DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
<!DOCTYPE HTML>
<html>
<head>
  <title>Test BiquadFilterNode All Pass Filter</title>
  <script src="/tests/SimpleTest/SimpleTest.js"></script>
  <link rel="stylesheet" type="text/css" href="/tests/SimpleTest/test.css" />
</head>
<body>
<pre id="test">
<script src="audio-testing.js"></script>
<script src="biquad-filters.js"></script>
<script src="biquad-testing.js"></script>
<script src="webaudio.js" type="text/javascript"></script>
<script class="testbody" type="text/javascript">

SimpleTest.waitForExplicitFinish();

addLoadEvent(function() {
  // Don't need to run these tests at high sampling rate, so just use a low one to reduce memory
  // usage and complexity.
  var sampleRate = 16000;

  // How long to render for each test.
  var renderDuration = 1;

  // The definition of the linear ramp automation function.
  function linearRamp(t, v0, v1, t0, t1) {
    return v0 + (v1 - v0) * (t - t0) / (t1 - t0);
  }

  // Generate the filter coefficients for the specified filter using the given parameters for
  // the given duration.  |filterTypeFunction| is a function that returns the filter
  // coefficients for one set of parameters.  |parameters| is a property bag that contains the
  // start and end values (as an array) for each of the biquad attributes.  The properties are
  // |freq|, |Q|, |gain|, and |detune|.  |duration| is the number of seconds for which the
  // coefficients are generated.
  //
  // A property bag with properties |b0|, |b1|, |b2|, |a1|, |a2|.  Each propery is an array
  // consisting of the coefficients for the time-varying biquad filter.
  function generateFilterCoefficients(filterTypeFunction, parameters, duration) {
     var endFrame = Math.ceil(duration * sampleRate);
     var nCoef = endFrame;
     var b0 = new Float64Array(nCoef);
     var b1 = new Float64Array(nCoef);
     var b2 = new Float64Array(nCoef);
     var a1 = new Float64Array(nCoef);
     var a2 = new Float64Array(nCoef);

     var k = 0;
     // If the property is not given, use the defaults.
     var freqs = parameters.freq || [350, 350];
     var qs = parameters.Q || [1, 1];
     var gains = parameters.gain || [0, 0];
     var detunes = parameters.detune || [0, 0];

     for (var frame = 0; frame < endFrame; ++frame) {
        // Apply linear ramp at frame |frame|.
        var f = linearRamp(frame / sampleRate, freqs[0], freqs[1], 0, duration);
        var q = linearRamp(frame / sampleRate, qs[0], qs[1], 0, duration);
        var g = linearRamp(frame / sampleRate, gains[0], gains[1], 0, duration);
        var d = linearRamp(frame / sampleRate, detunes[0], detunes[1], 0, duration);

        // Compute actual frequency parameter
        f = f * Math.pow(2, d / 1200);

        // Compute filter coefficients
        var coef = filterTypeFunction(f / (sampleRate / 2), q, g);
        b0[k] = coef.b0;
        b1[k] = coef.b1;
        b2[k] = coef.b2;
        a1[k] = coef.a1;
        a2[k] = coef.a2;
        ++k;
     }

     return {b0: b0, b1: b1, b2: b2, a1: a1, a2: a2};
  }

  // Apply the given time-varying biquad filter to the given signal, |signal|.  |coef| should be
  // the time-varying coefficients of the filter, as returned by |generateFilterCoefficients|.
  function timeVaryingFilter(signal, coef) {
    var length = signal.length;
    // Use double precision for the internal computations.
    var y = new Float64Array(length);

    // Prime the pump. (Assumes the signal has length >= 2!)
    y[0] = coef.b0[0] * signal[0];
    y[1] = coef.b0[1] * signal[1] + coef.b1[1] * signal[0] - coef.a1[1] * y[0];

    for (var n = 2; n < length; ++n) {
      y[n] = coef.b0[n] * signal[n] + coef.b1[n] * signal[n-1] + coef.b2[n] * signal[n-2];
      y[n] -= coef.a1[n] * y[n-1] + coef.a2[n] * y[n-2];
    }

    // But convert the result to single precision for comparison.
    return y.map(Math.fround);
  }

  // Configure the audio graph using |context|.  Returns the biquad filter node and the
  // AudioBuffer used for the source.
  function configureGraph(context, toneFrequency) {
    // The source is just a simple sine wave.
    var src = context.createBufferSource();
    var b = context.createBuffer(1, renderDuration * sampleRate, sampleRate);
    var data = b.getChannelData(0);
    var omega = 2 * Math.PI * toneFrequency / sampleRate;
    for (var k = 0; k < data.length; ++k) {
      data[k] = Math.sin(omega * k);
    }
    src.buffer = b;
    var f = context.createBiquadFilter();
    src.connect(f);
    f.connect(context.destination);

    src.start();

    return {filter: f, source: b};
  }

  function createFilterVerifier(filterCreator, threshold, parameters, input, message) {
    return function (resultBuffer) {
      var actual = resultBuffer.getChannelData(0);
      var coefs = generateFilterCoefficients(filterCreator, parameters, renderDuration);

      reference = timeVaryingFilter(input, coefs);

      compareChannels(actual, reference);
    };
  }

  var testPromises = [];

  // Automate just the frequency parameter.  A bandpass filter is used where the center
  // frequency is swept across the source (which is a simple tone).
  testPromises.push(function () {
    var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);

    // Center frequency of bandpass filter and also the frequency of the test tone.
    var centerFreq = 10*440;

    // Sweep the frequency +/- 9*440 Hz from the center.  This should cause the output to low at
    // the beginning and end of the test where the done is outside the pass band of the filter,
    // but high in the center where the tone is near the center of the pass band.
    var parameters = {
      freq: [centerFreq - 9*440, centerFreq + 9*440]
    }
    var graph = configureGraph(context, centerFreq);
    var f = graph.filter;
    var b = graph.source;

    f.type = "bandpass";
    f.frequency.setValueAtTime(parameters.freq[0], 0);
    f.frequency.linearRampToValueAtTime(parameters.freq[1], renderDuration);

    return context.startRendering()
      .then(createFilterVerifier(createBandpassFilter, 5e-5, parameters, b.getChannelData(0),
        "Output of bandpass filter with frequency automation"));
  }());

  // Automate just the Q parameter.  A bandpass filter is used where the Q of the filter is
  // swept.
  testPromises.push(function() {
    var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);

    // The frequency of the test tone.
    var centerFreq = 440;

    // Sweep the Q paramter between 1 and 200.  This will cause the output of the filter to pass
    // most of the tone at the beginning to passing less of the tone at the end.  This is
    // because we set center frequency of the bandpass filter to be slightly off from the actual
    // tone.
    var parameters = {
      Q: [1, 200],
      // Center frequency of the bandpass filter is just 25 Hz above the tone frequency.
      freq: [centerFreq + 25, centerFreq + 25]
    };
    var graph = configureGraph(context, centerFreq);
    var f = graph.filter;
    var b = graph.source;

    f.type = "bandpass";
    f.frequency.value = parameters.freq[0];
    f.Q.setValueAtTime(parameters.Q[0], 0);
    f.Q.linearRampToValueAtTime(parameters.Q[1], renderDuration);

    return context.startRendering()
      .then(createFilterVerifier(createBandpassFilter, 1.4e-6, parameters, b.getChannelData(0),
        "Output of bandpass filter with Q automation"));
  }());

  // Automate just the gain of the lowshelf filter.  A test tone will be in the lowshelf part of
  // the filter.  The output will vary as the gain of the lowshelf is changed.
  testPromises.push(function() {
    var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);

    // Frequency of the test tone.
    var centerFreq = 440;

    // Set the cutoff frequency of the lowshelf to be significantly higher than the test tone.
    // Sweep the gain from 20 dB to -20 dB.  (We go from 20 to -20 to easily verify that the
    // filter didn't go unstable.)
    var parameters = {
      freq: [3500, 3500],
      gain: [20, -20]
    }
    var graph = configureGraph(context, centerFreq);
    var f = graph.filter;
    var b = graph.source;

    f.type = "lowshelf";
    f.frequency.value = parameters.freq[0];
    f.gain.setValueAtTime(parameters.gain[0], 0);
    f.gain.linearRampToValueAtTime(parameters.gain[1], renderDuration);

    context.startRendering()
      .then(createFilterVerifier(createLowShelfFilter, 8e-6, parameters, b.getChannelData(0),
        "Output of lowshelf filter with gain automation"));
  }());

  // Automate just the detune parameter.  Basically the same test as for the frequncy parameter
  // but we just use the detune parameter to modulate the frequency parameter.
  testPromises.push(function() {
    var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
    var centerFreq = 10*440;
    var parameters = {
      freq: [centerFreq, centerFreq],
      detune: [-10*1200, 10*1200]
    };
    var graph = configureGraph(context, centerFreq);
    var f = graph.filter;
    var b = graph.source;

    f.type = "bandpass";
    f.frequency.value = parameters.freq[0];
    f.detune.setValueAtTime(parameters.detune[0], 0);
    f.detune.linearRampToValueAtTime(parameters.detune[1], renderDuration);

    context.startRendering()
      .then(createFilterVerifier(createBandpassFilter, 5e-6, parameters, b.getChannelData(0),
        "Output of bandpass filter with detune automation"));
  }());

  // Automate all of the filter parameters at once.  This is a basic check that everything is
  // working.  A peaking filter is used because it uses all of the parameters.
  testPromises.push(function() {
    var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
    var graph = configureGraph(context, 10*440);
    var f = graph.filter;
    var b = graph.source;

    // Sweep all of the filter parameters.  These are pretty much arbitrary.
    var parameters = {
      freq: [10000, 100],
      Q: [f.Q.value, .0001],
      gain: [f.gain.value, 20],
      detune: [2400, -2400]
    };

    f.type = "peaking";
    // Set starting points for all parameters of the filter.  Start at 10 kHz for the center
    // frequency, and the defaults for Q and gain.
    f.frequency.setValueAtTime(parameters.freq[0], 0);
    f.Q.setValueAtTime(parameters.Q[0], 0);
    f.gain.setValueAtTime(parameters.gain[0], 0);
    f.detune.setValueAtTime(parameters.detune[0], 0);

    // Linear ramp each parameter
    f.frequency.linearRampToValueAtTime(parameters.freq[1], renderDuration);
    f.Q.linearRampToValueAtTime(parameters.Q[1], renderDuration);
    f.gain.linearRampToValueAtTime(parameters.gain[1], renderDuration);
    f.detune.linearRampToValueAtTime(parameters.detune[1], renderDuration);

    context.startRendering()
      .then(createFilterVerifier(createPeakingFilter, 3.3e-4, parameters, b.getChannelData(0),
        "Output of peaking filter with automation of all parameters"));
  }());

  // Test that modulation of the frequency parameter of the filter works.  A sinusoid of 440 Hz
  // is the test signal that is applied to a bandpass biquad filter.  The frequency parameter of
  // the filter is modulated by a sinusoid at 103 Hz, and the frequency modulation varies from
  // 116 to 412 Hz.  (This test was taken from the description in
  // https://github.com/WebAudio/web-audio-api/issues/509#issuecomment-94731355)
  testPromises.push(function() {
    var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);

    // Create a graph with the sinusoidal source at 440 Hz as the input to a biquad filter.
    var graph = configureGraph(context, 440);
    var f = graph.filter;
    var b = graph.source;

    f.type = "bandpass";
    f.Q.value = 5;
    f.frequency.value = 264;

    // Create the modulation source, a sinusoid with frequency 103 Hz and amplitude 148.  (The
    // amplitude of 148 is added to the filter's frequency value of 264 to produce a sinusoidal
    // modulation of the frequency parameter from 116 to 412 Hz.)
    var mod = context.createBufferSource();
    var mbuffer = context.createBuffer(1, renderDuration * sampleRate, sampleRate);
    var d = mbuffer.getChannelData(0);
    var omega = 2 * Math.PI * 103 / sampleRate;
    for (var k = 0; k < d.length; ++k) {
      d[k] = 148 * Math.sin(omega * k);
    }
    mod.buffer = mbuffer;

    mod.connect(f.frequency);

    mod.start();
    return context.startRendering()
      .then(function (resultBuffer) {
         var actual = resultBuffer.getChannelData(0);
         // Compute the filter coefficients using the mod sine wave

         var endFrame = Math.ceil(renderDuration * sampleRate);
         var nCoef = endFrame;
         var b0 = new Float64Array(nCoef);
         var b1 = new Float64Array(nCoef);
         var b2 = new Float64Array(nCoef);
         var a1 = new Float64Array(nCoef);
         var a2 = new Float64Array(nCoef);

         // Generate the filter coefficients when the frequency varies from 116 to 248 Hz using
         // the 103 Hz sinusoid.
         for (var k = 0; k < nCoef; ++k) {
           var freq = f.frequency.value + d[k];
           var c = createBandpassFilter(freq / (sampleRate / 2), f.Q.value, f.gain.value);
           b0[k] = c.b0;
           b1[k] = c.b1;
           b2[k] = c.b2;
           a1[k] = c.a1;
           a2[k] = c.a2;
         }
         reference = timeVaryingFilter(b.getChannelData(0),
           {b0: b0, b1: b1, b2: b2, a1: a1, a2: a2});

         compareChannels(actual, reference);
       });
  }());

  // Wait for all tests
  Promise.all(testPromises).then(function () {
    SimpleTest.finish();
  }, function () {
    SimpleTest.finish();
  });
});
</script>
</pre>
</body>
</html>