Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AudioEventTimeline.h"
#include "AudioNodeTrack.h"
#include "mozilla/ErrorResult.h"
using mozilla::Span;
// v1 and v0 are passed from float variables but converted to double for
// double precision interpolation.
static void FillLinearRamp(double aBufferStartTime, Span<float> aBuffer,
double t0, double v0, double t1, double v1) {
double bufferStartDelta = aBufferStartTime - t0;
double gradient = (v1 - v0) / (t1 - t0);
for (size_t i = 0; i < aBuffer.Length(); ++i) {
double v = v0 + (bufferStartDelta + static_cast<double>(i)) * gradient;
aBuffer[i] = static_cast<float>(v);
}
}
static void FillExponentialRamp(double aBufferStartTime, Span<float> aBuffer,
double t0, float v0, double t1, float v1) {
MOZ_ASSERT(aBuffer.Length() >= 1);
double fullRatio = static_cast<double>(v1) / v0;
if (v0 == 0.f || fullRatio < 0.0) {
std::fill_n(aBuffer.Elements(), aBuffer.Length(), v0);
return;
}
double tDelta = t1 - t0;
// Calculate the value for the first tick from the curve initial value.
// v(t) = v0 * (v1/v0)^((t-t0)/(t1-t0))
double exponent = (aBufferStartTime - t0) / tDelta;
// The power function can amplify rounding error in the exponent by
// ((t−t0)/(t1−t0)) ln (v1/v0). The single precision exponent argument for
// powf() would be sufficient when max(v1/v0,v0/v1) <= e, where e is Euler's
// number, but fdlibm's single precision powf() is not expected to provide
// speed advantages over double precision pow().
double v = v0 * fdlibm_pow(fullRatio, exponent);
aBuffer[0] = static_cast<float>(v);
if (aBuffer.Length() == 1) {
return;
}
// Use the inter-tick ratio to calculate values at other ticks.
// v(t+1) = (v1/v0)^(1/(t1-t0)) * v(t)
// Double precision is used so that accumulation of rounding error is not
// significant.
double tickRatio = fdlibm_pow(fullRatio, 1.0 / tDelta);
for (size_t i = 1; i < aBuffer.Length(); ++i) {
v *= tickRatio;
aBuffer[i] = static_cast<float>(v);
}
}
template <typename TimeType, typename DurationType>
static size_t LimitedCountForDuration(size_t aMax, DurationType aDuration);
template <>
size_t LimitedCountForDuration<double>(size_t aMax, double aDuration) {
// aDuration is in seconds, so tick arithmetic is inappropriate,
// and unnecessary.
// GetValuesAtTime() is not available, so at most one value is fetched.
MOZ_ASSERT(aMax <= 1);
return aMax;
}
template <>
size_t LimitedCountForDuration<int64_t>(size_t aMax, int64_t aDuration) {
MOZ_ASSERT(aDuration >= 0);
// int64_t aDuration is in ticks.
// On 32-bit systems, aDuration may be larger than SIZE_MAX.
// Determine the larger with int64_t to avoid truncating before the
// comparison.
return static_cast<int64_t>(aMax) <= aDuration
? aMax
: static_cast<size_t>(aDuration);
}
template <>
size_t LimitedCountForDuration<int64_t>(size_t aMax, double aDuration) {
MOZ_ASSERT(aDuration >= 0);
// double aDuration is in ticks.
// AudioTimelineEvent::mDuration may be larger than INT64_MAX.
// On 32-bit systems, mDuration may be larger than SIZE_MAX.
// Determine the larger with double to avoid truncating before the
// comparison.
return static_cast<double>(aMax) <= aDuration
? aMax
: static_cast<size_t>(aDuration);
}
static float* NewCurveCopy(Span<const float> aCurve) {
if (aCurve.Length() == 0) {
return nullptr;
}
float* curve = new float[aCurve.Length()];
mozilla::PodCopy(curve, aCurve.Elements(), aCurve.Length());
return curve;
}
namespace mozilla::dom {
AudioTimelineEvent::AudioTimelineEvent(Type aType, double aTime, float aValue,
double aTimeConstant)
: mType(aType),
mValue(aValue),
mTimeConstant(aTimeConstant),
mPerTickRatio(std::numeric_limits<double>::quiet_NaN()),
mTime(aTime) {}
AudioTimelineEvent::AudioTimelineEvent(Type aType,
const nsTArray<float>& aValues,
double aStartTime, double aDuration)
: mType(aType),
mCurveLength(aValues.Length()),
mCurve(NewCurveCopy(aValues)),
mDuration(aDuration),
mTime(aStartTime) {
MOZ_ASSERT(aType == AudioTimelineEvent::SetValueCurve);
}
// cppcoreguidelines-pro-type-member-init does not know PodCopy().
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
AudioTimelineEvent::AudioTimelineEvent(const AudioTimelineEvent& rhs)
: mType(rhs.mType) {
PodCopy(this, &rhs, 1);
if (rhs.mType == AudioTimelineEvent::SetValueCurve) {
mCurve = NewCurveCopy(Span(rhs.mCurve, rhs.mCurveLength));
}
}
AudioTimelineEvent::~AudioTimelineEvent() {
if (mType == AudioTimelineEvent::SetValueCurve) {
delete[] mCurve;
}
}
template <class TimeType>
double AudioTimelineEvent::EndTime() const {
MOZ_ASSERT(mType != AudioTimelineEvent::SetTarget);
if (mType == AudioTimelineEvent::SetValueCurve) {
return Time<TimeType>() + mDuration;
}
return Time<TimeType>();
};
float AudioTimelineEvent::EndValue() const {
if (mType == AudioTimelineEvent::SetValueCurve) {
return mCurve[mCurveLength - 1];
}
return mValue;
};
void AudioTimelineEvent::ConvertToTicks(AudioNodeTrack* aDestination) {
mTime = aDestination->SecondsToNearestTrackTime(mTime.Get<double>());
switch (mType) {
case SetTarget:
mTimeConstant *= aDestination->mSampleRate;
// exp(-1/timeConstant) is usually very close to 1, but its effect
// depends on the difference from 1 and rounding errors would
// accumulate, so use double precision to retain precision in the
// difference. Single precision expm1f() would be sufficient, but the
// arithmetic in AudioTimelineEvent::FillTargetApproach() is simpler
// with exp().
mPerTickRatio =
mTimeConstant == 0.0 ? 0.0 : fdlibm_exp(-1.0 / mTimeConstant);
break;
case SetValueCurve:
mDuration *= aDestination->mSampleRate;
break;
default:
break;
}
}
template <class TimeType>
void AudioTimelineEvent::FillTargetApproach(TimeType aBufferStartTime,
Span<float> aBuffer,
double v0) const {
MOZ_ASSERT(mType == SetTarget);
MOZ_ASSERT(aBuffer.Length() >= 1);
double v1 = mValue;
double vDelta = v0 - v1;
if (vDelta == 0.0 || mTimeConstant == 0.0) {
std::fill_n(aBuffer.Elements(), aBuffer.Length(), mValue);
return;
}
// v(t) = v1 + vDelta(t) where vDelta(t) = (v0-v1) * e^(-(t-t0)/timeConstant).
// Calculate the value for the first element in the buffer using this
// formulation.
vDelta *= fdlibm_expf(-(aBufferStartTime - Time<TimeType>()) / mTimeConstant);
for (size_t i = 0; true;) {
aBuffer[i] = static_cast<float>(v1 + vDelta);
++i;
if (i == aBuffer.Length()) {
return;
}
// For other buffer elements, use the pre-computed exp(-1/timeConstant)
// for the inter-tick ratio of the difference from the target.
// vDelta(t+1) = vDelta(t) * e^(-1/timeConstant)
vDelta *= mPerTickRatio;
}
}
static_assert(TRACK_TIME_MAX >> FloatingPoint<double>::kSignificandWidth == 0,
"double precision must be exact for integer tick counts");
template <class TimeType>
void AudioTimelineEvent::FillFromValueCurve(TimeType aBufferStartTime,
Span<float> aBuffer) const {
MOZ_ASSERT(mType == SetValueCurve);
double curveStartTime = Time<TimeType>();
MOZ_ASSERT(aBufferStartTime >= curveStartTime);
MOZ_ASSERT(aBufferStartTime - curveStartTime <= mDuration);
MOZ_ASSERT((std::is_same<TimeType, int64_t>::value) || aBuffer.Length() == 1);
MOZ_ASSERT((!std::is_same<TimeType, int64_t>::value) ||
aBufferStartTime - curveStartTime + aBuffer.Length() - 1 <=
mDuration);
uint32_t stepCount = mCurveLength - 1;
double timeStep = mDuration / stepCount;
for (size_t fillStart = 0; fillStart < aBuffer.Length();) {
// Find the curve sample index, spec'd as `k`, corresponding to a time less
// than or equal to the first buffer element to be filled.
double stepPos =
(aBufferStartTime + fillStart - curveStartTime) / mDuration * stepCount;
// GetValuesAtTimeHelperInternal() calls this only when
// aBufferStartTime + fillStart - curveStartTime <= mDuration.
MOZ_ASSERT(stepPos >= 0 && stepPos <= UINT32_MAX - 1);
uint32_t currentNode = floor(stepPos);
if (currentNode >= stepCount) {
auto remaining = aBuffer.From(fillStart);
std::fill_n(remaining.Elements(), remaining.Length(), mCurve[stepCount]);
return;
}
// Linearly interpolate to fill the buffer elements for any ticks between
// curve samples k and k + 1 inclusive.
double tCurrent = curveStartTime + currentNode * timeStep;
uint32_t nextNode = currentNode + 1;
double tNext = curveStartTime + nextNode * timeStep;
// The first buffer index that cannot be filled with these curve samples
size_t fillEnd = LimitedCountForDuration<TimeType>(
aBuffer.Length(),
// This parameter is used only when time is in ticks:
// If tNext aligns exactly with a tick then fill to tNext, thus
// ensuring that fillStart is advanced even when timeStep is so small
// that tNext == tCurrent.
floor(tNext - aBufferStartTime) + 1.0);
TimeType fillStartTime =
aBufferStartTime + static_cast<TimeType>(fillStart);
FillLinearRamp(fillStartTime, aBuffer.FromTo(fillStart, fillEnd), tCurrent,
mCurve[currentNode], tNext, mCurve[nextNode]);
fillStart = fillEnd;
}
}
template <class TimeType>
float AudioEventTimeline::ComputeSetTargetStartValue(
const AudioTimelineEvent* aPreviousEvent, TimeType aTime) {
mSetTargetStartTime = aTime;
GetValuesAtTimeHelperInternal(aTime, Span(&mSetTargetStartValue, 1),
aPreviousEvent, nullptr);
return mSetTargetStartValue;
}
template void AudioEventTimeline::CleanupEventsOlderThan(double);
template void AudioEventTimeline::CleanupEventsOlderThan(int64_t);
template <class TimeType>
void AudioEventTimeline::CleanupEventsOlderThan(TimeType aTime) {
auto TimeOf =
[](const decltype(mEvents)::const_iterator& aEvent) -> TimeType {
return aEvent->Time<TimeType>();
};
if (mSimpleValue.isSome()) {
return; // already only a single event
}
// Find first event to keep. Keep one event prior to aTime.
auto begin = mEvents.cbegin();
auto end = mEvents.cend();
auto event = begin + 1;
for (; event < end && aTime > TimeOf(event); ++event) {
}
auto firstToKeep = event - 1;
if (firstToKeep->mType != AudioTimelineEvent::SetTarget) {
// The value is constant if there is a single remaining non-SetTarget event
// that has already passed.
if (end - firstToKeep == 1 && aTime >= firstToKeep->EndTime<TimeType>()) {
mSimpleValue.emplace(firstToKeep->EndValue());
}
} else {
// The firstToKeep event is a SetTarget. Set its initial value if
// not already set. First find the most recent event where the value at
// the end time of the event is known, either from the event or for
// SetTarget events because it has already been calculated. This may not
// have been calculated if GetValuesAtTime() was not called for the start
// time of the SetTarget event.
for (event = firstToKeep;
event > begin && event->mType == AudioTimelineEvent::SetTarget &&
TimeOf(event) > mSetTargetStartTime.Get<TimeType>();
--event) {
}
// Compute SetTarget start times.
for (; event < firstToKeep; ++event) {
MOZ_ASSERT((event + 1)->mType == AudioTimelineEvent::SetTarget);
ComputeSetTargetStartValue(&*event, TimeOf(event + 1));
}
}
if (firstToKeep == begin) {
return;
}
mEvents.RemoveElementsRange(begin, firstToKeep);
}
// This method computes the AudioParam value at a given time based on the event
// timeline
template <class TimeType>
void AudioEventTimeline::GetValuesAtTimeHelper(TimeType aTime, float* aBuffer,
const size_t aSize) {
MOZ_ASSERT(aBuffer);
MOZ_ASSERT(aSize);
auto TimeOf = [](const AudioTimelineEvent& aEvent) -> TimeType {
return aEvent.Time<TimeType>();
};
size_t eventIndex = 0;
const AudioTimelineEvent* previous = nullptr;
// Let's remove old events except the last one: we need it to calculate some
// curves.
CleanupEventsOlderThan(aTime);
for (size_t bufferIndex = 0; bufferIndex < aSize;) {
bool timeMatchesEventIndex = false;
const AudioTimelineEvent* next;
for (;; ++eventIndex) {
if (eventIndex >= mEvents.Length()) {
next = nullptr;
break;
}
next = &mEvents[eventIndex];
if (aTime < TimeOf(*next)) {
break;
}
#ifdef DEBUG
MOZ_ASSERT(next->mType == AudioTimelineEvent::SetValueAtTime ||
next->mType == AudioTimelineEvent::SetTarget ||
next->mType == AudioTimelineEvent::LinearRamp ||
next->mType == AudioTimelineEvent::ExponentialRamp ||
next->mType == AudioTimelineEvent::SetValueCurve);
#endif
if (TimesEqual(aTime, TimeOf(*next))) {
timeMatchesEventIndex = true;
aBuffer[bufferIndex] = GetValueAtTimeOfEvent<TimeType>(next, previous);
// Advance to next event, which may or may not have the same time.
}
previous = next;
}
if (timeMatchesEventIndex) {
// The time matches one of the events exactly.
MOZ_ASSERT(TimesEqual(aTime, TimeOf(mEvents[eventIndex - 1])));
++bufferIndex;
++aTime;
} else {
size_t count = aSize - bufferIndex;
if (next) {
count = LimitedCountForDuration<TimeType>(count, TimeOf(*next) - aTime);
}
GetValuesAtTimeHelperInternal(aTime, Span(aBuffer + bufferIndex, count),
previous, next);
bufferIndex += count;
aTime += static_cast<TimeType>(count);
}
}
}
template void AudioEventTimeline::GetValuesAtTimeHelper(double aTime,
float* aBuffer,
const size_t aSize);
template void AudioEventTimeline::GetValuesAtTimeHelper(int64_t aTime,
float* aBuffer,
const size_t aSize);
template <class TimeType>
float AudioEventTimeline::GetValueAtTimeOfEvent(
const AudioTimelineEvent* aEvent, const AudioTimelineEvent* aPrevious) {
TimeType time = aEvent->Time<TimeType>();
switch (aEvent->mType) {
case AudioTimelineEvent::SetTarget:
// Start the curve, from the last value of the previous event.
return ComputeSetTargetStartValue(aPrevious, time);
case AudioTimelineEvent::SetValueCurve:
return aEvent->StartValue();
default:
// For other event types
return aEvent->NominalValue();
}
}
template <class TimeType>
void AudioEventTimeline::GetValuesAtTimeHelperInternal(
TimeType aStartTime, Span<float> aBuffer,
const AudioTimelineEvent* aPrevious, const AudioTimelineEvent* aNext) {
MOZ_ASSERT(aBuffer.Length() >= 1);
MOZ_ASSERT((std::is_same<TimeType, int64_t>::value) || aBuffer.Length() == 1);
// If the requested time is before all of the existing events
if (!aPrevious) {
std::fill_n(aBuffer.Elements(), aBuffer.Length(), mDefaultValue);
return;
}
auto TimeOf = [](const AudioTimelineEvent* aEvent) -> TimeType {
return aEvent->Time<TimeType>();
};
auto EndTimeOf = [](const AudioTimelineEvent* aEvent) -> double {
return aEvent->EndTime<TimeType>();
};
// SetTarget nodes can be handled no matter what their next node is (if
// they have one)
if (aPrevious->mType == AudioTimelineEvent::SetTarget) {
aPrevious->FillTargetApproach(aStartTime, aBuffer, mSetTargetStartValue);
return;
}
// SetValueCurve events can be handled no matter what their next node is
// (if they have one), when aStartTime is in the curve region.
if (aPrevious->mType == AudioTimelineEvent::SetValueCurve) {
double remainingDuration =
TimeOf(aPrevious) - aStartTime + aPrevious->Duration();
if (remainingDuration >= 0.0) {
// aBuffer.Length() is 1 if remainingDuration is not in ticks.
size_t count = LimitedCountForDuration<TimeType>(
aBuffer.Length(),
// This parameter is used only when time is in ticks:
// Fill the last tick in the curve before possible ramps below.
floor(remainingDuration) + 1.0);
// GetValueAtTimeOfEvent() will set the value at the end of the curve if
// another event immediately follows.
MOZ_ASSERT(!aNext ||
aStartTime + static_cast<TimeType>(count - 1) < TimeOf(aNext));
aPrevious->FillFromValueCurve(aStartTime,
Span(aBuffer.Elements(), count));
aBuffer = aBuffer.From(count);
if (aBuffer.Length() == 0) {
return;
}
aStartTime += static_cast<TimeType>(count);
}
}
// Handle the cases where our range ends up in a ramp event
if (aNext) {
switch (aNext->mType) {
case AudioTimelineEvent::LinearRamp:
FillLinearRamp(aStartTime, aBuffer, EndTimeOf(aPrevious),
aPrevious->EndValue(), TimeOf(aNext),
aNext->NominalValue());
return;
case AudioTimelineEvent::ExponentialRamp:
FillExponentialRamp(aStartTime, aBuffer, EndTimeOf(aPrevious),
aPrevious->EndValue(), TimeOf(aNext),
aNext->NominalValue());
return;
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::SetTarget:
case AudioTimelineEvent::SetValueCurve:
break;
case AudioTimelineEvent::SetValue:
case AudioTimelineEvent::Cancel:
case AudioTimelineEvent::Track:
MOZ_ASSERT(false, "Should have been handled earlier.");
}
}
// Now handle all other cases
switch (aPrevious->mType) {
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::LinearRamp:
case AudioTimelineEvent::ExponentialRamp:
break;
case AudioTimelineEvent::SetValueCurve:
MOZ_ASSERT(aStartTime - TimeOf(aPrevious) >= aPrevious->Duration());
break;
case AudioTimelineEvent::SetTarget:
MOZ_FALLTHROUGH_ASSERT("AudioTimelineEvent::SetTarget");
case AudioTimelineEvent::SetValue:
case AudioTimelineEvent::Cancel:
case AudioTimelineEvent::Track:
MOZ_ASSERT(false, "Should have been handled earlier.");
}
// If the next event type is neither linear or exponential ramp, the
// value is constant.
std::fill_n(aBuffer.Elements(), aBuffer.Length(), aPrevious->EndValue());
}
} // namespace mozilla::dom