Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "VideoUtils.h"
#include <stdint.h>
#include "CubebUtils.h"
#include "ImageContainer.h"
#include "MediaContainerType.h"
#include "MediaResource.h"
#include "TimeUnits.h"
#include "mozilla/Base64.h"
#include "mozilla/dom/ContentChild.h"
#include "mozilla/SchedulerGroup.h"
#include "mozilla/SharedThreadPool.h"
#include "mozilla/StaticPrefs_accessibility.h"
#include "mozilla/StaticPrefs_media.h"
#include "mozilla/TaskQueue.h"
#include "nsCharSeparatedTokenizer.h"
#include "nsContentTypeParser.h"
#include "nsIConsoleService.h"
#include "nsINetworkLinkService.h"
#include "nsIRandomGenerator.h"
#include "nsMathUtils.h"
#include "nsNetCID.h"
#include "nsServiceManagerUtils.h"
#include "nsThreadUtils.h"
namespace mozilla {
using gfx::ColorRange;
using gfx::CICP::ColourPrimaries;
using gfx::CICP::MatrixCoefficients;
using gfx::CICP::TransferCharacteristics;
using layers::PlanarYCbCrImage;
using media::TimeUnit;
double ToMicrosecondResolution(double aSeconds) {
double integer;
modf(aSeconds * USECS_PER_S, &integer);
return integer / USECS_PER_S;
}
CheckedInt64 SaferMultDiv(int64_t aValue, uint64_t aMul, uint64_t aDiv) {
if (aMul > INT64_MAX || aDiv > INT64_MAX) {
return CheckedInt64(INT64_MAX) + 1; // Return an invalid checked int.
}
int64_t mul = AssertedCast<int64_t>(aMul);
int64_t div = AssertedCast<int64_t>(aDiv);
int64_t major = aValue / div;
int64_t remainder = aValue % div;
return CheckedInt64(remainder) * mul / div + CheckedInt64(major) * mul;
}
// Converts from number of audio frames to microseconds, given the specified
// audio rate.
CheckedInt64 FramesToUsecs(int64_t aFrames, uint32_t aRate) {
return SaferMultDiv(aFrames, USECS_PER_S, aRate);
}
// Converts from microseconds to number of audio frames, given the specified
// audio rate.
CheckedInt64 UsecsToFrames(int64_t aUsecs, uint32_t aRate) {
return SaferMultDiv(aUsecs, aRate, USECS_PER_S);
}
// Format TimeUnit as number of frames at given rate.
CheckedInt64 TimeUnitToFrames(const TimeUnit& aTime, uint32_t aRate) {
return aTime.IsValid() ? UsecsToFrames(aTime.ToMicroseconds(), aRate)
: CheckedInt64(INT64_MAX) + 1;
}
nsresult SecondsToUsecs(double aSeconds, int64_t& aOutUsecs) {
if (aSeconds * double(USECS_PER_S) > double(INT64_MAX)) {
return NS_ERROR_FAILURE;
}
aOutUsecs = int64_t(aSeconds * double(USECS_PER_S));
return NS_OK;
}
static int32_t ConditionDimension(float aValue) {
// This will exclude NaNs and too-big values.
if (aValue > 1.0 && aValue <= float(INT32_MAX)) {
return int32_t(NS_round(aValue));
}
return 0;
}
void ScaleDisplayByAspectRatio(gfx::IntSize& aDisplay, float aAspectRatio) {
if (aAspectRatio > 1.0) {
// Increase the intrinsic width
aDisplay.width =
ConditionDimension(aAspectRatio * AssertedCast<float>(aDisplay.width));
} else {
// Increase the intrinsic height
aDisplay.height =
ConditionDimension(AssertedCast<float>(aDisplay.height) / aAspectRatio);
}
}
static int64_t BytesToTime(int64_t offset, int64_t length, int64_t durationUs) {
NS_ASSERTION(length > 0, "Must have positive length");
double r = double(offset) / double(length);
if (r > 1.0) {
r = 1.0;
}
return int64_t(double(durationUs) * r);
}
media::TimeIntervals GetEstimatedBufferedTimeRanges(
mozilla::MediaResource* aStream, int64_t aDurationUsecs) {
media::TimeIntervals buffered;
// Nothing to cache if the media takes 0us to play.
if (aDurationUsecs <= 0 || !aStream) {
return buffered;
}
// Special case completely cached files. This also handles local files.
if (aStream->IsDataCachedToEndOfResource(0)) {
buffered += media::TimeInterval(TimeUnit::Zero(),
TimeUnit::FromMicroseconds(aDurationUsecs));
return buffered;
}
int64_t totalBytes = aStream->GetLength();
// If we can't determine the total size, pretend that we have nothing
// buffered. This will put us in a state of eternally-low-on-undecoded-data
// which is not great, but about the best we can do.
if (totalBytes <= 0) {
return buffered;
}
int64_t startOffset = aStream->GetNextCachedData(0);
while (startOffset >= 0) {
int64_t endOffset = aStream->GetCachedDataEnd(startOffset);
// Bytes [startOffset..endOffset] are cached.
NS_ASSERTION(startOffset >= 0, "Integer underflow in GetBuffered");
NS_ASSERTION(endOffset >= 0, "Integer underflow in GetBuffered");
int64_t startUs = BytesToTime(startOffset, totalBytes, aDurationUsecs);
int64_t endUs = BytesToTime(endOffset, totalBytes, aDurationUsecs);
if (startUs != endUs) {
buffered += media::TimeInterval(TimeUnit::FromMicroseconds(startUs),
TimeUnit::FromMicroseconds(endUs));
}
startOffset = aStream->GetNextCachedData(endOffset);
}
return buffered;
}
void DownmixStereoToMono(mozilla::AudioDataValue* aBuffer, uint32_t aFrames) {
MOZ_ASSERT(aBuffer);
const int channels = 2;
for (uint32_t fIdx = 0; fIdx < aFrames; ++fIdx) {
#ifdef MOZ_SAMPLE_TYPE_FLOAT32
float sample = 0.0;
#else
int sample = 0;
#endif
// The sample of the buffer would be interleaved.
sample = (aBuffer[fIdx * channels] + aBuffer[fIdx * channels + 1]) * 0.5f;
aBuffer[fIdx * channels] = aBuffer[fIdx * channels + 1] = sample;
}
}
uint32_t DecideAudioPlaybackChannels(const AudioInfo& info) {
if (StaticPrefs::accessibility_monoaudio_enable()) {
return 1;
}
if (StaticPrefs::media_forcestereo_enabled()) {
return 2;
}
return info.mChannels;
}
uint32_t DecideAudioPlaybackSampleRate(const AudioInfo& aInfo,
bool aShouldResistFingerprinting) {
bool resampling = StaticPrefs::media_resampling_enabled();
uint32_t rate = 0;
if (resampling) {
rate = 48000;
} else if (aInfo.mRate >= 44100) {
// The original rate is of good quality and we want to minimize unecessary
// resampling, so we let cubeb decide how to resample (if needed). Cap to
// 384kHz for good measure.
rate = std::min<unsigned>(aInfo.mRate, 384000u);
} else {
// We will resample all data to match cubeb's preferred sampling rate.
rate = CubebUtils::PreferredSampleRate(aShouldResistFingerprinting);
if (rate > 768000) {
// bogus rate, fall back to something else;
rate = 48000;
}
}
MOZ_DIAGNOSTIC_ASSERT(rate, "output rate can't be 0.");
return rate;
}
bool IsDefaultPlaybackDeviceMono() {
return CubebUtils::MaxNumberOfChannels() == 1;
}
bool IsVideoContentType(const nsCString& aContentType) {
constexpr auto video = "video"_ns;
return FindInReadable(video, aContentType);
}
bool IsValidVideoRegion(const gfx::IntSize& aFrame,
const gfx::IntRect& aPicture,
const gfx::IntSize& aDisplay) {
return aFrame.width > 0 && aFrame.width <= PlanarYCbCrImage::MAX_DIMENSION &&
aFrame.height > 0 &&
aFrame.height <= PlanarYCbCrImage::MAX_DIMENSION &&
aFrame.width * aFrame.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT &&
aPicture.width > 0 &&
aPicture.width <= PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.x < PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.x + aPicture.width < PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.height > 0 &&
aPicture.height <= PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.y < PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.y + aPicture.height < PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.width * aPicture.height <=
MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT &&
aDisplay.width > 0 &&
aDisplay.width <= PlanarYCbCrImage::MAX_DIMENSION &&
aDisplay.height > 0 &&
aDisplay.height <= PlanarYCbCrImage::MAX_DIMENSION &&
aDisplay.width * aDisplay.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT;
}
already_AddRefed<SharedThreadPool> GetMediaThreadPool(MediaThreadType aType) {
const char* name;
uint32_t threads = 4;
switch (aType) {
case MediaThreadType::PLATFORM_DECODER:
name = "MediaPDecoder";
break;
case MediaThreadType::WEBRTC_CALL_THREAD:
name = "WebrtcCallThread";
threads = 1;
break;
case MediaThreadType::WEBRTC_WORKER:
name = "WebrtcWorker";
break;
case MediaThreadType::MDSM:
name = "MediaDecoderStateMachine";
threads = 1;
break;
case MediaThreadType::PLATFORM_ENCODER:
name = "MediaPEncoder";
break;
default:
MOZ_FALLTHROUGH_ASSERT("Unexpected MediaThreadType");
case MediaThreadType::SUPERVISOR:
name = "MediaSupervisor";
break;
}
RefPtr<SharedThreadPool> pool =
SharedThreadPool::Get(nsDependentCString(name), threads);
// Ensure a larger stack for platform decoder threads
if (aType == MediaThreadType::PLATFORM_DECODER) {
const uint32_t minStackSize = 512 * 1024;
uint32_t stackSize;
MOZ_ALWAYS_SUCCEEDS(pool->GetThreadStackSize(&stackSize));
if (stackSize < minStackSize) {
MOZ_ALWAYS_SUCCEEDS(pool->SetThreadStackSize(minStackSize));
}
}
return pool.forget();
}
bool ExtractVPXCodecDetails(const nsAString& aCodec, uint8_t& aProfile,
uint8_t& aLevel, uint8_t& aBitDepth) {
uint8_t dummyChromaSubsampling = 1;
VideoColorSpace dummyColorspace;
return ExtractVPXCodecDetails(aCodec, aProfile, aLevel, aBitDepth,
dummyChromaSubsampling, dummyColorspace);
}
bool ExtractVPXCodecDetails(const nsAString& aCodec, uint8_t& aProfile,
uint8_t& aLevel, uint8_t& aBitDepth,
uint8_t& aChromaSubsampling,
VideoColorSpace& aColorSpace) {
// Assign default value.
aChromaSubsampling = 1;
auto splitter = aCodec.Split(u'.');
auto fieldsItr = splitter.begin();
auto fourCC = *fieldsItr;
if (!fourCC.EqualsLiteral("vp09") && !fourCC.EqualsLiteral("vp08")) {
// Invalid 4CC
return false;
}
++fieldsItr;
uint8_t primary, transfer, matrix, range;
uint8_t* fields[] = {&aProfile, &aLevel, &aBitDepth, &aChromaSubsampling,
&primary, &transfer, &matrix, &range};
int fieldsCount = 0;
nsresult rv;
for (; fieldsItr != splitter.end(); ++fieldsItr, ++fieldsCount) {
if (fieldsCount > 7) {
// No more than 8 fields are expected.
return false;
}
*(fields[fieldsCount]) =
static_cast<uint8_t>((*fieldsItr).ToInteger(&rv, 10));
// We got invalid field value, parsing error.
NS_ENSURE_SUCCESS(rv, false);
}
// Mandatory Fields
// <sample entry 4CC>.<profile>.<level>.<bitDepth>.
// Optional Fields
// <chromaSubsampling>.<colourPrimaries>.<transferCharacteristics>.
// <matrixCoefficients>.<videoFullRangeFlag>
// First three fields are mandatory(we have parsed 4CC).
if (fieldsCount < 3) {
// Invalid number of fields.
return false;
}
// Start to validate the parsing value.
// profile should be 0,1,2 or 3.
if (aProfile > 3) {
// Invalid profile.
return false;
}
switch (aLevel) {
case 10:
case 11:
case 20:
case 21:
case 30:
case 31:
case 40:
case 41:
case 50:
case 51:
case 52:
case 60:
case 61:
case 62:
break;
default:
// Invalid level.
return false;
}
if (aBitDepth != 8 && aBitDepth != 10 && aBitDepth != 12) {
// Invalid bitDepth:
return false;
}
if (fieldsCount == 3) {
// No more options.
return true;
}
// chromaSubsampling should be 0,1,2,3...4~7 are reserved.
if (aChromaSubsampling > 3) {
return false;
}
if (fieldsCount == 4) {
// No more options.
return true;
}
// It is an integer that is defined by the "Colour primaries"
// section of ISO/IEC 23001-8:2016 Table 2.
// We treat reserved value as false case.
if (primary == 0 || primary == 3 || primary > 22) {
// reserved value.
return false;
}
if (primary > 12 && primary < 22) {
// 13~21 are reserved values.
return false;
}
aColorSpace.mPrimaries = static_cast<ColourPrimaries>(primary);
if (fieldsCount == 5) {
// No more options.
return true;
}
// It is an integer that is defined by the
// "Transfer characteristics" section of ISO/IEC 23001-8:2016 Table 3.
// We treat reserved value as false case.
if (transfer == 0 || transfer == 3 || transfer > 18) {
// reserved value.
return false;
}
aColorSpace.mTransfer = static_cast<TransferCharacteristics>(transfer);
if (fieldsCount == 6) {
// No more options.
return true;
}
// It is an integer that is defined by the
// "Matrix coefficients" section of ISO/IEC 23001-8:2016 Table 4.
// We treat reserved value as false case.
if (matrix == 3 || matrix > 11) {
return false;
}
aColorSpace.mMatrix = static_cast<MatrixCoefficients>(matrix);
// If matrixCoefficients is 0 (RGB), then chroma subsampling MUST be 3
// (4:4:4).
if (aColorSpace.mMatrix == MatrixCoefficients::MC_IDENTITY &&
aChromaSubsampling != 3) {
return false;
}
if (fieldsCount == 7) {
// No more options.
return true;
}
// videoFullRangeFlag indicates the black level and range of the luma and
// chroma signals. 0 = legal range (e.g. 16-235 for 8 bit sample depth);
// 1 = full range (e.g. 0-255 for 8-bit sample depth).
aColorSpace.mRange = static_cast<ColorRange>(range);
return range <= 1;
}
bool ExtractH264CodecDetails(const nsAString& aCodec, uint8_t& aProfile,
uint8_t& aConstraint, uint8_t& aLevel) {
// H.264 codecs parameters have a type defined as avcN.PPCCLL, where
// N = avc type. avc3 is avcc with SPS & PPS implicit (within stream)
// PP = profile_idc, CC = constraint_set flags, LL = level_idc.
// We ignore the constraint_set flags, as it's not clear from any
// documentation what constraints the platform decoders support.
// See
// for more details.
if (aCodec.Length() != strlen("avc1.PPCCLL")) {
return false;
}
// Verify the codec starts with "avc1." or "avc3.".
const nsAString& sample = Substring(aCodec, 0, 5);
if (!sample.EqualsASCII("avc1.") && !sample.EqualsASCII("avc3.")) {
return false;
}
// Extract the profile_idc, constraint_flags and level_idc.
nsresult rv = NS_OK;
aProfile = Substring(aCodec, 5, 2).ToInteger(&rv, 16);
NS_ENSURE_SUCCESS(rv, false);
// Constraint flags are stored on the 6 most significant bits, first two bits
// are reserved_zero_2bits.
aConstraint = Substring(aCodec, 7, 2).ToInteger(&rv, 16);
NS_ENSURE_SUCCESS(rv, false);
aLevel = Substring(aCodec, 9, 2).ToInteger(&rv, 16);
NS_ENSURE_SUCCESS(rv, false);
if (aLevel == 9) {
aLevel = H264_LEVEL_1_b;
} else if (aLevel <= 5) {
aLevel *= 10;
}
return true;
}
bool IsH265ProfileRecognizable(uint8_t aProfile,
int32_t aProfileCompabilityFlags) {
enum Profile {
eUnknown,
eHighThroughputScreenExtended,
eScalableRangeExtension,
eScreenExtended,
e3DMain,
eScalableMain,
eMultiviewMain,
eHighThroughput,
eRangeExtension,
eMain10,
eMain,
eMainStillPicture
};
Profile p = eUnknown;
// Spec A.3.8
if (aProfile == 11 || (aProfileCompabilityFlags & 0x800)) {
p = eHighThroughputScreenExtended;
}
// Spec H.11.1.2
if (aProfile == 10 || (aProfileCompabilityFlags & 0x400)) {
p = eScalableRangeExtension;
}
// Spec A.3.7
if (aProfile == 9 || (aProfileCompabilityFlags & 0x200)) {
p = eScreenExtended;
}
// Spec I.11.1.1
if (aProfile == 8 || (aProfileCompabilityFlags & 0x100)) {
p = e3DMain;
}
// Spec H.11.1.1
if (aProfile == 7 || (aProfileCompabilityFlags & 0x80)) {
p = eScalableMain;
}
// Spec G.11.1.1
if (aProfile == 6 || (aProfileCompabilityFlags & 0x40)) {
p = eMultiviewMain;
}
// Spec A.3.6
if (aProfile == 5 || (aProfileCompabilityFlags & 0x20)) {
p = eHighThroughput;
}
// Spec A.3.5
if (aProfile == 4 || (aProfileCompabilityFlags & 0x10)) {
p = eRangeExtension;
}
// Spec A.3.3
// NOTICE: Do not change the order of below sections
if (aProfile == 2 || (aProfileCompabilityFlags & 0x4)) {
p = eMain10;
}
// Spec A.3.2
// When aProfileCompabilityFlags[1] is equal to 1,
// aProfileCompabilityFlags[2] should be equal to 1 as well.
if (aProfile == 1 || (aProfileCompabilityFlags & 0x2)) {
p = eMain;
}
// Spec A.3.4
// When aProfileCompabilityFlags[3] is equal to 1,
// aProfileCompabilityFlags[1] and
// aProfileCompabilityFlags[2] should be equal to 1 as well.
if (aProfile == 3 || (aProfileCompabilityFlags & 0x8)) {
p = eMainStillPicture;
}
return p != eUnknown;
}
bool ExtractH265CodecDetails(const nsAString& aCodec, uint8_t& aProfile,
uint8_t& aLevel, nsTArray<uint8_t>& aConstraints) {
// HEVC codec id consists of:
const size_t maxHevcCodecIdLength =
5 + // 'hev1.' or 'hvc1.' prefix (5 chars)
4 + // profile, e.g. '.A12' (max 4 chars)
9 + // profile_compatibility, dot + 32-bit hex number (max 9 chars)
5 + // tier and level, e.g. '.H120' (max 5 chars)
18; // up to 6 constraint bytes, bytes are dot-separated and hex-encoded.
if (aCodec.Length() > maxHevcCodecIdLength) {
return false;
}
// Verify the codec starts with "hev1." or "hvc1.".
const nsAString& sample = Substring(aCodec, 0, 5);
if (!sample.EqualsASCII("hev1.") && !sample.EqualsASCII("hvc1.")) {
return false;
}
nsresult rv;
CheckedUint8 profile;
int32_t compabilityFlags = 0;
CheckedUint8 level = 0;
nsTArray<uint8_t> constraints;
auto splitter = aCodec.Split(u'.');
size_t count = 0;
for (auto iter = splitter.begin(); iter != splitter.end(); ++iter, ++count) {
const auto& fieldStr = *iter;
if (fieldStr.IsEmpty()) {
return false;
}
if (count == 0) {
MOZ_RELEASE_ASSERT(fieldStr.EqualsASCII("hev1") ||
fieldStr.EqualsASCII("hvc1"));
continue;
}
if (count == 1) { // profile
Maybe<uint8_t> validProfileSpace;
if (fieldStr.First() == u'A' || fieldStr.First() == u'B' ||
fieldStr.First() == u'C') {
validProfileSpace.emplace(1 + (fieldStr.First() - 'A'));
}
// If fieldStr.First() is not A, B, C or a digit, ToInteger() should fail.
profile = validProfileSpace ? Substring(fieldStr, 1).ToInteger(&rv)
: fieldStr.ToInteger(&rv);
if (NS_FAILED(rv) || !profile.isValid() || profile.value() > 0x1F) {
return false;
}
continue;
}
if (count == 2) { // profile compatibility flags
compabilityFlags = fieldStr.ToInteger(&rv, 16);
NS_ENSURE_SUCCESS(rv, false);
continue;
}
if (count == 3) { // tier and level
Maybe<uint8_t> validProfileTier;
if (fieldStr.First() == u'L' || fieldStr.First() == u'H') {
validProfileTier.emplace(fieldStr.First() == u'L' ? 0 : 1);
}
// If fieldStr.First() is not L, H, or a digit, ToInteger() should fail.
level = validProfileTier ? Substring(fieldStr, 1).ToInteger(&rv)
: fieldStr.ToInteger(&rv);
if (NS_FAILED(rv) || !level.isValid()) {
return false;
}
continue;
}
// The rest is constraint bytes.
if (count > 10) {
return false;
}
CheckedUint8 byte(fieldStr.ToInteger(&rv, 16));
if (NS_FAILED(rv) || !byte.isValid()) {
return false;
}
constraints.AppendElement(byte.value());
}
if (count < 4 /* Parse til level at least */ || constraints.Length() > 6 ||
!IsH265ProfileRecognizable(profile.value(), compabilityFlags)) {
return false;
}
aProfile = profile.value();
aLevel = level.value();
aConstraints = std::move(constraints);
return true;
}
bool ExtractAV1CodecDetails(const nsAString& aCodec, uint8_t& aProfile,
uint8_t& aLevel, uint8_t& aTier, uint8_t& aBitDepth,
bool& aMonochrome, bool& aSubsamplingX,
bool& aSubsamplingY, uint8_t& aChromaSamplePosition,
VideoColorSpace& aColorSpace) {
auto fourCC = Substring(aCodec, 0, 4);
if (!fourCC.EqualsLiteral("av01")) {
// Invalid 4CC
return false;
}
// Format is:
// av01.N.NN[MH].NN.B.BBN.NN.NN.NN.B
// where
// N = decimal digit
// [] = single character
// B = binary digit
// Field order:
// <sample entry 4CC>.<profile>.<level><tier>.<bitDepth>
// [.<monochrome>.<chromaSubsampling>
// .<colorPrimaries>.<transferCharacteristics>.<matrixCoefficients>
// .<videoFullRangeFlag>]
//
// If any optional field is found, all the rest must be included.
//
// Parsing stops but does not fail upon encountering unexpected characters
// at the end of an otherwise well-formed string.
//
struct AV1Field {
uint8_t* field;
size_t length;
};
uint8_t monochrome;
uint8_t subsampling;
uint8_t primary;
uint8_t transfer;
uint8_t matrix;
uint8_t range;
AV1Field fields[] = {{&aProfile, 1},
{&aLevel, 2},
// parsing loop skips tier
{&aBitDepth, 2},
{&monochrome, 1},
{&subsampling, 3},
{&primary, 2},
{&transfer, 2},
{&matrix, 2},
{&range, 1}};
auto splitter = aCodec.Split(u'.');
auto iter = splitter.begin();
++iter;
size_t fieldCount = 0;
while (iter != splitter.end()) {
// Exit if there are too many fields.
if (fieldCount >= 9) {
return false;
}
AV1Field& field = fields[fieldCount];
auto fieldStr = *iter;
if (field.field == &aLevel) {
// Parse tier and remove it from the level field.
if (fieldStr.Length() < 3) {
return false;
}
auto tier = fieldStr[2];
switch (tier) {
case 'M':
aTier = 0;
break;
case 'H':
aTier = 1;
break;
default:
return false;
}
fieldStr.SetLength(2);
}
if (fieldStr.Length() < field.length) {
return false;
}
// Manually parse values since nsString.ToInteger silently stops parsing
// upon encountering unknown characters.
uint8_t value = 0;
for (size_t i = 0; i < field.length; i++) {
uint8_t oldValue = value;
char16_t character = fieldStr[i];
if ('0' <= character && character <= '9') {
value = (value * 10) + (character - '0');
} else {
return false;
}
if (value < oldValue) {
// Overflow is possible on the 3-digit subsampling field.
return false;
}
}
*field.field = value;
++fieldCount;
++iter;
// Field had extra characters, exit early.
if (fieldStr.Length() > field.length) {
// Disallow numbers as unexpected characters.
char16_t character = fieldStr[field.length];
if ('0' <= character && character <= '9') {
return false;
}
break;
}
}
// Spec requires profile, level/tier, bitdepth, or for all possible fields to
// be present.
if (fieldCount != 3 && fieldCount != 9) {
return false;
}
// Valid profiles are: Main (0), High (1), Professional (2).
// Levels range from 0 to 23, or 31 to remove level restrictions.
if (aProfile > 2 || (aLevel > 23 && aLevel != 31)) {
return false;
}
if (fieldCount == 3) {
// If only required fields are included, set to the spec defaults for the
// rest and continue validating.
aMonochrome = false;
aSubsamplingX = true;
aSubsamplingY = true;
aChromaSamplePosition = 0;
aColorSpace.mPrimaries = ColourPrimaries::CP_BT709;
aColorSpace.mTransfer = TransferCharacteristics::TC_BT709;
aColorSpace.mMatrix = MatrixCoefficients::MC_BT709;
aColorSpace.mRange = ColorRange::LIMITED;
} else {
// Extract the individual values for the remaining fields, and check for
// valid values for each.
// Monochrome is a boolean.
if (monochrome > 1) {
return false;
}
aMonochrome = !!monochrome;
// Extract individual digits of the subsampling field.
// Subsampling is two binary digits for x and y
// and one enumerated sample position field of
// Unknown (0), Vertical (1), Colocated (2).
uint8_t subsamplingX = (subsampling / 100) % 10;
uint8_t subsamplingY = (subsampling / 10) % 10;
if (subsamplingX > 1 || subsamplingY > 1) {
return false;
}
aSubsamplingX = !!subsamplingX;
aSubsamplingY = !!subsamplingY;
aChromaSamplePosition = subsampling % 10;
if (aChromaSamplePosition > 2) {
return false;
}
// We can validate the color space values using CICP enums, as the values
// are standardized in Rec. ITU-T H.273.
aColorSpace.mPrimaries = static_cast<ColourPrimaries>(primary);
aColorSpace.mTransfer = static_cast<TransferCharacteristics>(transfer);
aColorSpace.mMatrix = static_cast<MatrixCoefficients>(matrix);
if (gfx::CICP::IsReserved(aColorSpace.mPrimaries) ||
gfx::CICP::IsReserved(aColorSpace.mTransfer) ||
gfx::CICP::IsReserved(aColorSpace.mMatrix)) {
return false;
}
// Range is a boolean, true meaning full and false meaning limited range.
if (range > 1) {
return false;
}
aColorSpace.mRange = static_cast<ColorRange>(range);
}
// Begin validating all parameter values:
// Only Levels 8 and above (4.0 and greater) can specify Tier.
// See: 5.5.1. General sequence header OBU syntax,
// if ( seq_level_idx[ i ] > 7 ) seq_tier[ i ] = f(1)
// Also: Annex A, A.3. Levels, columns MainMbps and HighMbps
if (aLevel < 8 && aTier > 0) {
return false;
}
// Supported bit depths are 8, 10 and 12.
if (aBitDepth != 8 && aBitDepth != 10 && aBitDepth != 12) {
return false;
}
// Profiles 0 and 1 only support 8-bit and 10-bit.
if (aProfile < 2 && aBitDepth == 12) {
return false;
}
// x && y subsampling is used to specify monochrome 4:0:0 as well
bool is420or400 = aSubsamplingX && aSubsamplingY;
bool is422 = aSubsamplingX && !aSubsamplingY;
bool is444 = !aSubsamplingX && !aSubsamplingY;
// Profile 0 only supports 4:2:0.
if (aProfile == 0 && !is420or400) {
return false;
}
// Profile 1 only supports 4:4:4.
if (aProfile == 1 && !is444) {
return false;
}
// Profile 2 only allows 4:2:2 at 10 bits and below.
if (aProfile == 2 && aBitDepth < 12 && !is422) {
return false;
}
// Chroma sample position can only be specified with 4:2:0.
if (aChromaSamplePosition != 0 && !is420or400) {
return false;
}
// When video is monochrome, subsampling must be 4:0:0.
if (aMonochrome && (aChromaSamplePosition != 0 || !is420or400)) {
return false;
}
// Monochrome can only be signaled when profile is 0 or 2.
// Note: This check is redundant with the above subsampling check,
// as profile 1 only supports 4:4:4.
if (aMonochrome && aProfile != 0 && aProfile != 2) {
return false;
}
// Identity matrix requires 4:4:4 subsampling.
if (aColorSpace.mMatrix == MatrixCoefficients::MC_IDENTITY &&
(aSubsamplingX || aSubsamplingY ||
aColorSpace.mRange != gfx::ColorRange::FULL)) {
return false;
}
return true;
}
nsresult GenerateRandomName(nsCString& aOutSalt, uint32_t aLength) {
nsresult rv;
nsCOMPtr<nsIRandomGenerator> rg =
do_GetService("@mozilla.org/security/random-generator;1", &rv);
if (NS_FAILED(rv)) {
return rv;
}
// For each three bytes of random data we will get four bytes of ASCII.
const uint32_t requiredBytesLength =
static_cast<uint32_t>((aLength + 3) / 4 * 3);
uint8_t* buffer;
rv = rg->GenerateRandomBytes(requiredBytesLength, &buffer);
if (NS_FAILED(rv)) {
return rv;
}
nsCString temp;
nsDependentCSubstring randomData(reinterpret_cast<const char*>(buffer),
requiredBytesLength);
rv = Base64Encode(randomData, temp);
free(buffer);
buffer = nullptr;
if (NS_FAILED(rv)) {
return rv;
}
aOutSalt = std::move(temp);
return NS_OK;
}
nsresult GenerateRandomPathName(nsCString& aOutSalt, uint32_t aLength) {
nsresult rv = GenerateRandomName(aOutSalt, aLength);
if (NS_FAILED(rv)) {
return rv;
}
// Base64 characters are alphanumeric (a-zA-Z0-9) and '+' and '/', so we need
// to replace illegal characters -- notably '/'
aOutSalt.ReplaceChar(FILE_PATH_SEPARATOR FILE_ILLEGAL_CHARACTERS, '_');
return NS_OK;
}
already_AddRefed<TaskQueue> CreateMediaDecodeTaskQueue(const char* aName) {
RefPtr<TaskQueue> queue = TaskQueue::Create(
GetMediaThreadPool(MediaThreadType::PLATFORM_DECODER), aName);
return queue.forget();
}
void SimpleTimer::Cancel() {
if (mTimer) {
#ifdef DEBUG
nsCOMPtr<nsIEventTarget> target;
mTimer->GetTarget(getter_AddRefs(target));
bool onCurrent;
nsresult rv = target->IsOnCurrentThread(&onCurrent);
MOZ_ASSERT(NS_SUCCEEDED(rv) && onCurrent);
#endif
mTimer->Cancel();
mTimer = nullptr;
}
mTask = nullptr;
}
NS_IMETHODIMP
SimpleTimer::Notify(nsITimer* timer) {
RefPtr<SimpleTimer> deathGrip(this);
if (mTask) {
mTask->Run();
mTask = nullptr;
}
return NS_OK;
}
NS_IMETHODIMP
SimpleTimer::GetName(nsACString& aName) {
aName.AssignLiteral("SimpleTimer");
return NS_OK;
}
nsresult SimpleTimer::Init(nsIRunnable* aTask, uint32_t aTimeoutMs,
nsIEventTarget* aTarget) {
nsresult rv;
// Get target thread first, so we don't have to cancel the timer if it fails.
nsCOMPtr<nsIEventTarget> target;
if (aTarget) {
target = aTarget;
} else {
target = GetMainThreadSerialEventTarget();
if (!target) {
return NS_ERROR_NOT_AVAILABLE;
}
}
rv = NS_NewTimerWithCallback(getter_AddRefs(mTimer), this, aTimeoutMs,
nsITimer::TYPE_ONE_SHOT, target);
if (NS_FAILED(rv)) {
return rv;
}
mTask = aTask;
return NS_OK;
}
NS_IMPL_ISUPPORTS(SimpleTimer, nsITimerCallback, nsINamed)
already_AddRefed<SimpleTimer> SimpleTimer::Create(nsIRunnable* aTask,
uint32_t aTimeoutMs,
nsIEventTarget* aTarget) {
RefPtr<SimpleTimer> t(new SimpleTimer());
if (NS_FAILED(t->Init(aTask, aTimeoutMs, aTarget))) {
return nullptr;
}
return t.forget();
}
void LogToBrowserConsole(const nsAString& aMsg) {
if (!NS_IsMainThread()) {
nsString msg(aMsg);
nsCOMPtr<nsIRunnable> task = NS_NewRunnableFunction(
"LogToBrowserConsole", [msg]() { LogToBrowserConsole(msg); });
SchedulerGroup::Dispatch(task.forget());
return;
}
nsCOMPtr<nsIConsoleService> console(
do_GetService("@mozilla.org/consoleservice;1"));
if (!console) {
NS_WARNING("Failed to log message to console.");
return;
}
nsAutoString msg(aMsg);
console->LogStringMessage(msg.get());
}
bool ParseCodecsString(const nsAString& aCodecs,
nsTArray<nsString>& aOutCodecs) {
aOutCodecs.Clear();
bool expectMoreTokens = false;
nsCharSeparatedTokenizer tokenizer(aCodecs, ',');
while (tokenizer.hasMoreTokens()) {
const nsAString& token = tokenizer.nextToken();
expectMoreTokens = tokenizer.separatorAfterCurrentToken();
aOutCodecs.AppendElement(token);
}
return !expectMoreTokens;
}
bool ParseMIMETypeString(const nsAString& aMIMEType,
nsString& aOutContainerType,
nsTArray<nsString>& aOutCodecs) {
nsContentTypeParser parser(aMIMEType);
nsresult rv = parser.GetType(aOutContainerType);
if (NS_FAILED(rv)) {
return false;
}
nsString codecsStr;
parser.GetParameter("codecs", codecsStr);
return ParseCodecsString(codecsStr, aOutCodecs);
}
template <int N>
static bool StartsWith(const nsACString& string, const char (&prefix)[N]) {
if (N - 1 > string.Length()) {
return false;
}
return memcmp(string.Data(), prefix, N - 1) == 0;
}
bool IsH264CodecString(const nsAString& aCodec) {
uint8_t profile = 0;
uint8_t constraint = 0;
uint8_t level = 0;
return ExtractH264CodecDetails(aCodec, profile, constraint, level);
}
bool IsH265CodecString(const nsAString& aCodec) {
uint8_t profile = 0;
uint8_t level = 0;
nsTArray<uint8_t> constraints;
return ExtractH265CodecDetails(aCodec, profile, level, constraints);
}
bool IsAACCodecString(const nsAString& aCodec) {
return aCodec.EqualsLiteral("mp4a.40.2") || // MPEG4 AAC-LC
aCodec.EqualsLiteral(
"mp4a.40.02") || // MPEG4 AAC-LC(for compatibility)
aCodec.EqualsLiteral("mp4a.40.5") || // MPEG4 HE-AAC
aCodec.EqualsLiteral(
"mp4a.40.05") || // MPEG4 HE-AAC(for compatibility)
aCodec.EqualsLiteral("mp4a.67") || // MPEG2 AAC-LC
aCodec.EqualsLiteral("mp4a.40.29"); // MPEG4 HE-AACv2
}
bool IsVP8CodecString(const nsAString& aCodec) {
uint8_t profile = 0;
uint8_t level = 0;
uint8_t bitDepth = 0;
return aCodec.EqualsLiteral("vp8") || aCodec.EqualsLiteral("vp8.0") ||
(StartsWith(NS_ConvertUTF16toUTF8(aCodec), "vp08") &&
ExtractVPXCodecDetails(aCodec, profile, level, bitDepth));
}
bool IsVP9CodecString(const nsAString& aCodec) {
uint8_t profile = 0;
uint8_t level = 0;
uint8_t bitDepth = 0;
return aCodec.EqualsLiteral("vp9") || aCodec.EqualsLiteral("vp9.0") ||
(StartsWith(NS_ConvertUTF16toUTF8(aCodec), "vp09") &&
ExtractVPXCodecDetails(aCodec, profile, level, bitDepth));
}
bool IsAV1CodecString(const nsAString& aCodec) {
uint8_t profile, level, tier, bitDepth, chromaPosition;
bool monochrome, subsamplingX, subsamplingY;
VideoColorSpace colorSpace;
return aCodec.EqualsLiteral("av1") ||
(StartsWith(NS_ConvertUTF16toUTF8(aCodec), "av01") &&
ExtractAV1CodecDetails(aCodec, profile, level, tier, bitDepth,
monochrome, subsamplingX, subsamplingY,
chromaPosition, colorSpace));
}
UniquePtr<TrackInfo> CreateTrackInfoWithMIMEType(
const nsACString& aCodecMIMEType) {
UniquePtr<TrackInfo> trackInfo;
if (StartsWith(aCodecMIMEType, "audio/")) {
trackInfo.reset(new AudioInfo());
trackInfo->mMimeType = aCodecMIMEType;
} else if (StartsWith(aCodecMIMEType, "video/")) {
trackInfo.reset(new VideoInfo());
trackInfo->mMimeType = aCodecMIMEType;
}
return trackInfo;
}
UniquePtr<TrackInfo> CreateTrackInfoWithMIMETypeAndContainerTypeExtraParameters(
const nsACString& aCodecMIMEType,
const MediaContainerType& aContainerType) {
UniquePtr<TrackInfo> trackInfo = CreateTrackInfoWithMIMEType(aCodecMIMEType);
if (trackInfo) {
VideoInfo* videoInfo = trackInfo->GetAsVideoInfo();
if (videoInfo) {
Maybe<int32_t> maybeWidth = aContainerType.ExtendedType().GetWidth();
if (maybeWidth && *maybeWidth > 0) {
videoInfo->mImage.width = *maybeWidth;
videoInfo->mDisplay.width = *maybeWidth;
}
Maybe<int32_t> maybeHeight = aContainerType.ExtendedType().GetHeight();
if (maybeHeight && *maybeHeight > 0) {
videoInfo->mImage.height = *maybeHeight;
videoInfo->mDisplay.height = *maybeHeight;
}
} else if (trackInfo->GetAsAudioInfo()) {
AudioInfo* audioInfo = trackInfo->GetAsAudioInfo();
Maybe<int32_t> maybeChannels =
aContainerType.ExtendedType().GetChannels();
if (maybeChannels && *maybeChannels > 0) {
audioInfo->mChannels = *maybeChannels;
}
Maybe<int32_t> maybeSamplerate =
aContainerType.ExtendedType().GetSamplerate();
if (maybeSamplerate && *maybeSamplerate > 0) {
audioInfo->mRate = *maybeSamplerate;
}
}
}
return trackInfo;
}
bool OnCellularConnection() {
uint32_t linkType = nsINetworkLinkService::LINK_TYPE_UNKNOWN;
if (XRE_IsContentProcess()) {
mozilla::dom::ContentChild* cpc =
mozilla::dom::ContentChild::GetSingleton();
if (!cpc) {
NS_WARNING("Can't get ContentChild singleton in content process!");
return false;
}
linkType = cpc->NetworkLinkType();
} else {
nsresult rv;
nsCOMPtr<nsINetworkLinkService> nls =
do_GetService(NS_NETWORK_LINK_SERVICE_CONTRACTID, &rv);
if (NS_FAILED(rv)) {
NS_WARNING("Can't get nsINetworkLinkService.");
return false;
}
rv = nls->GetLinkType(&linkType);
if (NS_FAILED(rv)) {
NS_WARNING("Can't get network link type.");
return false;
}
}
switch (linkType) {
case nsINetworkLinkService::LINK_TYPE_UNKNOWN:
case nsINetworkLinkService::LINK_TYPE_ETHERNET:
case nsINetworkLinkService::LINK_TYPE_USB:
case nsINetworkLinkService::LINK_TYPE_WIFI:
return false;
case nsINetworkLinkService::LINK_TYPE_WIMAX:
case nsINetworkLinkService::LINK_TYPE_MOBILE:
return true;
}
return false;
}
bool IsWaveMimetype(const nsACString& aMimeType) {
return aMimeType.EqualsLiteral("audio/x-wav") ||
aMimeType.EqualsLiteral("audio/wave; codecs=1") ||
aMimeType.EqualsLiteral("audio/wave; codecs=3") ||
aMimeType.EqualsLiteral("audio/wave; codecs=6") ||
aMimeType.EqualsLiteral("audio/wave; codecs=7") ||
aMimeType.EqualsLiteral("audio/wave; codecs=65534");
}
void DetermineResolutionForTelemetry(const MediaInfo& aInfo,
nsCString& aResolutionOut) {
if (aInfo.HasAudio()) {
aResolutionOut.AppendASCII("AV,");
} else {
aResolutionOut.AppendASCII("V,");
}
static const struct {
int32_t mH;
const char* mRes;
} sResolutions[] = {{240, "0<h<=240"}, {480, "240<h<=480"},
{576, "480<h<=576"}, {720, "576<h<=720"},
{1080, "720<h<=1080"}, {2160, "1080<h<=2160"}};
const char* resolution = "h>2160";
int32_t height = aInfo.mVideo.mDisplay.height;
for (const auto& res : sResolutions) {
if (height <= res.mH) {
resolution = res.mRes;
break;
}
}
aResolutionOut.AppendASCII(resolution);
}
} // end namespace mozilla