Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/dom/AnalyserNode.h"
#include "mozilla/dom/AnalyserNodeBinding.h"
#include "AudioNodeEngine.h"
#include "AudioNodeTrack.h"
#include "mozilla/Mutex.h"
#include "mozilla/PodOperations.h"
#include "nsMathUtils.h"
#include "Tracing.h"
namespace mozilla {
static const uint32_t MAX_FFT_SIZE = 32768;
static const size_t CHUNK_COUNT = MAX_FFT_SIZE >> WEBAUDIO_BLOCK_SIZE_BITS;
static_assert(MAX_FFT_SIZE == CHUNK_COUNT * WEBAUDIO_BLOCK_SIZE,
"MAX_FFT_SIZE must be a multiple of WEBAUDIO_BLOCK_SIZE");
static_assert((CHUNK_COUNT & (CHUNK_COUNT - 1)) == 0,
"CHUNK_COUNT must be power of 2 for remainder behavior");
namespace dom {
class AnalyserNodeEngine final : public AudioNodeEngine {
class TransferBuffer final : public Runnable {
public:
TransferBuffer(AudioNodeTrack* aTrack, const AudioChunk& aChunk)
: Runnable("dom::AnalyserNodeEngine::TransferBuffer"),
mTrack(aTrack),
mChunk(aChunk) {}
NS_IMETHOD Run() override {
RefPtr<AnalyserNode> node =
static_cast<AnalyserNode*>(mTrack->Engine()->NodeMainThread());
if (node) {
node->AppendChunk(mChunk);
}
return NS_OK;
}
private:
RefPtr<AudioNodeTrack> mTrack;
AudioChunk mChunk;
};
public:
explicit AnalyserNodeEngine(AnalyserNode* aNode) : AudioNodeEngine(aNode) {
MOZ_ASSERT(NS_IsMainThread());
}
virtual void ProcessBlock(AudioNodeTrack* aTrack, GraphTime aFrom,
const AudioBlock& aInput, AudioBlock* aOutput,
bool* aFinished) override {
TRACE("AnalyserNodeEngine::ProcessBlock");
*aOutput = aInput;
if (aInput.IsNull()) {
// If AnalyserNode::mChunks has only null chunks, then there is no need
// to send further null chunks.
if (mChunksToProcess == 0) {
return;
}
--mChunksToProcess;
if (mChunksToProcess == 0) {
aTrack->ScheduleCheckForInactive();
}
} else {
// This many null chunks will be required to empty AnalyserNode::mChunks.
mChunksToProcess = CHUNK_COUNT;
}
RefPtr<TransferBuffer> transfer =
new TransferBuffer(aTrack, aInput.AsAudioChunk());
AbstractThread::MainThread()->Dispatch(transfer.forget());
}
virtual bool IsActive() const override { return mChunksToProcess != 0; }
virtual size_t SizeOfIncludingThis(
MallocSizeOf aMallocSizeOf) const override {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
uint32_t mChunksToProcess = 0;
};
/* static */
already_AddRefed<AnalyserNode> AnalyserNode::Create(
AudioContext& aAudioContext, const AnalyserOptions& aOptions,
ErrorResult& aRv) {
RefPtr<AnalyserNode> analyserNode = new AnalyserNode(&aAudioContext);
analyserNode->Initialize(aOptions, aRv);
if (NS_WARN_IF(aRv.Failed())) {
return nullptr;
}
analyserNode->SetFftSize(aOptions.mFftSize, aRv);
if (NS_WARN_IF(aRv.Failed())) {
return nullptr;
}
analyserNode->SetMinAndMaxDecibels(aOptions.mMinDecibels,
aOptions.mMaxDecibels, aRv);
if (NS_WARN_IF(aRv.Failed())) {
return nullptr;
}
analyserNode->SetSmoothingTimeConstant(aOptions.mSmoothingTimeConstant, aRv);
if (NS_WARN_IF(aRv.Failed())) {
return nullptr;
}
return analyserNode.forget();
}
AnalyserNode::AnalyserNode(AudioContext* aContext)
: AudioNode(aContext, 2, ChannelCountMode::Max,
ChannelInterpretation::Speakers),
mAnalysisBlock(2048),
mMinDecibels(-100.),
mMaxDecibels(-30.),
mSmoothingTimeConstant(.8) {
mTrack =
AudioNodeTrack::Create(aContext, new AnalyserNodeEngine(this),
AudioNodeTrack::NO_TRACK_FLAGS, aContext->Graph());
// Enough chunks must be recorded to handle the case of fftSize being
// increased to maximum immediately before getFloatTimeDomainData() is
// called, for example.
Unused << mChunks.SetLength(CHUNK_COUNT, fallible);
AllocateBuffer();
}
size_t AnalyserNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf);
amount += mAnalysisBlock.SizeOfExcludingThis(aMallocSizeOf);
amount += mChunks.ShallowSizeOfExcludingThis(aMallocSizeOf);
amount += mOutputBuffer.ShallowSizeOfExcludingThis(aMallocSizeOf);
return amount;
}
size_t AnalyserNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
JSObject* AnalyserNode::WrapObject(JSContext* aCx,
JS::Handle<JSObject*> aGivenProto) {
return AnalyserNode_Binding::Wrap(aCx, this, aGivenProto);
}
void AnalyserNode::SetFftSize(uint32_t aValue, ErrorResult& aRv) {
// Disallow values that are not a power of 2 and outside the [32,32768] range
if (aValue < 32 || aValue > MAX_FFT_SIZE || (aValue & (aValue - 1)) != 0) {
aRv.ThrowIndexSizeError(nsPrintfCString(
"FFT size %u is not a power of two in the range 32 to 32768", aValue));
return;
}
if (FftSize() != aValue) {
mAnalysisBlock.SetFFTSize(aValue);
AllocateBuffer();
}
}
void AnalyserNode::SetMinDecibels(double aValue, ErrorResult& aRv) {
if (aValue >= mMaxDecibels) {
aRv.ThrowIndexSizeError(nsPrintfCString(
"%g is not strictly smaller than current maxDecibels (%g)", aValue,
mMaxDecibels));
return;
}
mMinDecibels = aValue;
}
void AnalyserNode::SetMaxDecibels(double aValue, ErrorResult& aRv) {
if (aValue <= mMinDecibels) {
aRv.ThrowIndexSizeError(nsPrintfCString(
"%g is not strictly larger than current minDecibels (%g)", aValue,
mMinDecibels));
return;
}
mMaxDecibels = aValue;
}
void AnalyserNode::SetMinAndMaxDecibels(double aMinValue, double aMaxValue,
ErrorResult& aRv) {
if (aMinValue >= aMaxValue) {
aRv.ThrowIndexSizeError(nsPrintfCString(
"minDecibels value (%g) must be smaller than maxDecibels value (%g)",
aMinValue, aMaxValue));
return;
}
mMinDecibels = aMinValue;
mMaxDecibels = aMaxValue;
}
void AnalyserNode::SetSmoothingTimeConstant(double aValue, ErrorResult& aRv) {
if (aValue < 0 || aValue > 1) {
aRv.ThrowIndexSizeError(
nsPrintfCString("%g is not in the range [0, 1]", aValue));
return;
}
mSmoothingTimeConstant = aValue;
}
void AnalyserNode::GetFloatFrequencyData(const Float32Array& aArray) {
if (!FFTAnalysis()) {
// Might fail to allocate memory
return;
}
aArray.ProcessData([&](const Span<float>& aData, JS::AutoCheckCannotGC&&) {
size_t length = std::min(size_t(aData.Length()), mOutputBuffer.Length());
for (size_t i = 0; i < length; ++i) {
aData[i] = WebAudioUtils::ConvertLinearToDecibels(
mOutputBuffer[i], -std::numeric_limits<float>::infinity());
}
});
}
void AnalyserNode::GetByteFrequencyData(const Uint8Array& aArray) {
if (!FFTAnalysis()) {
// Might fail to allocate memory
return;
}
const double rangeScaleFactor = 1.0 / (mMaxDecibels - mMinDecibels);
aArray.ProcessData([&](const Span<uint8_t>& aData, JS::AutoCheckCannotGC&&) {
size_t length = std::min(size_t(aData.Length()), mOutputBuffer.Length());
for (size_t i = 0; i < length; ++i) {
const double decibels = WebAudioUtils::ConvertLinearToDecibels(
mOutputBuffer[i], mMinDecibels);
// scale down the value to the range of [0, UCHAR_MAX]
const double scaled = std::max(
0.0,
std::min(double(UCHAR_MAX),
UCHAR_MAX * (decibels - mMinDecibels) * rangeScaleFactor));
aData[i] = static_cast<unsigned char>(scaled);
}
});
}
void AnalyserNode::GetFloatTimeDomainData(const Float32Array& aArray) {
aArray.ProcessData([&](const Span<float>& aData, JS::AutoCheckCannotGC&&) {
size_t length = std::min(aData.Length(), size_t(FftSize()));
GetTimeDomainData(aData.Elements(), length);
});
}
void AnalyserNode::GetByteTimeDomainData(const Uint8Array& aArray) {
aArray.ProcessData([&](const Span<uint8_t>& aData, JS::AutoCheckCannotGC&&) {
size_t length = std::min(aData.Length(), size_t(FftSize()));
AlignedTArray<float> tmpBuffer;
if (!tmpBuffer.SetLength(length, fallible)) {
return;
}
GetTimeDomainData(tmpBuffer.Elements(), length);
unsigned char* buffer = aData.Elements();
for (size_t i = 0; i < length; ++i) {
const float value = tmpBuffer[i];
// scale the value to the range of [0, UCHAR_MAX]
const float scaled =
std::max(0.0f, std::min(float(UCHAR_MAX), 128.0f * (value + 1.0f)));
buffer[i] = static_cast<unsigned char>(scaled);
}
});
}
bool AnalyserNode::FFTAnalysis() {
AlignedTArray<float> tmpBuffer;
size_t fftSize = FftSize();
if (!tmpBuffer.SetLength(fftSize, fallible)) {
return false;
}
float* inputBuffer = tmpBuffer.Elements();
GetTimeDomainData(inputBuffer, fftSize);
ApplyBlackmanWindow(inputBuffer, fftSize);
mAnalysisBlock.PerformFFT(inputBuffer);
// Normalize so than an input sine wave at 0dBfs registers as 0dBfs (undo FFT
// scaling factor).
const double magnitudeScale = 1.0 / fftSize;
for (uint32_t i = 0; i < mOutputBuffer.Length(); ++i) {
double scalarMagnitude =
fdlibm_hypot(mAnalysisBlock.RealData(i), mAnalysisBlock.ImagData(i)) *
magnitudeScale;
mOutputBuffer[i] = mSmoothingTimeConstant * mOutputBuffer[i] +
(1.0 - mSmoothingTimeConstant) * scalarMagnitude;
}
return true;
}
void AnalyserNode::ApplyBlackmanWindow(float* aBuffer, uint32_t aSize) {
double alpha = 0.16;
double a0 = 0.5 * (1.0 - alpha);
double a1 = 0.5;
double a2 = 0.5 * alpha;
for (uint32_t i = 0; i < aSize; ++i) {
double x = double(i) / aSize;
double window =
a0 - a1 * fdlibm_cos(2 * M_PI * x) + a2 * fdlibm_cos(4 * M_PI * x);
aBuffer[i] *= window;
}
}
bool AnalyserNode::AllocateBuffer() {
bool result = true;
if (mOutputBuffer.Length() != FrequencyBinCount()) {
if (!mOutputBuffer.SetLength(FrequencyBinCount(), fallible)) {
return false;
}
memset(mOutputBuffer.Elements(), 0, sizeof(float) * FrequencyBinCount());
}
return result;
}
void AnalyserNode::AppendChunk(const AudioChunk& aChunk) {
if (mChunks.Length() == 0) {
return;
}
++mCurrentChunk;
mChunks[mCurrentChunk & (CHUNK_COUNT - 1)] = aChunk;
}
// Reads into aData the oldest aLength samples of the fftSize most recent
// samples.
void AnalyserNode::GetTimeDomainData(float* aData, size_t aLength) {
size_t fftSize = FftSize();
MOZ_ASSERT(aLength <= fftSize);
if (mChunks.Length() == 0) {
PodZero(aData, aLength);
return;
}
size_t readChunk =
mCurrentChunk - ((fftSize - 1) >> WEBAUDIO_BLOCK_SIZE_BITS);
size_t readIndex = (0 - fftSize) & (WEBAUDIO_BLOCK_SIZE - 1);
MOZ_ASSERT(readIndex == 0 || readIndex + fftSize == WEBAUDIO_BLOCK_SIZE);
for (size_t writeIndex = 0; writeIndex < aLength;) {
const AudioChunk& chunk = mChunks[readChunk & (CHUNK_COUNT - 1)];
const size_t channelCount = chunk.ChannelCount();
size_t copyLength =
std::min<size_t>(aLength - writeIndex, WEBAUDIO_BLOCK_SIZE);
float* dataOut = &aData[writeIndex];
if (channelCount == 0) {
PodZero(dataOut, copyLength);
} else {
float scale = chunk.mVolume / channelCount;
{ // channel 0
auto channelData =
static_cast<const float*>(chunk.mChannelData[0]) + readIndex;
AudioBufferCopyWithScale(channelData, scale, dataOut, copyLength);
}
for (uint32_t i = 1; i < channelCount; ++i) {
auto channelData =
static_cast<const float*>(chunk.mChannelData[i]) + readIndex;
AudioBufferAddWithScale(channelData, scale, dataOut, copyLength);
}
}
readChunk++;
writeIndex += copyLength;
}
}
} // namespace dom
} // namespace mozilla