// `Crypto-Key` or legacy `Encryption-Key` header missing.
const BAD_CRYPTO_KEY_HEADER = 'PushMessageBadCryptoKeyHeader';
const BAD_ENCRYPTION_KEY_HEADER = 'PushMessageBadEncryptionKeyHeader';
// `Content-Encoding` header missing or contains unsupported encoding.
const BAD_ENCODING_HEADER = 'PushMessageBadEncodingHeader';
// `dh` parameter of `Crypto-Key` header missing or not base64url-encoded.
const BAD_DH_PARAM = 'PushMessageBadSenderKey';
// `salt` parameter of `Encryption` header missing or not base64url-encoded.
const BAD_SALT_PARAM = 'PushMessageBadSalt';
// `rs` parameter of `Encryption` header not a number or less than pad size.
const BAD_RS_PARAM = 'PushMessageBadRecordSize';
// Invalid or insufficient padding for encrypted chunk.
const BAD_PADDING = 'PushMessageBadPaddingError';
// Generic crypto error.
const BAD_CRYPTO = 'PushMessageBadCryptoError';

class CryptoError extends Error {
  /**
   * Creates an error object indicating an incoming push message could not be
   * decrypted.
   *
   * @param {String} message A human-readable error message. This is only for
   * internal module logging, and doesn't need to be localized.
   * @param {String} property The localized property name from `dom.properties`.
   * @param {String...} params Substitutions to insert into the localized
   *  string.
   */
  constructor(message, property, ...params) {
    super(message);
    this.isCryptoError = true;
    this.property = property;
    this.params = params;
  }

  /**
   * Formats a localized string for reporting decryption errors to the Web
   * Console.
   *
   * @param {String} scope The scope of the service worker receiving the
   *  message, prepended to any other substitutions in the string.
   * @returns {String} The localized string.
   */
  format(scope) {
    let params = [scope, ...this.params].map(String);
    return gDOMBundle.formatStringFromName(this.property, params,
                                           params.length);
  }
}

function getEncryptionKeyParams(encryptKeyField) {
  if (!encryptKeyField) {
    return null;
  }
  var params = encryptKeyField.split(',');
  return params.reduce((m, p) => {
    var pmap = p.split(';').reduce(parseHeaderFieldParams, {});
    if (pmap.keyid && pmap.dh) {
      m[pmap.keyid] = pmap.dh;
    }
    if (!m[DEFAULT_KEYID] && pmap.dh) {
      m[DEFAULT_KEYID] = pmap.dh;
    }
    return m;
  }, {});
}

function getEncryptionParams(encryptField) {
  if (!encryptField) {
    throw new CryptoError('Missing encryption header',
                          BAD_ENCRYPTION_HEADER);
  }
  var p = encryptField.split(',', 1)[0];
  if (!p) {
    throw new CryptoError('Encryption header missing params',
                          BAD_ENCRYPTION_HEADER);
  }
  return p.split(';').reduce(parseHeaderFieldParams, {});
}

// Extracts the sender public key, salt, and record size from the payload for the
// aes128gcm scheme.
function getCryptoParamsFromPayload(payload) {
  if (payload.byteLength < 21) {
    throw new CryptoError('Truncated header', BAD_CRYPTO);
  }
  let rs = (payload[16] << 24) | (payload[17] << 16) | (payload[18] << 8) | payload[19];
  let keyIdLen = payload[20];
  if (keyIdLen != 65) {
    throw new CryptoError('Invalid sender public key', BAD_DH_PARAM);
  }
  if (payload.byteLength <= 21 + keyIdLen) {
    throw new CryptoError('Truncated payload', BAD_CRYPTO);
  }
  return {
    salt: payload.slice(0, 16),
    rs: rs,
    senderKey: payload.slice(21, 21 + keyIdLen),
    ciphertext: payload.slice(21 + keyIdLen),
  };
}

// Extracts the sender public key, salt, and record size from the `Crypto-Key`,
// `Encryption-Key`, and `Encryption` headers for the aesgcm and aesgcm128
// schemes.
function getCryptoParamsFromHeaders(headers) {
  if (!headers) {
    return null;
  }

  var keymap;
  if (headers.encoding == AESGCM_ENCODING) {
    // aesgcm uses the Crypto-Key header, 2 bytes for the pad length, and an
    // authentication secret.
    // https://tools.ietf.org/html/draft-ietf-httpbis-encryption-encoding-01
    keymap = getEncryptionKeyParams(headers.crypto_key);
    if (!keymap) {
      throw new CryptoError('Missing Crypto-Key header',
                            BAD_CRYPTO_KEY_HEADER);
    }
  } else if (headers.encoding == AESGCM128_ENCODING) {
    // aesgcm128 uses Encryption-Key, 1 byte for the pad length, and no secret.
    // https://tools.ietf.org/html/draft-thomson-http-encryption-02
    keymap = getEncryptionKeyParams(headers.encryption_key);
    if (!keymap) {
      throw new CryptoError('Missing Encryption-Key header',
                            BAD_ENCRYPTION_KEY_HEADER);
    }
  }

  var enc = getEncryptionParams(headers.encryption);
  var dh = keymap[enc.keyid || DEFAULT_KEYID];
  var senderKey = base64URLDecode(dh);
  if (!senderKey) {
    throw new CryptoError('Invalid dh parameter', BAD_DH_PARAM);
  }

  var salt = base64URLDecode(enc.salt);
  if (!salt) {
    throw new CryptoError('Invalid salt parameter', BAD_SALT_PARAM);
  }
  var rs = enc.rs ? parseInt(enc.rs, 10) : 4096;
  if (isNaN(rs)) {
    throw new CryptoError('rs parameter must be a number', BAD_RS_PARAM);
  }
  return {
    salt: salt,
    rs: rs,
    senderKey: senderKey,
  };
}

// Decodes an unpadded, base64url-encoded string.
function base64URLDecode(string) {
  if (!string) {
    return null;
  }
  try {
    return ChromeUtils.base64URLDecode(string, {
      // draft-ietf-httpbis-encryption-encoding-01 prohibits padding.
      padding: 'reject',
    });
  } catch (ex) {}
  return null;
}

var parseHeaderFieldParams = (m, v) => {
  var i = v.indexOf('=');
  if (i >= 0) {
    // A quoted string with internal quotes is invalid for all the possible
    // values of this header field.
    m[v.substring(0, i).trim()] = v.substring(i + 1).trim()
                                   .replace(/^"(.*)"$/, '$1');
  }
  return m;
};

function chunkArray(array, size) {
  var start = array.byteOffset || 0;
  array = array.buffer || array;
  var index = 0;
  var result = [];
  while(index + size <= array.byteLength) {
    result.push(new Uint8Array(array, start + index, size));
    index += size;
  }
  if (index < array.byteLength) {
    result.push(new Uint8Array(array, start + index));
  }
  return result;
}

var concatArray = function(arrays) {
  var size = arrays.reduce((total, a) => total + a.byteLength, 0);
  var index = 0;
  return arrays.reduce((result, a) => {
    result.set(new Uint8Array(a), index);
    index += a.byteLength;
    return result;
  }, new Uint8Array(size));
};

var HMAC_SHA256 = { name: 'HMAC', hash: 'SHA-256' };

function hmac(key) {
  this.keyPromise = crypto.subtle.importKey('raw', key, HMAC_SHA256,
                                            false, ['sign']);
}

hmac.prototype.hash = function(input) {
  return this.keyPromise.then(k => crypto.subtle.sign('HMAC', k, input));
};

function hkdf(salt, ikm) {
  this.prkhPromise = new hmac(salt).hash(ikm)
    .then(prk => new hmac(prk));
}

hkdf.prototype.extract = function(info, len) {
  var input = concatArray([info, new Uint8Array([1])]);
  return this.prkhPromise
    .then(prkh => prkh.hash(input))
    .then(h => {
      if (h.byteLength < len) {
        throw new CryptoError('HKDF length is too long', BAD_CRYPTO);
      }
      return h.slice(0, len);
    });
};

/* generate a 96-bit nonce for use in GCM, 48-bits of which are populated */
function generateNonce(base, index) {
  if (index >= Math.pow(2, 48)) {
    throw new CryptoError('Nonce index is too large', BAD_CRYPTO);
  }
  var nonce = base.slice(0, 12);
  nonce = new Uint8Array(nonce);
  for (var i = 0; i < 6; ++i) {
    nonce[nonce.byteLength - 1 - i] ^= (index / Math.pow(256, i)) & 0xff;
  }
  return nonce;
}

function encodeLength(buffer) {
  return new Uint8Array([0, buffer.byteLength]);
}

var NONCE_INFO = UTF8.encode('Content-Encoding: nonce');

class Decoder {
  /**
   * Creates a decoder for decrypting an incoming push message.
   *
   * @param {JsonWebKey} privateKey The static subscription private key.
   * @param {BufferSource} publicKey The static subscription public key.
   * @param {BufferSource} authenticationSecret The subscription authentication
   *  secret, or `null` if not used by the scheme.
   * @param {Object} cryptoParams An object containing the ephemeral sender
   *  public key, salt, and record size.
   * @param {BufferSource} ciphertext The encrypted message data.
   */
  constructor(privateKey, publicKey, authenticationSecret, cryptoParams,
              ciphertext) {
    this.privateKey = privateKey;
    this.publicKey = publicKey;
    this.authenticationSecret = authenticationSecret;
    this.senderKey = cryptoParams.senderKey;
    this.salt = cryptoParams.salt;
    this.rs = cryptoParams.rs;
    this.ciphertext = ciphertext;
  }

  /**
   * Derives the decryption keys and decodes the push message.
   *
   * @throws {CryptoError} if decryption fails.
   * @returns {Uint8Array} The decrypted message data.
   */
  async decode() {
    if (this.ciphertext.byteLength === 0) {
      // Zero length messages will be passed as null.
      return null;
    }
    try {
      let ikm = await this.computeSharedSecret();
      let [gcmBits, nonce] = await this.deriveKeyAndNonce(ikm);
      let key = await crypto.subtle.importKey('raw', gcmBits, 'AES-GCM', false,
                                              ['decrypt']);

      let r = await Promise.all(chunkArray(this.ciphertext, this.chunkSize)
        .map((slice, index, chunks) => this.decodeChunk(slice, index, nonce,
          key, index >= chunks.length - 1)));

      return concatArray(r);
    } catch (error) {
      if (error.isCryptoError) {
        throw error;
      }
      // Web Crypto returns an unhelpful "operation failed for an
      // operation-specific reason" error if decryption fails. We don't have
      // context about what went wrong, so we throw a generic error instead.
      throw new CryptoError('Bad encryption', BAD_CRYPTO);
    }
  }

  /**
   * Computes the ECDH shared secret, used as the input key material for HKDF.
   *
   * @throws if the static or ephemeral ECDH keys are invalid.
   * @returns {ArrayBuffer} The shared secret.
   */
  async computeSharedSecret() {
    let [appServerKey, subscriptionPrivateKey] = await Promise.all([
      crypto.subtle.importKey('raw', this.senderKey, ECDH_KEY,
                              false, ['deriveBits']),
      crypto.subtle.importKey('jwk', this.privateKey, ECDH_KEY,
                              false, ['deriveBits'])
    ]);
    return crypto.subtle.deriveBits({ name: 'ECDH', public: appServerKey },
                                    subscriptionPrivateKey, 256);
  }

  /**
   * Derives the content encryption key and nonce.
   *
   * @param {BufferSource} ikm The ECDH shared secret.
   * @returns {Array} A `[gcmBits, nonce]` tuple.
   */
  async deriveKeyAndNonce(ikm) {
    throw new Error('Missing `deriveKeyAndNonce` implementation');
  }

  /**
   * Decrypts and removes padding from an encrypted record.
   *
   * @throws {CryptoError} if decryption fails or padding is incorrect.
   * @param {Uint8Array} slice The encrypted record.
   * @param {Number} index The record sequence number.
   * @param {Uint8Array} nonce The nonce base, used to generate the IV.
   * @param {Uint8Array} key The content encryption key.
   * @param {Boolean} last Indicates if this is the final record.
   * @returns {Uint8Array} The decrypted block with padding removed.
   */
  async decodeChunk(slice, index, nonce, key, last) {
    let params = {
      name: 'AES-GCM',
      iv: generateNonce(nonce, index)
    };
    let decoded = await crypto.subtle.decrypt(params, key, slice);
    return this.unpadChunk(new Uint8Array(decoded), last);
  }

  /**
   * Removes padding from a decrypted block.
   *
   * @throws {CryptoError} if padding is missing or invalid.
   * @param {Uint8Array} chunk The decrypted block with padding.
   * @returns {Uint8Array} The block with padding removed.
   */
  unpadChunk(chunk, last) {
    throw new Error('Missing `unpadChunk` implementation');
  }

  /** The record chunking size. */
  get chunkSize() {
    throw new Error('Missing `chunkSize` implementation');
  }
}

class OldSchemeDecoder extends Decoder {
  async decode() {
    // For aesgcm and aesgcm128, the ciphertext length can't fall on a record
    // boundary.
    if (this.ciphertext.byteLength > 0 &&
        this.ciphertext.byteLength % this.chunkSize === 0) {
      throw new CryptoError('Encrypted data truncated', BAD_CRYPTO);
    }
    return super.decode();
  }

  /**
   * For aesgcm, the padding length is a 16-bit unsigned big endian integer.
   * For aesgcm128, the padding is an 8-bit integer.
   */
  unpadChunk(decoded) {
    if (decoded.length < this.padSize) {
      throw new CryptoError('Decoded array is too short!', BAD_PADDING);
    }
    var pad = decoded[0]
    if (this.padSize == 2) {
      pad = (pad << 8) | decoded[1];
    }
    if (pad > decoded.length - this.padSize) {
      throw new CryptoError('Padding is wrong!', BAD_PADDING);
    }
    // All padded bytes must be zero except the first one.
    for (var i = this.padSize; i < this.padSize + pad; i++) {
      if (decoded[i] !== 0) {
        throw new CryptoError('Padding is wrong!', BAD_PADDING);
      }
    }
    return decoded.slice(pad + this.padSize);
  }

  /**
   * aesgcm and aesgcm128 don't account for the authentication tag as part of
   * the record size.
   */
  get chunkSize() {
    return this.rs + 16;
  }

  get padSize() {
    throw new Error('Missing `padSize` implementation');
  }
}

/** New encryption scheme (draft-ietf-httpbis-encryption-encoding-06). */

var AES128GCM_ENCODING = 'aes128gcm';
var AES128GCM_KEY_INFO = UTF8.encode('Content-Encoding: aes128gcm\0');
var AES128GCM_AUTH_INFO = UTF8.encode('WebPush: info\0');
var AES128GCM_NONCE_INFO = UTF8.encode('Content-Encoding: nonce\0');

class aes128gcmDecoder extends Decoder {
  /**
   * Derives the aes128gcm decryption key and nonce. The PRK info string for
   * HKDF is "WebPush: info\0", followed by the unprefixed receiver and sender
   * public keys.
   */
  async deriveKeyAndNonce(ikm) {
    let authKdf = new hkdf(this.authenticationSecret, ikm);
    let authInfo = concatArray([
      AES128GCM_AUTH_INFO,
      this.publicKey,
      this.senderKey
    ]);
    let prk = await authKdf.extract(authInfo, 32);
    let prkKdf = new hkdf(this.salt, prk);
    return Promise.all([
      prkKdf.extract(AES128GCM_KEY_INFO, 16),
      prkKdf.extract(AES128GCM_NONCE_INFO, 12)
    ]);
  }

  unpadChunk(decoded, last) {
    let length = decoded.length;
    while (length--) {
      if (decoded[length] === 0) {
        continue;
      }
      let recordPad = last ? 2 : 1;
      if (decoded[length] != recordPad) {
        throw new CryptoError('Padding is wrong!', BAD_PADDING);
      }
      return decoded.slice(0, length);
    }
    throw new CryptoError('Zero plaintext', BAD_PADDING);
  }

  /** aes128gcm accounts for the authentication tag in the record size. */
  get chunkSize() {
    return this.rs;
  }
}

/** Older encryption scheme (draft-ietf-httpbis-encryption-encoding-01). */

var AESGCM_ENCODING = 'aesgcm';
var AESGCM_KEY_INFO = UTF8.encode('Content-Encoding: aesgcm\0');
var AESGCM_AUTH_INFO = UTF8.encode('Content-Encoding: auth\0'); // note nul-terminus
var AESGCM_P256DH_INFO = UTF8.encode('P-256\0');

class aesgcmDecoder extends OldSchemeDecoder {
  /**
   * Derives the aesgcm decryption key and nonce. We mix the authentication
   * secret with the ikm using HKDF. The context string for the PRK is
   * "Content-Encoding: auth\0". The context string for the key and nonce is
   * "Content-Encoding: <blah>\0P-256\0" then the length and value of both the
   * receiver key and sender key.
   */
  async deriveKeyAndNonce(ikm) {
    // Since we are using an authentication secret, we need to run an extra
    // round of HKDF with the authentication secret as salt.
    let authKdf = new hkdf(this.authenticationSecret, ikm);
    let prk = await authKdf.extract(AESGCM_AUTH_INFO, 32);
    let prkKdf = new hkdf(this.salt, prk);
    let keyInfo = concatArray([
      AESGCM_KEY_INFO, AESGCM_P256DH_INFO,
      encodeLength(this.publicKey), this.publicKey,
      encodeLength(this.senderKey), this.senderKey
    ]);
    let nonceInfo = concatArray([
      NONCE_INFO, new Uint8Array([0]), AESGCM_P256DH_INFO,
      encodeLength(this.publicKey), this.publicKey,
      encodeLength(this.senderKey), this.senderKey
    ]);
    return Promise.all([
      prkKdf.extract(keyInfo, 16),
      prkKdf.extract(nonceInfo, 12)
    ]);
  }

  get padSize() {
    return 2;
  }
}

/** Oldest encryption scheme (draft-thomson-http-encryption-02). */

var AESGCM128_ENCODING = 'aesgcm128';
var AESGCM128_KEY_INFO = UTF8.encode('Content-Encoding: aesgcm128');

class aesgcm128Decoder extends OldSchemeDecoder {
  constructor(privateKey, publicKey, cryptoParams, ciphertext) {
    super(privateKey, publicKey, null, cryptoParams, ciphertext);
  }

  /**
   * The aesgcm128 scheme ignores the authentication secret, and uses
   * "Content-Encoding: <blah>" for the context string. It should eventually
   * be removed: bug 1230038.
   */
  deriveKeyAndNonce(ikm) {
    let prkKdf = new hkdf(this.salt, ikm);
    return Promise.all([
      prkKdf.extract(AESGCM128_KEY_INFO, 16),
      prkKdf.extract(NONCE_INFO, 12)
    ]);
  }

  get padSize() {
    return 1;
  }
}

var PushCrypto = {

  generateAuthenticationSecret() {
    return crypto.getRandomValues(new Uint8Array(16));
  },

  validateAppServerKey(key) {
    return crypto.subtle.importKey('raw', key, ECDSA_KEY,
                                   true, ['verify'])
      .then(_ => key);
  },

  generateKeys() {
    return crypto.subtle.generateKey(ECDH_KEY, true, ['deriveBits'])
      .then(cryptoKey =>
         Promise.all([
           crypto.subtle.exportKey('raw', cryptoKey.publicKey),
           crypto.subtle.exportKey('jwk', cryptoKey.privateKey)
         ]));
  },

  /**
   * Decrypts a push message.
   *
   * @throws {CryptoError} if decryption fails.
   * @param {JsonWebKey} privateKey The ECDH private key of the subscription
   *  receiving the message, in JWK form.
   * @param {BufferSource} publicKey The ECDH public key of the subscription
   *  receiving the message, in raw form.
   * @param {BufferSource} authenticationSecret The 16-byte shared
   *  authentication secret of the subscription receiving the message.
   * @param {Object} headers The encryption headers from the push server.
   * @param {BufferSource} payload The encrypted message payload.
   * @returns {Uint8Array} The decrypted message data.
   */
  async decrypt(privateKey, publicKey, authenticationSecret, headers, payload) {
    if (!headers) {
      return null;
    }

    let encoding = headers.encoding;
    if (!headers.encoding) {
      throw new CryptoError('Missing Content-Encoding header',
                            BAD_ENCODING_HEADER);
    }

    let decoder;
    if (encoding == AES128GCM_ENCODING) {
      // aes128gcm includes the salt, record size, and sender public key in a
      // binary header preceding the ciphertext.
      let cryptoParams = getCryptoParamsFromPayload(new Uint8Array(payload));
      decoder = new aes128gcmDecoder(privateKey, publicKey,
                                     authenticationSecret, cryptoParams,
                                     cryptoParams.ciphertext);
    } else if (encoding == AESGCM128_ENCODING || encoding == AESGCM_ENCODING) {
      // aesgcm and aesgcm128 include the salt, record size, and sender public
      // key in the `Crypto-Key` and `Encryption` HTTP headers.
      let cryptoParams = getCryptoParamsFromHeaders(headers);
      if (headers.encoding == AESGCM_ENCODING) {
        decoder = new aesgcmDecoder(privateKey, publicKey, authenticationSecret,
                                    cryptoParams, payload);
      } else {
        decoder = new aesgcm128Decoder(privateKey, publicKey, cryptoParams,
                                       payload);
      }
    }

    if (!decoder) {
      throw new CryptoError('Unsupported Content-Encoding: ' + encoding,
                            BAD_ENCODING_HEADER);
    }

    return decoder.decode();
  },

  /**
   * Encrypts a payload suitable for using in a push message. The encryption
   * is always done with a record size of 4096 and no padding.
   *
   * @throws {CryptoError} if encryption fails.
   * @param {plaintext} Uint8Array The plaintext to encrypt.
   * @param {receiverPublicKey} Uint8Array The public key of the recipient
   *  of the message as a buffer.
   * @param {receiverAuthSecret} Uint8Array The auth secret of the of the
   *  message recipient as a buffer.
   * @param {options} Object Encryption options, used for tests.
   * @returns {ciphertext, encoding} The encrypted payload and encoding.
   */
  async encrypt(plaintext, receiverPublicKey, receiverAuthSecret, options={}) {
    const encoding = options.encoding || AES128GCM_ENCODING;
    // We only support one encoding type.
    if (encoding != AES128GCM_ENCODING) {
      throw new CryptoError(`Only ${AES128GCM_ENCODING} is supported`,
                            BAD_ENCODING_HEADER);
    }
    // We typically use an ephemeral key for this message, but for testing
    // purposes we allow it to be specified.
    const senderKeyPair = options.senderKeyPair ||
                          await crypto.subtle.generateKey(ECDH_KEY, true, ["deriveBits"]);
    // allowing a salt to be specified is useful for tests.
    const salt = options.salt || crypto.getRandomValues(new Uint8Array(16));
    const rs = options.rs === undefined ? 4096 : options.rs;

    const encoder = new aes128gcmEncoder(plaintext, receiverPublicKey,
                                         receiverAuthSecret, senderKeyPair,
                                         salt, rs);
    return encoder.encode();
  },
};

// A class for aes128gcm encryption - the only kind we support.
class aes128gcmEncoder {
  constructor(plaintext ,receiverPublicKey, receiverAuthSecret, senderKeyPair, salt, rs) {
    this.receiverPublicKey = receiverPublicKey;
    this.receiverAuthSecret = receiverAuthSecret;
    this.senderKeyPair = senderKeyPair;
    this.salt = salt;
    this.rs = rs;
    this.plaintext = plaintext;
  }

  async encode() {
    const sharedSecret = await this.computeSharedSecret(this.receiverPublicKey,
                                                        this.senderKeyPair.privateKey);

    const rawSenderPublicKey = await crypto.subtle.exportKey("raw", this.senderKeyPair.publicKey);
    const [gcmBits, nonce] = await this.deriveKeyAndNonce(sharedSecret,
                                                          rawSenderPublicKey)

    const contentEncryptionKey = await crypto.subtle.importKey("raw", gcmBits,
                                                               "AES-GCM", false,
                                                               ["encrypt"]);
    const payloadHeader = this.createHeader(rawSenderPublicKey);

    const ciphertextChunks = await this.encrypt(contentEncryptionKey, nonce);
    return {ciphertext: concatArray([payloadHeader, ...ciphertextChunks]),
            encoding: "aes128gcm"};
  }

  // Perform the actual encryption of the payload.
  async encrypt(key, nonce) {
    if (this.rs < 18) {
      throw new CryptoError("recordsize is too small", BAD_RS_PARAM);
    }

    let chunks;
    if (this.plaintext.byteLength === 0) {
      // Send an authentication tag for empty messages.
      chunks = [await crypto.subtle.encrypt({
        name: "AES-GCM",
        iv: generateNonce(nonce, 0)
      }, key, new Uint8Array([2]))];
    } else {
      // Use specified recordsize, though we burn 1 for padding and 16 byte
      // overhead.
      let inChunks = chunkArray(this.plaintext, this.rs - 1 - 16);
      chunks = await Promise.all(inChunks.map(async function (slice, index) {
        let isLast = index == inChunks.length - 1;
        let padding = new Uint8Array([isLast ? 2 : 1]);
        let input = concatArray([slice, padding]);
        return await crypto.subtle.encrypt({
          name: "AES-GCM",
          iv: generateNonce(nonce, index),
        }, key, input);
      }));
    }
    return chunks;
  }

  // Note: this is a dupe of aes128gcmDecoder.deriveKeyAndNonce, but tricky
  // to rationalize without a larger refactor.
  async deriveKeyAndNonce(sharedSecret, senderPublicKey) {
    const authKdf = new hkdf(this.receiverAuthSecret, sharedSecret);
    const authInfo = concatArray([AES128GCM_AUTH_INFO,
                                 this.receiverPublicKey,
                                 senderPublicKey]);
    const prk = await authKdf.extract(authInfo, 32);
    const prkKdf = new hkdf(this.salt, prk);
    return Promise.all([
      prkKdf.extract(AES128GCM_KEY_INFO, 16),
      prkKdf.extract(AES128GCM_NONCE_INFO, 12),
    ]);
  }

  // Note: this duplicates some of Decoder.computeSharedSecret, but the key
  // management is slightly different.
  async computeSharedSecret(receiverPublicKey, senderPrivateKey) {
    const receiverPublicCryptoKey = await crypto.subtle.importKey("raw", receiverPublicKey,
                                                                  ECDH_KEY, false, ["deriveBits"]);

    return crypto.subtle.deriveBits({name: "ECDH", public: receiverPublicCryptoKey},
                                    senderPrivateKey, 256);
  }

  // create aes128gcm's header.
  createHeader(key) {
    // layout is "salt|32-bit-int|8-bit-int|key"
    if (key.byteLength != 65) {
      throw new CryptoError("Invalid key length for header", BAD_DH_PARAM);
    }
    // the 2 ints
    let ints = new Uint8Array(5);
    let intsv = new DataView(ints.buffer);
    intsv.setUint32(0, this.rs); // bigendian
    intsv.setUint8(4, key.byteLength);
    return concatArray([this.salt, ints, key]);
  }
}