Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <algorithm>
#include <stdint.h>
#include <utility>
#include "mediasink/AudioSink.h"
#include "mediasink/AudioSinkWrapper.h"
#include "mediasink/DecodedStream.h"
#include "mediasink/VideoSink.h"
#include "mozilla/Logging.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/NotNull.h"
#include "mozilla/Preferences.h"
#include "mozilla/ProfilerLabels.h"
#include "mozilla/ProfilerMarkers.h"
#include "mozilla/ProfilerMarkerTypes.h"
#include "mozilla/SharedThreadPool.h"
#include "mozilla/Sprintf.h"
#include "mozilla/StaticPrefs_media.h"
#include "mozilla/Telemetry.h"
#include "mozilla/TaskQueue.h"
#include "nsIMemoryReporter.h"
#include "nsPrintfCString.h"
#include "nsTArray.h"
#include "AudioSegment.h"
#include "DOMMediaStream.h"
#include "ImageContainer.h"
#include "MediaDecoder.h"
#include "MediaDecoderStateMachine.h"
#include "MediaShutdownManager.h"
#include "MediaTrackGraph.h"
#include "MediaTimer.h"
#include "PerformanceRecorder.h"
#include "ReaderProxy.h"
#include "TimeUnits.h"
#include "VideoSegment.h"
#include "VideoUtils.h"
namespace mozilla {
using namespace mozilla::media;
#define NS_DispatchToMainThread(...) \
CompileError_UseAbstractThreadDispatchInstead
// avoid redefined macro in unified build
#undef FMT
#undef LOG
#undef LOGV
#undef LOGW
#undef LOGE
#undef SFMT
#undef SLOG
#undef SLOGW
#undef SLOGE
#define FMT(x, ...) "Decoder=%p " x, mDecoderID, ##__VA_ARGS__
#define LOG(x, ...) \
DDMOZ_LOG(gMediaDecoderLog, LogLevel::Debug, "Decoder=%p " x, mDecoderID, \
##__VA_ARGS__)
#define LOGV(x, ...) \
DDMOZ_LOG(gMediaDecoderLog, LogLevel::Verbose, "Decoder=%p " x, mDecoderID, \
##__VA_ARGS__)
#define LOGW(x, ...) NS_WARNING(nsPrintfCString(FMT(x, ##__VA_ARGS__)).get())
#define LOGE(x, ...) \
NS_DebugBreak(NS_DEBUG_WARNING, \
nsPrintfCString(FMT(x, ##__VA_ARGS__)).get(), nullptr, \
__FILE__, __LINE__)
// Used by StateObject and its sub-classes
#define SFMT(x, ...) \
"Decoder=%p state=%s " x, mMaster->mDecoderID, ToStateStr(GetState()), \
##__VA_ARGS__
#define SLOG(x, ...) \
DDMOZ_LOGEX(mMaster, gMediaDecoderLog, LogLevel::Debug, "state=%s " x, \
ToStateStr(GetState()), ##__VA_ARGS__)
#define SLOGW(x, ...) NS_WARNING(nsPrintfCString(SFMT(x, ##__VA_ARGS__)).get())
#define SLOGE(x, ...) \
NS_DebugBreak(NS_DEBUG_WARNING, \
nsPrintfCString(SFMT(x, ##__VA_ARGS__)).get(), nullptr, \
__FILE__, __LINE__)
// Certain constants get stored as member variables and then adjusted by various
// scale factors on a per-decoder basis. We want to make sure to avoid using
// these constants directly, so we put them in a namespace.
namespace detail {
// Resume a suspended video decoder to the current playback position plus this
// time premium for compensating the seeking delay.
static constexpr auto RESUME_VIDEO_PREMIUM = TimeUnit::FromMicroseconds(125000);
static const int64_t AMPLE_AUDIO_USECS = 2000000;
// If more than this much decoded audio is queued, we'll hold off
// decoding more audio.
static constexpr auto AMPLE_AUDIO_THRESHOLD =
TimeUnit::FromMicroseconds(AMPLE_AUDIO_USECS);
} // namespace detail
// If we have fewer than LOW_VIDEO_FRAMES decoded frames, and
// we're not "prerolling video", we'll skip the video up to the next keyframe
// which is at or after the current playback position.
static const uint32_t LOW_VIDEO_FRAMES = 2;
// Arbitrary "frame duration" when playing only audio.
static const uint32_t AUDIO_DURATION_USECS = 40000;
namespace detail {
// If we have less than this much buffered data available, we'll consider
// ourselves to be running low on buffered data. We determine how much
// buffered data we have remaining using the reader's GetBuffered()
// implementation.
static const int64_t LOW_BUFFER_THRESHOLD_USECS = 5000000;
static constexpr auto LOW_BUFFER_THRESHOLD =
TimeUnit::FromMicroseconds(LOW_BUFFER_THRESHOLD_USECS);
// LOW_BUFFER_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS,
// otherwise the skip-to-keyframe logic can activate when we're running low on
// data.
static_assert(LOW_BUFFER_THRESHOLD_USECS > AMPLE_AUDIO_USECS,
"LOW_BUFFER_THRESHOLD_USECS is too small");
} // namespace detail
// Amount of excess data to add in to the "should we buffer" calculation.
static constexpr auto EXHAUSTED_DATA_MARGIN =
TimeUnit::FromMicroseconds(100000);
static const uint32_t MIN_VIDEO_QUEUE_SIZE = 3;
static const uint32_t MAX_VIDEO_QUEUE_SIZE = 10;
#ifdef MOZ_APPLEMEDIA
static const uint32_t HW_VIDEO_QUEUE_SIZE = 10;
#else
static const uint32_t HW_VIDEO_QUEUE_SIZE = 3;
#endif
static const uint32_t VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE = 9999;
static uint32_t sVideoQueueDefaultSize = MAX_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueHWAccelSize = HW_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueSendToCompositorSize =
VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE;
static void InitVideoQueuePrefs() {
MOZ_ASSERT(NS_IsMainThread());
static bool sPrefInit = false;
if (!sPrefInit) {
sPrefInit = true;
sVideoQueueDefaultSize = Preferences::GetUint(
"media.video-queue.default-size", MAX_VIDEO_QUEUE_SIZE);
sVideoQueueHWAccelSize = Preferences::GetUint(
"media.video-queue.hw-accel-size", HW_VIDEO_QUEUE_SIZE);
sVideoQueueSendToCompositorSize =
Preferences::GetUint("media.video-queue.send-to-compositor-size",
VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE);
}
}
template <typename Type, typename Function>
static void DiscardFramesFromTail(MediaQueue<Type>& aQueue,
const Function&& aTest) {
while (aQueue.GetSize()) {
if (aTest(aQueue.PeekBack()->mTime.ToMicroseconds())) {
RefPtr<Type> releaseMe = aQueue.PopBack();
continue;
}
break;
}
}
// Delay, in milliseconds, that tabs needs to be in background before video
// decoding is suspended.
static TimeDuration SuspendBackgroundVideoDelay() {
return TimeDuration::FromMilliseconds(
StaticPrefs::media_suspend_background_video_delay_ms());
}
class MediaDecoderStateMachine::StateObject {
public:
virtual ~StateObject() = default;
virtual void Exit() {} // Exit action.
virtual void Step() {} // Perform a 'cycle' of this state object.
virtual State GetState() const = 0;
// Event handlers for various events.
virtual void HandleAudioCaptured() {}
virtual void HandleAudioDecoded(AudioData* aAudio) {
Crash("Unexpected event!", __func__);
}
virtual void HandleVideoDecoded(VideoData* aVideo) {
Crash("Unexpected event!", __func__);
}
virtual void HandleAudioWaited(MediaData::Type aType) {
Crash("Unexpected event!", __func__);
}
virtual void HandleVideoWaited(MediaData::Type aType) {
Crash("Unexpected event!", __func__);
}
virtual void HandleWaitingForAudio() { Crash("Unexpected event!", __func__); }
virtual void HandleAudioCanceled() { Crash("Unexpected event!", __func__); }
virtual void HandleEndOfAudio() { Crash("Unexpected event!", __func__); }
virtual void HandleWaitingForVideo() { Crash("Unexpected event!", __func__); }
virtual void HandleVideoCanceled() { Crash("Unexpected event!", __func__); }
virtual void HandleEndOfVideo() { Crash("Unexpected event!", __func__); }
virtual RefPtr<MediaDecoder::SeekPromise> HandleSeek(
const SeekTarget& aTarget);
virtual RefPtr<ShutdownPromise> HandleShutdown();
virtual void HandleVideoSuspendTimeout() = 0;
virtual void HandleResumeVideoDecoding(const TimeUnit& aTarget);
virtual void HandlePlayStateChanged(MediaDecoder::PlayState aPlayState) {}
virtual void GetDebugInfo(
dom::MediaDecoderStateMachineDecodingStateDebugInfo& aInfo) {}
virtual void HandleLoopingChanged() {}
private:
template <class S, typename R, typename... As>
auto ReturnTypeHelper(R (S::*)(As...)) -> R;
void Crash(const char* aReason, const char* aSite) {
char buf[1024];
SprintfLiteral(buf, "%s state=%s callsite=%s", aReason,
ToStateStr(GetState()), aSite);
MOZ_ReportAssertionFailure(buf, __FILE__, __LINE__);
MOZ_CRASH();
}
protected:
enum class EventVisibility : int8_t { Observable, Suppressed };
using Master = MediaDecoderStateMachine;
explicit StateObject(Master* aPtr) : mMaster(aPtr) {}
TaskQueue* OwnerThread() const { return mMaster->mTaskQueue; }
ReaderProxy* Reader() const { return mMaster->mReader; }
const MediaInfo& Info() const { return mMaster->Info(); }
MediaQueue<AudioData>& AudioQueue() const { return mMaster->mAudioQueue; }
MediaQueue<VideoData>& VideoQueue() const { return mMaster->mVideoQueue; }
template <class S, typename... Args, size_t... Indexes>
auto CallEnterMemberFunction(S* aS, std::tuple<Args...>& aTuple,
std::index_sequence<Indexes...>)
-> decltype(ReturnTypeHelper(&S::Enter)) {
AUTO_PROFILER_LABEL("StateObject::CallEnterMemberFunction", MEDIA_PLAYBACK);
return aS->Enter(std::move(std::get<Indexes>(aTuple))...);
}
// Note this function will delete the current state object.
// Don't access members to avoid UAF after this call.
template <class S, typename... Ts>
auto SetState(Ts&&... aArgs) -> decltype(ReturnTypeHelper(&S::Enter)) {
// |aArgs| must be passed by reference to avoid passing MOZ_NON_PARAM class
// SeekJob by value. See bug 1287006 and bug 1338374. But we still *must*
// copy the parameters, because |Exit()| can modify them. See bug 1312321.
// So we 1) pass the parameters by reference, but then 2) immediately copy
// them into a Tuple to be safe against modification, and finally 3) move
// the elements of the Tuple into the final function call.
auto copiedArgs = std::make_tuple(std::forward<Ts>(aArgs)...);
// Copy mMaster which will reset to null.
auto* master = mMaster;
auto* s = new S(master);
// It's possible to seek again during seeking, otherwise the new state
// should always be different from the original one.
MOZ_ASSERT(GetState() != s->GetState() ||
GetState() == DECODER_STATE_SEEKING_ACCURATE ||
GetState() == DECODER_STATE_SEEKING_FROMDORMANT ||
GetState() == DECODER_STATE_SEEKING_NEXTFRAMESEEKING ||
GetState() == DECODER_STATE_SEEKING_VIDEOONLY);
SLOG("change state to: %s", ToStateStr(s->GetState()));
PROFILER_MARKER_TEXT("MDSM::StateChange", MEDIA_PLAYBACK, {},
nsPrintfCString("%s", ToStateStr(s->GetState())));
Exit();
// Delete the old state asynchronously to avoid UAF if the caller tries to
// access its members after SetState() returns.
master->OwnerThread()->DispatchDirectTask(
NS_NewRunnableFunction("MDSM::StateObject::DeleteOldState",
[toDelete = std::move(master->mStateObj)]() {}));
// Also reset mMaster to catch potentail UAF.
mMaster = nullptr;
master->mStateObj.reset(s);
return CallEnterMemberFunction(s, copiedArgs,
std::index_sequence_for<Ts...>{});
}
RefPtr<MediaDecoder::SeekPromise> SetSeekingState(
SeekJob&& aSeekJob, EventVisibility aVisibility);
void SetDecodingState();
// Take a raw pointer in order not to change the life cycle of MDSM.
// It is guaranteed to be valid by MDSM.
Master* mMaster;
};
/**
* Purpose: decode metadata like duration and dimensions of the media resource.
*
* Transition to other states when decoding metadata is done:
* SHUTDOWN if failing to decode metadata.
* DECODING_FIRSTFRAME otherwise.
*/
class MediaDecoderStateMachine::DecodeMetadataState
: public MediaDecoderStateMachine::StateObject {
public:
explicit DecodeMetadataState(Master* aPtr) : StateObject(aPtr) {}
void Enter() {
MOZ_ASSERT(!mMaster->mVideoDecodeSuspended);
MOZ_ASSERT(!mMetadataRequest.Exists());
SLOG("Dispatching AsyncReadMetadata");
// We disconnect mMetadataRequest in Exit() so it is fine to capture
// a raw pointer here.
Reader()
->ReadMetadata()
->Then(
OwnerThread(), __func__,
[this](MetadataHolder&& aMetadata) {
OnMetadataRead(std::move(aMetadata));
},
[this](const MediaResult& aError) { OnMetadataNotRead(aError); })
->Track(mMetadataRequest);
}
void Exit() override { mMetadataRequest.DisconnectIfExists(); }
State GetState() const override { return DECODER_STATE_DECODING_METADATA; }
RefPtr<MediaDecoder::SeekPromise> HandleSeek(
const SeekTarget& aTarget) override {
MOZ_DIAGNOSTIC_ASSERT(false, "Can't seek while decoding metadata.");
return MediaDecoder::SeekPromise::CreateAndReject(true, __func__);
}
void HandleVideoSuspendTimeout() override {
// Do nothing since no decoders are created yet.
}
void HandleResumeVideoDecoding(const TimeUnit&) override {
// We never suspend video decoding in this state.
MOZ_ASSERT(false, "Shouldn't have suspended video decoding.");
}
private:
void OnMetadataRead(MetadataHolder&& aMetadata);
void OnMetadataNotRead(const MediaResult& aError) {
AUTO_PROFILER_LABEL("DecodeMetadataState::OnMetadataNotRead",
MEDIA_PLAYBACK);
mMetadataRequest.Complete();
SLOGE("Decode metadata failed, shutting down decoder");
mMaster->DecodeError(aError);
}
MozPromiseRequestHolder<MediaFormatReader::MetadataPromise> mMetadataRequest;
};
/**
* Purpose: release decoder resources to save memory and hardware resources.
*
* Transition to:
* SEEKING if any seek request or play state changes to PLAYING.
*/
class MediaDecoderStateMachine::DormantState
: public MediaDecoderStateMachine::StateObject {
public:
explicit DormantState(Master* aPtr) : StateObject(aPtr) {}
void Enter() {
if (mMaster->IsPlaying()) {
mMaster->StopPlayback();
}
// Calculate the position to seek to when exiting dormant.
auto t = mMaster->mMediaSink->IsStarted() ? mMaster->GetClock()
: mMaster->GetMediaTime();
mMaster->AdjustByLooping(t);
mPendingSeek.mTarget.emplace(t, SeekTarget::Accurate);
// SeekJob asserts |mTarget.IsValid() == !mPromise.IsEmpty()| so we
// need to create the promise even it is not used at all.
// The promise may be used when coming out of DormantState into
// SeekingState.
RefPtr<MediaDecoder::SeekPromise> x =
mPendingSeek.mPromise.Ensure(__func__);
// Reset the decoding state to ensure that any queued video frames are
// released and don't consume video memory.
mMaster->ResetDecode();
// No need to call StopMediaSink() here.
// We will do it during seeking when exiting dormant.
// Ignore WAIT_FOR_DATA since we won't decode in dormant.
mMaster->mAudioWaitRequest.DisconnectIfExists();
mMaster->mVideoWaitRequest.DisconnectIfExists();
MaybeReleaseResources();
}
void Exit() override {
// mPendingSeek is either moved when exiting dormant or
// should be rejected here before transition to SHUTDOWN.
mPendingSeek.RejectIfExists(__func__);
}
State GetState() const override { return DECODER_STATE_DORMANT; }
RefPtr<MediaDecoder::SeekPromise> HandleSeek(
const SeekTarget& aTarget) override;
void HandleVideoSuspendTimeout() override {
// Do nothing since we've released decoders in Enter().
}
void HandleResumeVideoDecoding(const TimeUnit&) override {
// Do nothing since we won't resume decoding until exiting dormant.
}
void HandlePlayStateChanged(MediaDecoder::PlayState aPlayState) override;
void HandleAudioDecoded(AudioData*) override { MaybeReleaseResources(); }
void HandleVideoDecoded(VideoData*) override { MaybeReleaseResources(); }
void HandleWaitingForAudio() override { MaybeReleaseResources(); }
void HandleWaitingForVideo() override { MaybeReleaseResources(); }
void HandleAudioCanceled() override { MaybeReleaseResources(); }
void HandleVideoCanceled() override { MaybeReleaseResources(); }
void HandleEndOfAudio() override { MaybeReleaseResources(); }
void HandleEndOfVideo() override { MaybeReleaseResources(); }
private:
void MaybeReleaseResources() {
if (!mMaster->mAudioDataRequest.Exists() &&
!mMaster->mVideoDataRequest.Exists()) {
// Release decoders only when they are idle. Otherwise it might cause
// decode error later when resetting decoders during seeking.
mMaster->mReader->ReleaseResources();
}
}
SeekJob mPendingSeek;
};
/**
* Purpose: decode the 1st audio and video frames to fire the 'loadeddata'
* event.
*
* Transition to:
* SHUTDOWN if any decode error.
* SEEKING if any seek request.
* DECODING/LOOPING_DECODING when the 'loadeddata' event is fired.
*/
class MediaDecoderStateMachine::DecodingFirstFrameState
: public MediaDecoderStateMachine::StateObject {
public:
explicit DecodingFirstFrameState(Master* aPtr) : StateObject(aPtr) {}
void Enter();
void Exit() override {
// mPendingSeek is either moved in MaybeFinishDecodeFirstFrame()
// or should be rejected here before transition to SHUTDOWN.
mPendingSeek.RejectIfExists(__func__);
}
State GetState() const override { return DECODER_STATE_DECODING_FIRSTFRAME; }
void HandleAudioDecoded(AudioData* aAudio) override {
mMaster->PushAudio(aAudio);
MaybeFinishDecodeFirstFrame();
}
void HandleVideoDecoded(VideoData* aVideo) override {
mMaster->PushVideo(aVideo);
MaybeFinishDecodeFirstFrame();
}
void HandleWaitingForAudio() override {
mMaster->WaitForData(MediaData::Type::AUDIO_DATA);
}
void HandleAudioCanceled() override { mMaster->RequestAudioData(); }
void HandleEndOfAudio() override {
AudioQueue().Finish();
MaybeFinishDecodeFirstFrame();
}
void HandleWaitingForVideo() override {
mMaster->WaitForData(MediaData::Type::VIDEO_DATA);
}
void HandleVideoCanceled() override {
mMaster->RequestVideoData(media::TimeUnit());
}
void HandleEndOfVideo() override {
VideoQueue().Finish();
MaybeFinishDecodeFirstFrame();
}
void HandleAudioWaited(MediaData::Type aType) override {
mMaster->RequestAudioData();
}
void HandleVideoWaited(MediaData::Type aType) override {
mMaster->RequestVideoData(media::TimeUnit());
}
void HandleVideoSuspendTimeout() override {
// Do nothing for we need to decode the 1st video frame to get the
// dimensions.
}
void HandleResumeVideoDecoding(const TimeUnit&) override {
// We never suspend video decoding in this state.
MOZ_ASSERT(false, "Shouldn't have suspended video decoding.");
}
RefPtr<MediaDecoder::SeekPromise> HandleSeek(
const SeekTarget& aTarget) override {
if (mMaster->mIsMSE) {
return StateObject::HandleSeek(aTarget);
}
// Delay seek request until decoding first frames for non-MSE media.
SLOG("Not Enough Data to seek at this stage, queuing seek");
mPendingSeek.RejectIfExists(__func__);
mPendingSeek.mTarget.emplace(aTarget);
return mPendingSeek.mPromise.Ensure(__func__);
}
private:
// Notify FirstFrameLoaded if having decoded first frames and
// transition to SEEKING if there is any pending seek, or DECODING otherwise.
void MaybeFinishDecodeFirstFrame();
SeekJob mPendingSeek;
};
/**
* Purpose: decode audio/video data for playback.
*
* Transition to:
* DORMANT if playback is paused for a while.
* SEEKING if any seek request.
* SHUTDOWN if any decode error.
* BUFFERING if playback can't continue due to lack of decoded data.
* COMPLETED when having decoded all audio/video data.
* LOOPING_DECODING when media start seamless looping
*/
class MediaDecoderStateMachine::DecodingState
: public MediaDecoderStateMachine::StateObject {
public:
explicit DecodingState(Master* aPtr)
: StateObject(aPtr), mDormantTimer(OwnerThread()) {}
void Enter();
void Exit() override {
if (!mDecodeStartTime.IsNull()) {
TimeDuration decodeDuration = TimeStamp::Now() - mDecodeStartTime;
SLOG("Exiting DECODING, decoded for %.3lfs", decodeDuration.ToSeconds());
}
mDormantTimer.Reset();
mOnAudioPopped.DisconnectIfExists();
mOnVideoPopped.DisconnectIfExists();
}
void Step() override;
State GetState() const override { return DECODER_STATE_DECODING; }
void HandleAudioDecoded(AudioData* aAudio) override {
mMaster->PushAudio(aAudio);
DispatchDecodeTasksIfNeeded();
MaybeStopPrerolling();
}
void HandleVideoDecoded(VideoData* aVideo) override {
// We only do this check when we're not looping, which can be known by
// checking the queue's offset.
const auto currentTime = mMaster->GetMediaTime();
if (aVideo->GetEndTime() < currentTime &&
VideoQueue().GetOffset() == media::TimeUnit::Zero()) {
if (!mVideoFirstLateTime) {
mVideoFirstLateTime = Some(TimeStamp::Now());
}
PROFILER_MARKER("Video falling behind", MEDIA_PLAYBACK, {},
VideoFallingBehindMarker, aVideo->mTime.ToMicroseconds(),
currentTime.ToMicroseconds());
SLOG("video %" PRId64 " starts being late (current=%" PRId64 ")",
aVideo->mTime.ToMicroseconds(), currentTime.ToMicroseconds());
} else {
mVideoFirstLateTime.reset();
}
mMaster->PushVideo(aVideo);
DispatchDecodeTasksIfNeeded();
MaybeStopPrerolling();
}
void HandleAudioCanceled() override { mMaster->RequestAudioData(); }
void HandleVideoCanceled() override {
mMaster->RequestVideoData(mMaster->GetMediaTime(),
ShouldRequestNextKeyFrame());
}
void HandleEndOfAudio() override;
void HandleEndOfVideo() override;
void HandleWaitingForAudio() override {
mMaster->WaitForData(MediaData::Type::AUDIO_DATA);
MaybeStopPrerolling();
}
void HandleWaitingForVideo() override {
mMaster->WaitForData(MediaData::Type::VIDEO_DATA);
MaybeStopPrerolling();
}
void HandleAudioWaited(MediaData::Type aType) override {
mMaster->RequestAudioData();
}
void HandleVideoWaited(MediaData::Type aType) override {
mMaster->RequestVideoData(mMaster->GetMediaTime(),
ShouldRequestNextKeyFrame());
}
void HandleAudioCaptured() override {
MaybeStopPrerolling();
// MediaSink is changed. Schedule Step() to check if we can start playback.
mMaster->ScheduleStateMachine();
}
void HandleVideoSuspendTimeout() override {
// No video, so nothing to suspend.
if (!mMaster->HasVideo()) {
return;
}
PROFILER_MARKER_UNTYPED("MDSM::EnterVideoSuspend", MEDIA_PLAYBACK);
mMaster->mVideoDecodeSuspended = true;
mMaster->mOnPlaybackEvent.Notify(MediaPlaybackEvent::EnterVideoSuspend);
Reader()->SetVideoBlankDecode(true);
}
void HandlePlayStateChanged(MediaDecoder::PlayState aPlayState) override {
if (aPlayState == MediaDecoder::PLAY_STATE_PLAYING) {
// Schedule Step() to check if we can start playback.
mMaster->ScheduleStateMachine();
// Try to dispatch decoding tasks for mMinimizePreroll might be reset.
DispatchDecodeTasksIfNeeded();
}
if (aPlayState == MediaDecoder::PLAY_STATE_PAUSED) {
StartDormantTimer();
mVideoFirstLateTime.reset();
} else {
mDormantTimer.Reset();
}
}
void GetDebugInfo(
dom::MediaDecoderStateMachineDecodingStateDebugInfo& aInfo) override {
aInfo.mIsPrerolling = mIsPrerolling;
}
void HandleLoopingChanged() override { SetDecodingState(); }
protected:
virtual void EnsureAudioDecodeTaskQueued();
virtual void EnsureVideoDecodeTaskQueued();
virtual bool ShouldStopPrerolling() const {
return mIsPrerolling &&
(DonePrerollingAudio() ||
IsWaitingData(MediaData::Type::AUDIO_DATA)) &&
(DonePrerollingVideo() ||
IsWaitingData(MediaData::Type::VIDEO_DATA));
}
virtual bool IsWaitingData(MediaData::Type aType) const {
if (aType == MediaData::Type::AUDIO_DATA) {
return mMaster->IsWaitingAudioData();
}
MOZ_ASSERT(aType == MediaData::Type::VIDEO_DATA);
return mMaster->IsWaitingVideoData();
}
void MaybeStopPrerolling() {
if (ShouldStopPrerolling()) {
mIsPrerolling = false;
// Check if we can start playback.
mMaster->ScheduleStateMachine();
}
}
bool ShouldRequestNextKeyFrame() const {
if (!mVideoFirstLateTime) {
return false;
}
const double elapsedTimeMs =
(TimeStamp::Now() - *mVideoFirstLateTime).ToMilliseconds();
const bool rv = elapsedTimeMs >=
StaticPrefs::media_decoder_skip_when_video_too_slow_ms();
if (rv) {
PROFILER_MARKER_UNTYPED("Skipping to next keyframe", MEDIA_PLAYBACK);
SLOG(
"video has been late behind media time for %f ms, should skip to "
"next key frame",
elapsedTimeMs);
}
return rv;
}
virtual bool IsBufferingAllowed() const { return true; }
private:
void DispatchDecodeTasksIfNeeded();
void MaybeStartBuffering();
// At the start of decoding we want to "preroll" the decode until we've
// got a few frames decoded before we consider whether decode is falling
// behind. Otherwise our "we're falling behind" logic will trigger
// unnecessarily if we start playing as soon as the first sample is
// decoded. These two fields store how many video frames and audio
// samples we must consume before are considered to be finished prerolling.
TimeUnit AudioPrerollThreshold() const {
return (mMaster->mAmpleAudioThreshold / 2)
.MultDouble(mMaster->mPlaybackRate);
}
uint32_t VideoPrerollFrames() const {
return std::min(
static_cast<uint32_t>(
mMaster->GetAmpleVideoFrames() / 2. * mMaster->mPlaybackRate + 1),
sVideoQueueDefaultSize);
}
bool DonePrerollingAudio() const {
return !mMaster->IsAudioDecoding() ||
mMaster->GetDecodedAudioDuration() >= AudioPrerollThreshold();
}
bool DonePrerollingVideo() const {
return !mMaster->IsVideoDecoding() ||
static_cast<uint32_t>(mMaster->VideoQueue().GetSize()) >=
VideoPrerollFrames();
}
void StartDormantTimer() {
if (!mMaster->mMediaSeekable) {
// Don't enter dormant if the media is not seekable because we need to
// seek when exiting dormant.
return;
}
auto timeout = StaticPrefs::media_dormant_on_pause_timeout_ms();
if (timeout < 0) {
// Disabled when timeout is negative.
return;
}
if (timeout == 0) {
// Enter dormant immediately without scheduling a timer.
SetState<DormantState>();
return;
}
if (mMaster->mMinimizePreroll) {
SetState<DormantState>();
return;
}
TimeStamp target =
TimeStamp::Now() + TimeDuration::FromMilliseconds(timeout);
mDormantTimer.Ensure(
target,
[this]() {
AUTO_PROFILER_LABEL("DecodingState::StartDormantTimer:SetDormant",
MEDIA_PLAYBACK);
mDormantTimer.CompleteRequest();
SetState<DormantState>();
},
[this]() { mDormantTimer.CompleteRequest(); });
}
// Time at which we started decoding.
TimeStamp mDecodeStartTime;
// When we start decoding (either for the first time, or after a pause)
// we may be low on decoded data. We don't want our "low data" logic to
// kick in and decide that we're low on decoded data because the download
// can't keep up with the decode, and cause us to pause playback. So we
// have a "preroll" stage, where we ignore the results of our "low data"
// logic during the first few frames of our decode. This occurs during
// playback.
bool mIsPrerolling = true;
// Fired when playback is paused for a while to enter dormant.
DelayedScheduler mDormantTimer;
MediaEventListener mOnAudioPopped;
MediaEventListener mOnVideoPopped;
// If video has been later than the media time, this will records when the
// video started being late. It will be reset once video catches up with the
// media time.
Maybe<TimeStamp> mVideoFirstLateTime;
};
/**
* Purpose: decode audio data for playback when media is in seamless
* looping, we will adjust media time to make samples time monotonically
* increasing. All its methods runs on its owner thread (MDSM thread).
*
* Transition to:
* DORMANT if playback is paused for a while.
* SEEKING if any seek request.
* SHUTDOWN if any decode error.
* BUFFERING if playback can't continue due to lack of decoded data.
* COMPLETED when the media resource is closed and no data is available
* anymore.
* DECODING when media stops seamless looping.
*/
class MediaDecoderStateMachine::LoopingDecodingState
: public MediaDecoderStateMachine::DecodingState {
public:
explicit LoopingDecodingState(Master* aPtr)
: DecodingState(aPtr),
mIsReachingAudioEOS(!mMaster->IsAudioDecoding()),
mIsReachingVideoEOS(!mMaster->IsVideoDecoding()),
mAudioEndedBeforeEnteringStateWithoutDuration(false),
mVideoEndedBeforeEnteringStateWithoutDuration(false) {
MOZ_ASSERT(mMaster->mLooping);
SLOG(
"LoopingDecodingState ctor, mIsReachingAudioEOS=%d, "
"mIsReachingVideoEOS=%d",
mIsReachingAudioEOS, mIsReachingVideoEOS);
// If the track has reached EOS and we already have its last data, then we
// can know its duration. But if playback starts from EOS (due to seeking),
// the decoded end time would be zero because none of data gets decoded yet.
if (mIsReachingAudioEOS) {
if (mMaster->HasLastDecodedData(MediaData::Type::AUDIO_DATA) &&
!mMaster->mAudioTrackDecodedDuration) {
mMaster->mAudioTrackDecodedDuration.emplace(
mMaster->mDecodedAudioEndTime);
SLOG("determine mAudioTrackDecodedDuration");
} else {
mAudioEndedBeforeEnteringStateWithoutDuration = true;
SLOG("still don't know mAudioTrackDecodedDuration");
}
}
if (mIsReachingVideoEOS) {
if (mMaster->HasLastDecodedData(MediaData::Type::VIDEO_DATA) &&
!mMaster->mVideoTrackDecodedDuration) {
mMaster->mVideoTrackDecodedDuration.emplace(
mMaster->mDecodedVideoEndTime);
SLOG("determine mVideoTrackDecodedDuration");
} else {
mVideoEndedBeforeEnteringStateWithoutDuration = true;
SLOG("still don't know mVideoTrackDecodedDuration");
}
}
// We might be able to determine the duration already, let's check.
if (mIsReachingAudioEOS || mIsReachingVideoEOS) {
Unused << DetermineOriginalDecodedDurationIfNeeded();
}
// If we've looped at least once before, then we need to update queue offset
// correctly to make the media data time and the clock time consistent.
// Otherwise, it would cause a/v desync.
if (mMaster->mOriginalDecodedDuration != media::TimeUnit::Zero()) {
if (mIsReachingAudioEOS && mMaster->HasAudio()) {
AudioQueue().SetOffset(AudioQueue().GetOffset() +
mMaster->mOriginalDecodedDuration);
}
if (mIsReachingVideoEOS && mMaster->HasVideo()) {
VideoQueue().SetOffset(VideoQueue().GetOffset() +
mMaster->mOriginalDecodedDuration);
}
}
}
void Enter() {
if (mMaster->HasAudio() && mIsReachingAudioEOS) {
SLOG("audio has ended, request the data again.");
RequestDataFromStartPosition(TrackInfo::TrackType::kAudioTrack);
}
if (mMaster->HasVideo() && mIsReachingVideoEOS) {
SLOG("video has ended, request the data again.");
RequestDataFromStartPosition(TrackInfo::TrackType::kVideoTrack);
}
DecodingState::Enter();
}
void Exit() override {
MOZ_DIAGNOSTIC_ASSERT(mMaster->OnTaskQueue());
SLOG("Leaving looping state, offset [a=%" PRId64 ",v=%" PRId64
"], endtime [a=%" PRId64 ",v=%" PRId64 "], track duration [a=%" PRId64
",v=%" PRId64 "], waiting=%s",
AudioQueue().GetOffset().ToMicroseconds(),
VideoQueue().GetOffset().ToMicroseconds(),
mMaster->mDecodedAudioEndTime.ToMicroseconds(),
mMaster->mDecodedVideoEndTime.ToMicroseconds(),
mMaster->mAudioTrackDecodedDuration
? mMaster->mAudioTrackDecodedDuration->ToMicroseconds()
: 0,
mMaster->mVideoTrackDecodedDuration
? mMaster->mVideoTrackDecodedDuration->ToMicroseconds()
: 0,
mDataWaitingTimestampAdjustment
? MediaData::TypeToStr(mDataWaitingTimestampAdjustment->mType)
: "none");
if (ShouldDiscardLoopedData(MediaData::Type::AUDIO_DATA)) {
DiscardLoopedData(MediaData::Type::AUDIO_DATA);
}
if (ShouldDiscardLoopedData(MediaData::Type::VIDEO_DATA)) {
DiscardLoopedData(MediaData::Type::VIDEO_DATA);
}
if (mMaster->HasAudio() && HasDecodedLastAudioFrame()) {
SLOG("Mark audio queue as finished");
mMaster->mAudioDataRequest.DisconnectIfExists();
mMaster->mAudioWaitRequest.DisconnectIfExists();
AudioQueue().Finish();
}
if (mMaster->HasVideo() && HasDecodedLastVideoFrame()) {
SLOG("Mark video queue as finished");
mMaster->mVideoDataRequest.DisconnectIfExists();
mMaster->mVideoWaitRequest.DisconnectIfExists();
VideoQueue().Finish();
}
// Clear waiting data should be done after marking queue as finished.
mDataWaitingTimestampAdjustment = nullptr;
mAudioDataRequest.DisconnectIfExists();
mVideoDataRequest.DisconnectIfExists();
mAudioSeekRequest.DisconnectIfExists();
mVideoSeekRequest.DisconnectIfExists();
DecodingState::Exit();
}
~LoopingDecodingState() {
MOZ_DIAGNOSTIC_ASSERT(!mAudioDataRequest.Exists());
MOZ_DIAGNOSTIC_ASSERT(!mVideoDataRequest.Exists());
MOZ_DIAGNOSTIC_ASSERT(!mAudioSeekRequest.Exists());
MOZ_DIAGNOSTIC_ASSERT(!mVideoSeekRequest.Exists());
}
State GetState() const override { return DECODER_STATE_LOOPING_DECODING; }
void HandleAudioDecoded(AudioData* aAudio) override {
// TODO : check if we need to update mOriginalDecodedDuration
// After pushing data to the queue, timestamp might be adjusted.
DecodingState::HandleAudioDecoded(aAudio);
mMaster->mDecodedAudioEndTime =
std::max(aAudio->GetEndTime(), mMaster->mDecodedAudioEndTime);
SLOG("audio sample after time-adjustment [%" PRId64 ",%" PRId64 "]",
aAudio->mTime.ToMicroseconds(), aAudio->GetEndTime().ToMicroseconds());
}
void HandleVideoDecoded(VideoData* aVideo) override {
// TODO : check if we need to update mOriginalDecodedDuration
// Here sample still keeps its original timestamp.
// This indicates there is a shorter audio track, and it's the first time in
// the looping (audio ends but video is playing) so that we haven't been
// able to determine the decoded duration. Therefore, we fill the gap
// between two tracks before video ends. Afterward, this adjustment will be
// done in `HandleEndOfAudio()`.
if (mMaster->mOriginalDecodedDuration == media::TimeUnit::Zero() &&
mMaster->mAudioTrackDecodedDuration &&
aVideo->GetEndTime() > *mMaster->mAudioTrackDecodedDuration) {
media::TimeUnit gap;
// First time we fill gap between the video frame to the last audio.
if (auto prevVideo = VideoQueue().PeekBack();
prevVideo &&
prevVideo->GetEndTime() < *mMaster->mAudioTrackDecodedDuration) {
gap =
aVideo->GetEndTime().ToBase(*mMaster->mAudioTrackDecodedDuration) -
*mMaster->mAudioTrackDecodedDuration;
}
// Then fill the gap for all following videos.
else {
gap = aVideo->mDuration.ToBase(*mMaster->mAudioTrackDecodedDuration);
}
SLOG("Longer video %" PRId64 "%s (audio-durtaion=%" PRId64
"%s), insert silence to fill the gap %" PRId64 "%s",
aVideo->GetEndTime().ToMicroseconds(),
aVideo->GetEndTime().ToString().get(),
mMaster->mAudioTrackDecodedDuration->ToMicroseconds(),
mMaster->mAudioTrackDecodedDuration->ToString().get(),
gap.ToMicroseconds(), gap.ToString().get());
PushFakeAudioDataIfNeeded(gap);
}
// After pushing data to the queue, timestamp might be adjusted.
DecodingState::HandleVideoDecoded(aVideo);
mMaster->mDecodedVideoEndTime =
std::max(aVideo->GetEndTime(), mMaster->mDecodedVideoEndTime);
SLOG("video sample after time-adjustment [%" PRId64 ",%" PRId64 "]",
aVideo->mTime.ToMicroseconds(), aVideo->GetEndTime().ToMicroseconds());
}
void HandleEndOfAudio() override {
mIsReachingAudioEOS = true;
if (!mMaster->mAudioTrackDecodedDuration &&
mMaster->HasLastDecodedData(MediaData::Type::AUDIO_DATA)) {
mMaster->mAudioTrackDecodedDuration.emplace(
mMaster->mDecodedAudioEndTime);
}
if (DetermineOriginalDecodedDurationIfNeeded()) {
AudioQueue().SetOffset(AudioQueue().GetOffset() +
mMaster->mOriginalDecodedDuration);
}
// This indicates that the audio track is shorter than the video track, so
// we need to add some silence to fill the gap.
if (mMaster->mAudioTrackDecodedDuration &&
mMaster->mOriginalDecodedDuration >
*mMaster->mAudioTrackDecodedDuration) {
MOZ_ASSERT(mMaster->HasVideo());
MOZ_ASSERT(mMaster->mVideoTrackDecodedDuration);
MOZ_ASSERT(mMaster->mOriginalDecodedDuration ==
*mMaster->mVideoTrackDecodedDuration);
auto gap = mMaster->mOriginalDecodedDuration.ToBase(
*mMaster->mAudioTrackDecodedDuration) -
*mMaster->mAudioTrackDecodedDuration;
SLOG(
"Audio track is shorter than the original decoded duration "
"(a=%" PRId64 "%s, t=%" PRId64
"%s), insert silence to fill the gap %" PRId64 "%s",
mMaster->mAudioTrackDecodedDuration->ToMicroseconds(),
mMaster->mAudioTrackDecodedDuration->ToString().get(),
mMaster->mOriginalDecodedDuration.ToMicroseconds(),
mMaster->mOriginalDecodedDuration.ToString().get(),
gap.ToMicroseconds(), gap.ToString().get());
PushFakeAudioDataIfNeeded(gap);
}
SLOG(
"received audio EOS when seamless looping, starts seeking, "
"audioLoopingOffset=[%" PRId64 "], mAudioTrackDecodedDuration=[%" PRId64
"]",
AudioQueue().GetOffset().ToMicroseconds(),
mMaster->mAudioTrackDecodedDuration->ToMicroseconds());
if (!IsRequestingDataFromStartPosition(MediaData::Type::AUDIO_DATA)) {
RequestDataFromStartPosition(TrackInfo::TrackType::kAudioTrack);
}
ProcessSamplesWaitingAdjustmentIfAny();
}
void HandleEndOfVideo() override {
mIsReachingVideoEOS = true;
if (!mMaster->mVideoTrackDecodedDuration &&
mMaster->HasLastDecodedData(MediaData::Type::VIDEO_DATA)) {
mMaster->mVideoTrackDecodedDuration.emplace(
mMaster->mDecodedVideoEndTime);
}
if (DetermineOriginalDecodedDurationIfNeeded()) {
VideoQueue().SetOffset(VideoQueue().GetOffset() +
mMaster->mOriginalDecodedDuration);
}
SLOG(
"received video EOS when seamless looping, starts seeking, "
"videoLoopingOffset=[%" PRId64 "], mVideoTrackDecodedDuration=[%" PRId64
"]",
VideoQueue().GetOffset().ToMicroseconds(),
mMaster->mVideoTrackDecodedDuration->ToMicroseconds());
if (!IsRequestingDataFromStartPosition(MediaData::Type::VIDEO_DATA)) {
RequestDataFromStartPosition(TrackInfo::TrackType::kVideoTrack);
}
ProcessSamplesWaitingAdjustmentIfAny();
}
private:
void RequestDataFromStartPosition(TrackInfo::TrackType aType) {
MOZ_DIAGNOSTIC_ASSERT(aType == TrackInfo::TrackType::kAudioTrack ||
aType == TrackInfo::TrackType::kVideoTrack);
const bool isAudio = aType == TrackInfo::TrackType::kAudioTrack;
MOZ_ASSERT_IF(isAudio, mMaster->HasAudio());
MOZ_ASSERT_IF(!isAudio, mMaster->HasVideo());
if (IsReaderSeeking()) {
MOZ_ASSERT(!mPendingSeekingType);
mPendingSeekingType = Some(aType);
SLOG("Delay %s seeking until the reader finishes current seeking",
isAudio ? "audio" : "video");
return;
}
auto& seekRequest = isAudio ? mAudioSeekRequest : mVideoSeekRequest;
Reader()->ResetDecode(aType);
Reader()
->Seek(SeekTarget(media::TimeUnit::Zero(), SeekTarget::Type::Accurate,
isAudio ? SeekTarget::Track::AudioOnly
: SeekTarget::Track::VideoOnly))
->Then(
OwnerThread(), __func__,
[this, isAudio, master = RefPtr{mMaster}]() mutable -> void {
AUTO_PROFILER_LABEL(
nsPrintfCString(
"LoopingDecodingState::RequestDataFromStartPosition(%s)::"
"SeekResolved",
isAudio ? "audio" : "video")
.get(),
MEDIA_PLAYBACK);
if (auto& state = master->mStateObj;
state &&
state->GetState() != DECODER_STATE_LOOPING_DECODING) {
MOZ_RELEASE_ASSERT(false, "This shouldn't happen!");
return;
}
if (isAudio) {
mAudioSeekRequest.Complete();
} else {
mVideoSeekRequest.Complete();
}
SLOG(
"seeking completed, start to request first %s sample "
"(queued=%zu, decoder-queued=%zu)",
isAudio ? "audio" : "video",
isAudio ? AudioQueue().GetSize() : VideoQueue().GetSize(),
isAudio ? Reader()->SizeOfAudioQueueInFrames()
: Reader()->SizeOfVideoQueueInFrames());
if (isAudio) {
RequestAudioDataFromReaderAfterEOS();
} else {
RequestVideoDataFromReaderAfterEOS();
}
if (mPendingSeekingType) {
auto seekingType = *mPendingSeekingType;
mPendingSeekingType.reset();
SLOG("Perform pending %s seeking", TrackTypeToStr(seekingType));
RequestDataFromStartPosition(seekingType);
}
},
[this, isAudio, master = RefPtr{mMaster}](
const SeekRejectValue& aReject) mutable -> void {
AUTO_PROFILER_LABEL(
nsPrintfCString("LoopingDecodingState::"
"RequestDataFromStartPosition(%s)::"
"SeekRejected",
isAudio ? "audio" : "video")
.get(),
MEDIA_PLAYBACK);
if (auto& state = master->mStateObj;
state &&
state->GetState() != DECODER_STATE_LOOPING_DECODING) {
MOZ_RELEASE_ASSERT(false, "This shouldn't happen!");
return;
}
if (isAudio) {
mAudioSeekRequest.Complete();
} else {
mVideoSeekRequest.Complete();
}
HandleError(aReject.mError, isAudio);
})
->Track(seekRequest);
}
void RequestAudioDataFromReaderAfterEOS() {
MOZ_ASSERT(mMaster->HasAudio());
Reader()
->RequestAudioData()
->Then(
OwnerThread(), __func__,
[this, master = RefPtr{mMaster}](const RefPtr<AudioData>& aAudio) {
AUTO_PROFILER_LABEL(
"LoopingDecodingState::"
"RequestAudioDataFromReader::"
"RequestDataResolved",
MEDIA_PLAYBACK);
if (auto& state = master->mStateObj;
state &&
state->GetState() != DECODER_STATE_LOOPING_DECODING) {
MOZ_RELEASE_ASSERT(false, "This shouldn't happen!");
return;
}
mIsReachingAudioEOS = false;
mAudioDataRequest.Complete();
SLOG(
"got audio decoded sample "
"[%" PRId64 ",%" PRId64 "]",
aAudio->mTime.ToMicroseconds(),
aAudio->GetEndTime().ToMicroseconds());
if (ShouldPutDataOnWaiting(MediaData::Type::AUDIO_DATA)) {
SLOG(
"decoded audio sample needs to wait for timestamp "
"adjustment after EOS");
PutDataOnWaiting(aAudio);
return;
}
HandleAudioDecoded(aAudio);
ProcessSamplesWaitingAdjustmentIfAny();
},
[this, master = RefPtr{mMaster}](const MediaResult& aError) {
AUTO_PROFILER_LABEL(
"LoopingDecodingState::"
"RequestAudioDataFromReader::"
"RequestDataRejected",
MEDIA_PLAYBACK);
if (auto& state = master->mStateObj;
state &&
state->GetState() != DECODER_STATE_LOOPING_DECODING) {
MOZ_RELEASE_ASSERT(false, "This shouldn't happen!");
return;
}
mAudioDataRequest.Complete();
HandleError(aError, true /* isAudio */);
})
->Track(mAudioDataRequest);
}
void RequestVideoDataFromReaderAfterEOS() {
MOZ_ASSERT(mMaster->HasVideo());
Reader()
->RequestVideoData(media::TimeUnit(),
false /* aRequestNextVideoKeyFrame */)
->Then(
OwnerThread(), __func__,
[this, master = RefPtr{mMaster}](const RefPtr<VideoData>& aVideo) {
AUTO_PROFILER_LABEL(
"LoopingDecodingState::"
"RequestVideoDataFromReaderAfterEOS()::"
"RequestDataResolved",
MEDIA_PLAYBACK);
if (auto& state = master->mStateObj;
state &&
state->GetState() != DECODER_STATE_LOOPING_DECODING) {
MOZ_RELEASE_ASSERT(false, "This shouldn't happen!");
return;
}
mIsReachingVideoEOS = false;
mVideoDataRequest.Complete();
SLOG(
"got video decoded sample "
"[%" PRId64 ",%" PRId64 "]",
aVideo->mTime.ToMicroseconds(),
aVideo->GetEndTime().ToMicroseconds());
if (ShouldPutDataOnWaiting(MediaData::Type::VIDEO_DATA)) {
SLOG(
"decoded video sample needs to wait for timestamp "
"adjustment after EOS");
PutDataOnWaiting(aVideo);
return;
}
mMaster->mBypassingSkipToNextKeyFrameCheck = true;
HandleVideoDecoded(aVideo);
ProcessSamplesWaitingAdjustmentIfAny();
},
[this, master = RefPtr{mMaster}](const MediaResult& aError) {
AUTO_PROFILER_LABEL(
"LoopingDecodingState::"
"RequestVideoDataFromReaderAfterEOS()::"
"RequestDataRejected",
MEDIA_PLAYBACK);
if (auto& state = master->mStateObj;
state &&
state->GetState() != DECODER_STATE_LOOPING_DECODING) {
MOZ_RELEASE_ASSERT(false, "This shouldn't happen!");
return;
}
mVideoDataRequest.Complete();
HandleError(aError, false /* isAudio */);
})
->Track(mVideoDataRequest);
}
void HandleError(const MediaResult& aError, bool aIsAudio);
bool ShouldRequestData(MediaData::Type aType) const {
MOZ_DIAGNOSTIC_ASSERT(aType == MediaData::Type::AUDIO_DATA ||
aType == MediaData::Type::VIDEO_DATA);
if (aType == MediaData::Type::AUDIO_DATA &&
(mAudioSeekRequest.Exists() || mAudioDataRequest.Exists() ||
IsDataWaitingForTimestampAdjustment(MediaData::Type::AUDIO_DATA) ||
mMaster->IsWaitingAudioData())) {
return false;
}
if (aType == MediaData::Type::VIDEO_DATA &&
(mVideoSeekRequest.Exists() || mVideoDataRequest.Exists() ||
IsDataWaitingForTimestampAdjustment(MediaData::Type::VIDEO_DATA) ||
mMaster->IsWaitingVideoData())) {
return false;
}
return true;
}
void HandleAudioCanceled() override {
if (ShouldRequestData(MediaData::Type::AUDIO_DATA)) {
mMaster->RequestAudioData();
}
}
void HandleAudioWaited(MediaData::Type aType) override {
if (ShouldRequestData(MediaData::Type::AUDIO_DATA)) {
mMaster->RequestAudioData();
}
}
void HandleVideoCanceled() override {
if (ShouldRequestData(MediaData::Type::VIDEO_DATA)) {
mMaster->RequestVideoData(mMaster->GetMediaTime(),
ShouldRequestNextKeyFrame());
};
}
void HandleVideoWaited(MediaData::Type aType) override {
if (ShouldRequestData(MediaData::Type::VIDEO_DATA)) {
mMaster->RequestVideoData(mMaster->GetMediaTime(),
ShouldRequestNextKeyFrame());
};
}
void EnsureAudioDecodeTaskQueued() override {
if (!ShouldRequestData(MediaData::Type::AUDIO_DATA)) {
return;
}
DecodingState::EnsureAudioDecodeTaskQueued();
}
void EnsureVideoDecodeTaskQueued() override {
if (!ShouldRequestData(MediaData::Type::VIDEO_DATA)) {
return;
}
DecodingState::EnsureVideoDecodeTaskQueued();
}
bool DetermineOriginalDecodedDurationIfNeeded() {
// Duration would only need to be set once, unless we get more data which is
// larger than the duration. That can happen on MSE (reopen stream).
if (mMaster->mOriginalDecodedDuration != media::TimeUnit::Zero()) {
return true;
}
// Single track situations
if (mMaster->HasAudio() && !mMaster->HasVideo() &&
mMaster->mAudioTrackDecodedDuration) {
mMaster->mOriginalDecodedDuration = *mMaster->mAudioTrackDecodedDuration;
SLOG("audio only, duration=%" PRId64,
mMaster->mOriginalDecodedDuration.ToMicroseconds());
return true;
}
if (mMaster->HasVideo() && !mMaster->HasAudio() &&
mMaster->mVideoTrackDecodedDuration) {
mMaster->mOriginalDecodedDuration = *mMaster->mVideoTrackDecodedDuration;
SLOG("video only, duration=%" PRId64,
mMaster->mOriginalDecodedDuration.ToMicroseconds());
return true;
}
// Two tracks situation
if (mMaster->HasAudio() && mMaster->HasVideo()) {
// Both tracks have ended so that we can check which track is longer.
if (mMaster->mAudioTrackDecodedDuration &&
mMaster->mVideoTrackDecodedDuration) {
mMaster->mOriginalDecodedDuration =
std::max(*mMaster->mVideoTrackDecodedDuration,
*mMaster->mAudioTrackDecodedDuration);
SLOG("Both tracks ended, original duration=%" PRId64 " (a=%" PRId64
", v=%" PRId64 ")",
mMaster->mOriginalDecodedDuration.ToMicroseconds(),
mMaster->mAudioTrackDecodedDuration->ToMicroseconds(),
mMaster->mVideoTrackDecodedDuration->ToMicroseconds());
return true;
}
// When entering the state, video has ended but audio hasn't, which means
// audio is longer.
if (mMaster->mAudioTrackDecodedDuration &&
mVideoEndedBeforeEnteringStateWithoutDuration) {
mMaster->mOriginalDecodedDuration =
*mMaster->mAudioTrackDecodedDuration;
mVideoEndedBeforeEnteringStateWithoutDuration = false;
SLOG("audio is longer, duration=%" PRId64,
mMaster->mOriginalDecodedDuration.ToMicroseconds());
return true;
}
// When entering the state, audio has ended but video hasn't, which means
// video is longer.
if (mMaster->mVideoTrackDecodedDuration &&
mAudioEndedBeforeEnteringStateWithoutDuration) {
mMaster->mOriginalDecodedDuration =
*mMaster->mVideoTrackDecodedDuration;
mAudioEndedBeforeEnteringStateWithoutDuration = false;
SLOG("video is longer, duration=%" PRId64,
mMaster->mOriginalDecodedDuration.ToMicroseconds());
return true;
}
SLOG("Still waiting for another track ends...");
MOZ_ASSERT(!mMaster->mAudioTrackDecodedDuration ||
!mMaster->mVideoTrackDecodedDuration);
}
SLOG("can't determine the original decoded duration yet");
MOZ_ASSERT(mMaster->mOriginalDecodedDuration == media::TimeUnit::Zero());
return false;
}
void ProcessSamplesWaitingAdjustmentIfAny() {
if (!mDataWaitingTimestampAdjustment) {
return;
}
RefPtr<MediaData> data = mDataWaitingTimestampAdjustment;
mDataWaitingTimestampAdjustment = nullptr;
const bool isAudio = data->mType == MediaData::Type::AUDIO_DATA;
SLOG("process %s sample waiting for timestamp adjustment",
isAudio ? "audio" : "video");
if (isAudio) {
// Waiting sample is for next round of looping, so the queue offset
// shouldn't be zero. This happens when the track has reached EOS before
// entering the state (and looping never happens before). Same for below
// video case.
if (AudioQueue().GetOffset() == media::TimeUnit::Zero()) {
AudioQueue().SetOffset(mMaster->mOriginalDecodedDuration);
}
HandleAudioDecoded(data->As<AudioData>());
} else {
MOZ_DIAGNOSTIC_ASSERT(data->mType == MediaData::Type::VIDEO_DATA);
if (VideoQueue().GetOffset() == media::TimeUnit::Zero()) {
VideoQueue().SetOffset(mMaster->mOriginalDecodedDuration);
}
HandleVideoDecoded(data->As<VideoData>());
}
}
bool IsDataWaitingForTimestampAdjustment(MediaData::Type aType) const {
return mDataWaitingTimestampAdjustment &&
mDataWaitingTimestampAdjustment->mType == aType;
}
bool ShouldPutDataOnWaiting(MediaData::Type aType) const {
// If another track is already waiting, this track shouldn't be waiting.
// This case only happens when both tracks reached EOS before entering the
// looping decoding state, so we don't know the decoded duration yet (used
// to adjust timestamp) But this is fine, because both tracks will start
// from 0 so we don't need to adjust them now.
if (mDataWaitingTimestampAdjustment &&
!IsDataWaitingForTimestampAdjustment(aType)) {
return false;
}
// Only have one track, no need to wait.
if ((aType == MediaData::Type::AUDIO_DATA && !mMaster->HasVideo()) ||
(aType == MediaData::Type::VIDEO_DATA && !mMaster->HasAudio())) {
return false;
}
// We don't know the duration yet, so we can't calculate the looping offset.
return mMaster->mOriginalDecodedDuration == media::TimeUnit::Zero();
}
void PutDataOnWaiting(MediaData* aData) {
MOZ_ASSERT(!mDataWaitingTimestampAdjustment);
mDataWaitingTimestampAdjustment = aData;
SLOG("put %s [%" PRId64 ",%" PRId64 "] on waiting",
MediaData::TypeToStr(aData->mType), aData->mTime.ToMicroseconds(),
aData->GetEndTime().ToMicroseconds());
MaybeStopPrerolling();
}
bool ShouldDiscardLoopedData(MediaData::Type aType) const {
if (!mMaster->mMediaSink->IsStarted()) {
return false;
}
MOZ_DIAGNOSTIC_ASSERT(aType == MediaData::Type::AUDIO_DATA ||
aType == MediaData::Type::VIDEO_DATA);
const bool isAudio = aType == MediaData::Type::AUDIO_DATA;
if (isAudio && !mMaster->HasAudio()) {
return false;
}
if (!isAudio && !mMaster->HasVideo()) {
return false;
}
/**
* If media cancels looping, we should check whether there is media data
* whose time is later than EOS. If so, we should discard them because we
* won't have a chance to play them.
*
* playback last decoded
* position EOS data time
* ----|---------------|------------|---------> (Increasing timeline)
* mCurrent looping mMaster's
* ClockTime offset mDecodedXXXEndTime
*
*/
const auto offset =
isAudio ? AudioQueue().GetOffset() : VideoQueue().GetOffset();
const auto endTime =
isAudio ? mMaster->mDecodedAudioEndTime : mMaster->mDecodedVideoEndTime;
const auto clockTime = mMaster->GetClock();
return (offset != media::TimeUnit::Zero() && clockTime < offset &&
offset < endTime);
}
void DiscardLoopedData(MediaData::Type aType) {
MOZ_DIAGNOSTIC_ASSERT(aType == MediaData::Type::AUDIO_DATA ||
aType == MediaData::Type::VIDEO_DATA);
const bool isAudio = aType == MediaData::Type::AUDIO_DATA;
const auto offset =
isAudio ? AudioQueue().GetOffset() : VideoQueue().GetOffset();
if (offset == media::TimeUnit::Zero()) {
return;
}
SLOG("Discard %s frames after the time=%" PRId64,
isAudio ? "audio" : "video", offset.ToMicroseconds());
if (isAudio) {
DiscardFramesFromTail(AudioQueue(), [&](int64_t aSampleTime) {
return aSampleTime > offset.ToMicroseconds();
});
} else {
DiscardFramesFromTail(VideoQueue(), [&](int64_t aSampleTime) {
return aSampleTime > offset.ToMicroseconds();
});
}
}
void PushFakeAudioDataIfNeeded(const media::TimeUnit& aDuration) {
MOZ_ASSERT(Info().HasAudio());
const auto& audioInfo = Info().mAudio;
CheckedInt64 frames = aDuration.ToTicksAtRate(audioInfo.mRate);
if (!frames.isValid() || !audioInfo.mChannels || !audioInfo.mRate) {
NS_WARNING("Can't create fake audio, invalid frames/channel/rate?");
return;
}
if (!frames.value()) {
NS_WARNING(nsPrintfCString("Duration (%s) too short, no frame needed",
aDuration.ToString().get())
.get());
return;
}
// If we can get the last sample, use its frame. Otherwise, use common 1024.
int64_t typicalPacketFrameCount = 1024;
if (RefPtr<AudioData> audio = AudioQueue().PeekBack()) {
typicalPacketFrameCount = audio->Frames();
}
media::TimeUnit totalDuration = TimeUnit::Zero(audioInfo.mRate);
// Generate fake audio in a smaller size of audio chunk.
while (frames.value()) {
int64_t packetFrameCount =
std::min(frames.value(), typicalPacketFrameCount);
frames -= packetFrameCount;
AlignedAudioBuffer samples(packetFrameCount * audioInfo.mChannels);
if (!samples) {
NS_WARNING("Can't create audio buffer, OOM?");
return;
}
// `mDecodedAudioEndTime` is adjusted time, and we want unadjusted time
// otherwise the time would be adjusted twice when pushing sample into the
// media queue.
media::TimeUnit startTime = mMaster->mDecodedAudioEndTime;
if (AudioQueue().GetOffset() != media::TimeUnit::Zero()) {
startTime -= AudioQueue().GetOffset();
}
RefPtr<AudioData> data(new AudioData(0, startTime, std::move(samples),
audioInfo.mChannels,
audioInfo.mRate));
SLOG("Created fake audio data (duration=%s, frame-left=%" PRId64 ")",
data->mDuration.ToString().get(), frames.value());
totalDuration += data->mDuration;
HandleAudioDecoded(data);
}
SLOG("Pushed fake silence audio data in total duration=%" PRId64 "%s",
totalDuration.ToMicroseconds(), totalDuration.ToString().get());
}
bool HasDecodedLastAudioFrame() const {
// when we're going to leave looping state and have got EOS before, we
// should mark audio queue as ended because we have got all data we need.
return mAudioDataRequest.Exists() || mAudioSeekRequest.Exists() ||
ShouldDiscardLoopedData(MediaData::Type::AUDIO_DATA) ||
IsDataWaitingForTimestampAdjustment(MediaData::Type::AUDIO_DATA) ||
mIsReachingAudioEOS;
}
bool HasDecodedLastVideoFrame() const {
// when we're going to leave looping state and have got EOS before, we
// should mark video queue as ended because we have got all data we need.
return mVideoDataRequest.Exists() || mVideoSeekRequest.Exists() ||
ShouldDiscardLoopedData(MediaData::Type::VIDEO_DATA) ||
IsDataWaitingForTimestampAdjustment(MediaData::Type::VIDEO_DATA) ||
mIsReachingVideoEOS;
}
bool ShouldStopPrerolling() const override {
// These checks is used to handle the media queue aren't opened correctly
// because they've been close before entering the looping state. Therefore,
// we need to preroll data in order to let new data to reopen the queue
// automatically. Otherwise, playback can't start successfully.
bool isWaitingForNewData = false;
if (mMaster->HasAudio()) {
isWaitingForNewData |= (mIsReachingAudioEOS && AudioQueue().IsFinished());
}
if (mMaster->HasVideo()) {
isWaitingForNewData |= (mIsReachingVideoEOS && VideoQueue().IsFinished());
}
return !isWaitingForNewData && DecodingState::ShouldStopPrerolling();
}
bool IsReaderSeeking() const {
return mAudioSeekRequest.Exists() || mVideoSeekRequest.Exists();
}
bool IsWaitingData(MediaData::Type aType) const override {
if (aType == MediaData::Type::AUDIO_DATA) {
return mMaster->IsWaitingAudioData() ||
IsDataWaitingForTimestampAdjustment(MediaData::Type::AUDIO_DATA);
}
MOZ_DIAGNOSTIC_ASSERT(aType == MediaData::Type::VIDEO_DATA);
return mMaster->IsWaitingVideoData() ||
IsDataWaitingForTimestampAdjustment(MediaData::Type::VIDEO_DATA);
}
bool IsRequestingDataFromStartPosition(MediaData::Type aType) const {
MOZ_DIAGNOSTIC_ASSERT(aType == MediaData::Type::AUDIO_DATA ||
aType == MediaData::Type::VIDEO_DATA);
if (aType == MediaData::Type::AUDIO_DATA) {
return mAudioSeekRequest.Exists() || mAudioDataRequest.Exists();
}
return mVideoSeekRequest.Exists() || mVideoDataRequest.Exists();
}
bool IsBufferingAllowed() const override {
return !mIsReachingAudioEOS && !mIsReachingVideoEOS;
}
bool mIsReachingAudioEOS;
bool mIsReachingVideoEOS;
/**
* If we have both tracks which have different length, when one track ends
* first, we can't adjust new data from that track if another longer track
* hasn't ended yet. The adjusted timestamp needs to be based off the longer
* track's last data's timestamp, because otherwise it would cause a deviation
* and eventually a/v unsync. Those sample needs to be stored and we will
* adjust their timestamp later.
*
* Following graph explains the situation in details.
* o : decoded data with timestamp adjusted or no adjustment (not looping yet)
* x : decoded data without timestamp adjustment.
* - : stop decoding and nothing happens
* EOS : the track reaches to the end. We now know the offset of the track.
*
* Timeline ----------------------------------->
* Track1 : o EOS x - - o
* Track2 : o o o EOS o o
*
* Before reaching track2's EOS, we can't adjust samples from track1 because
* track2 might have longer duration than track1. The sample X would be
* stored in `mDataWaitingTimestampAdjustment` and we would also stop decoding
* for track1.
*
* After reaching track2's EOS, now we know another track's offset, and the
* larger one would be used for `mOriginalDecodedDuration`. Once that duration
* has been determined, we will no longer need to put samples on waiting
* because we already know how to adjust timestamp.
*/
RefPtr<MediaData> mDataWaitingTimestampAdjustment;
MozPromiseRequestHolder<MediaFormatReader::SeekPromise> mAudioSeekRequest;
MozPromiseRequestHolder<MediaFormatReader::SeekPromise> mVideoSeekRequest;
MozPromiseRequestHolder<AudioDataPromise> mAudioDataRequest;
MozPromiseRequestHolder<VideoDataPromise> mVideoDataRequest;
// The media format reader only allows seeking a track at a time, if we're
// already in seeking, then delay the new seek until the current one finishes.
Maybe<TrackInfo::TrackType> mPendingSeekingType;
// These are used to track a special case where the playback starts from EOS
// position via seeking. So even if EOS has reached, none of data has been
// decoded yet. They will be reset when `mOriginalDecodedDuration` is
// determined.
bool mAudioEndedBeforeEnteringStateWithoutDuration;
bool mVideoEndedBeforeEnteringStateWithoutDuration;
};
/**
* Purpose: seek to a particular new playback position.
*
* Transition to:
* SEEKING if any new seek request.
* SHUTDOWN if seek failed.
* COMPLETED if the new playback position is the end of the media resource.
* NextFrameSeekingState if completing a NextFrameSeekingFromDormantState.
* DECODING/LOOPING_DECODING otherwise.
*/
class MediaDecoderStateMachine::SeekingState
: public MediaDecoderStateMachine::StateObject {
public:
explicit SeekingState(Master* aPtr)
: StateObject(aPtr), mVisibility(static_cast<EventVisibility>(0)) {}
RefPtr<MediaDecoder::SeekPromise> Enter(SeekJob&& aSeekJob,
EventVisibility aVisibility) {
mSeekJob = std::move(aSeekJob);
mVisibility = aVisibility;
// Suppressed visibility comes from two cases: (1) leaving dormant state,
// and (2) resuming suspended video decoder. We want both cases to be
// transparent to the user. So we only notify the change when the seek
// request is from the user.
if (mVisibility == EventVisibility::Observable) {
// Don't stop playback for a video-only seek since we want to keep playing
// audio and we don't need to stop playback while leaving dormant for the
// playback should has been stopped.
mMaster->StopPlayback();
mMaster->UpdatePlaybackPositionInternal(mSeekJob.mTarget->GetTime());
mMaster->mOnPlaybackEvent.Notify(MediaPlaybackEvent::SeekStarted);
mMaster->mOnNextFrameStatus.Notify(
MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_SEEKING);
}
RefPtr<MediaDecoder::SeekPromise> p = mSeekJob.mPromise.Ensure(__func__);
DoSeek();
return p;
}
virtual void Exit() override = 0;
State GetState() const override = 0;
void HandleAudioDecoded(AudioData* aAudio) override = 0;
void HandleVideoDecoded(VideoData* aVideo) override = 0;
void HandleAudioWaited(MediaData::Type aType) override = 0;
void HandleVideoWaited(MediaData::Type aType) override = 0;
void HandleVideoSuspendTimeout() override {
// Do nothing since we want a valid video frame to show when seek is done.
}
void HandleResumeVideoDecoding(const TimeUnit&) override {
// Do nothing. We will resume video decoding in the decoding state.
}
// We specially handle next frame seeks by ignoring them if we're already
// seeking.
RefPtr<MediaDecoder::SeekPromise> HandleSeek(
const SeekTarget& aTarget) override {
if (aTarget.IsNextFrame()) {
// We ignore next frame seeks if we already have a seek pending
SLOG("Already SEEKING, ignoring seekToNextFrame");
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
return MediaDecoder::SeekPromise::CreateAndReject(
/* aRejectValue = */ true, __func__);
}
return StateObject::HandleSeek(aTarget);
}
protected:
SeekJob mSeekJob;
EventVisibility mVisibility;
virtual void DoSeek() = 0;
// Transition to the next state (defined by the subclass) when seek is
// completed.
virtual void GoToNextState() { SetDecodingState(); }
void SeekCompleted();
virtual TimeUnit CalculateNewCurrentTime() const = 0;
};
class MediaDecoderStateMachine::AccurateSeekingState
: public MediaDecoderStateMachine::SeekingState {
public:
explicit AccurateSeekingState(Master* aPtr) : SeekingState(aPtr) {}
State GetState() const override { return DECODER_STATE_SEEKING_ACCURATE; }
RefPtr<MediaDecoder::SeekPromise> Enter(SeekJob&& aSeekJob,
EventVisibility aVisibility) {
MOZ_ASSERT(aSeekJob.mTarget->IsAccurate() || aSeekJob.mTarget->IsFast());
mCurrentTimeBeforeSeek = mMaster->GetMediaTime();
return SeekingState::Enter(std::move(aSeekJob), aVisibility);
}
void Exit() override {
// Disconnect MediaDecoder.
mSeekJob.RejectIfExists(__func__);
// Disconnect ReaderProxy.
mSeekRequest.DisconnectIfExists();
mWaitRequest.DisconnectIfExists();
}
void HandleAudioDecoded(AudioData* aAudio) override {
MOZ_ASSERT(!mDoneAudioSeeking || !mDoneVideoSeeking,
"Seek shouldn't be finished");
MOZ_ASSERT(aAudio);
AdjustFastSeekIfNeeded(aAudio);
if (mSeekJob.mTarget->IsFast()) {
// Non-precise seek; we can stop the seek at the first sample.
mMaster->PushAudio(aAudio);
mDoneAudioSeeking = true;
} else {
nsresult rv = DropAudioUpToSeekTarget(aAudio);
if (NS_FAILED(rv)) {
mMaster->DecodeError(rv);
return;
}
}
if (!mDoneAudioSeeking) {
RequestAudioData();
return;
}
MaybeFinishSeek();
}
void HandleVideoDecoded(VideoData* aVideo) override {
MOZ_ASSERT(!mDoneAudioSeeking || !mDoneVideoSeeking,
"Seek shouldn't be finished");
MOZ_ASSERT(aVideo);
AdjustFastSeekIfNeeded(aVideo);
if (mSeekJob.mTarget->IsFast()) {
// Non-precise seek. We can stop the seek at the first sample.
mMaster->PushVideo(aVideo);
mDoneVideoSeeking = true;
} else {
nsresult rv = DropVideoUpToSeekTarget(aVideo);
if (NS_FAILED(rv)) {
mMaster->DecodeError(rv);
return;
}
}
if (!mDoneVideoSeeking) {
RequestVideoData();
return;
}
MaybeFinishSeek();
}
void HandleWaitingForAudio() override {
MOZ_ASSERT(!mDoneAudioSeeking);
mMaster->WaitForData(MediaData::Type::AUDIO_DATA);
}
void HandleAudioCanceled() override {
MOZ_ASSERT(!mDoneAudioSeeking);
RequestAudioData();
}
void HandleEndOfAudio() override {
HandleEndOfAudioInternal();
MaybeFinishSeek();
}
void HandleWaitingForVideo() override {
MOZ_ASSERT(!mDoneVideoSeeking);
mMaster->WaitForData(MediaData::Type::VIDEO_DATA);
}
void HandleVideoCanceled() override {
MOZ_ASSERT(!mDoneVideoSeeking);
RequestVideoData();
}
void HandleEndOfVideo() override {
HandleEndOfVideoInternal();
MaybeFinishSeek();
}
void HandleAudioWaited(MediaData::Type aType) override {
MOZ_ASSERT(!mDoneAudioSeeking || !mDoneVideoSeeking,
"Seek shouldn't be finished");
RequestAudioData();
}
void HandleVideoWaited(MediaData::Type aType) override {
MOZ_ASSERT(!mDoneAudioSeeking || !mDoneVideoSeeking,
"Seek shouldn't be finished");
RequestVideoData();
}
void DoSeek() override {
mDoneAudioSeeking = !Info().HasAudio();
mDoneVideoSeeking = !Info().HasVideo();
// Resetting decode should be called after stopping media sink, which can
// ensure that we have an empty media queue before seeking the demuxer.
mMaster->StopMediaSink();
mMaster->ResetDecode();
DemuxerSeek();
}
TimeUnit CalculateNewCurrentTime() const override {
const auto seekTime = mSeekJob.mTarget->GetTime();
// For the accurate seek, we always set the newCurrentTime = seekTime so
// that the updated HTMLMediaElement.currentTime will always be the seek
// target; we rely on the MediaSink to handles the gap between the
// newCurrentTime and the real decoded samples' start time.
if (mSeekJob.mTarget->IsAccurate()) {
return seekTime;
}
// For the fast seek, we update the newCurrentTime with the decoded audio
// and video samples, set it to be the one which is closet to the seekTime.
if (mSeekJob.mTarget->IsFast()) {
RefPtr<AudioData> audio = AudioQueue().PeekFront();
RefPtr<VideoData> video = VideoQueue().PeekFront();
// A situation that both audio and video approaches the end.
if (!audio && !video) {
return seekTime;
}
const int64_t audioStart =
audio ? audio->mTime.ToMicroseconds() : INT64_MAX;
const int64_t videoStart =
video ? video->mTime.ToMicroseconds() : INT64_MAX;
const int64_t audioGap = std::abs(audioStart - seekTime.ToMicroseconds());
const int64_t videoGap = std::abs(videoStart - seekTime.ToMicroseconds());
return TimeUnit::FromMicroseconds(audioGap <= videoGap ? audioStart
: videoStart);
}
MOZ_ASSERT(false, "AccurateSeekTask doesn't handle other seek types.");
return TimeUnit::Zero();
}
protected:
void DemuxerSeek() {
// Request the demuxer to perform seek.
Reader()
->Seek(mSeekJob.mTarget.ref())
->Then(
OwnerThread(), __func__,
[this](const media::TimeUnit& aUnit) { OnSeekResolved(aUnit); },
[this](const SeekRejectValue& aReject) { OnSeekRejected(aReject); })
->Track(mSeekRequest);
}
void OnSeekResolved(media::TimeUnit) {
AUTO_PROFILER_LABEL("AccurateSeekingState::OnSeekResolved", MEDIA_PLAYBACK);
mSeekRequest.Complete();
// We must decode the first samples of active streams, so we can determine
// the new stream time. So dispatch tasks to do that.
if (!mDoneVideoSeeking) {
RequestVideoData();
}
if (!mDoneAudioSeeking) {
RequestAudioData();
}
}
void OnSeekRejected(const SeekRejectValue& aReject) {
AUTO_PROFILER_LABEL("AccurateSeekingState::OnSeekRejected", MEDIA_PLAYBACK);
mSeekRequest.Complete();
if (aReject.mError == NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA) {
SLOG("OnSeekRejected reason=WAITING_FOR_DATA type=%s",
MediaData::TypeToStr(aReject.mType));
MOZ_ASSERT_IF(aReject.mType == MediaData::Type::AUDIO_DATA,
!mMaster->IsRequestingAudioData());
MOZ_ASSERT_IF(aReject.mType == MediaData::Type::VIDEO_DATA,
!mMaster->IsRequestingVideoData());
MOZ_ASSERT_IF(aReject.mType == MediaData::Type::AUDIO_DATA,
!mMaster->IsWaitingAudioData());
MOZ_ASSERT_IF(aReject.mType == MediaData::Type::VIDEO_DATA,
!mMaster->IsWaitingVideoData());
// Fire 'waiting' to notify the player that we are waiting for data.
mMaster->mOnNextFrameStatus.Notify(
MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_SEEKING);
Reader()
->WaitForData(aReject.mType)
->Then(
OwnerThread(), __func__,
[this](MediaData::Type aType) {
AUTO_PROFILER_LABEL(
"AccurateSeekingState::OnSeekRejected:WaitDataResolved",
MEDIA_PLAYBACK);
SLOG("OnSeekRejected wait promise resolved");
mWaitRequest.Complete();
DemuxerSeek();
},
[this](const WaitForDataRejectValue& aRejection) {
AUTO_PROFILER_LABEL(
"AccurateSeekingState::OnSeekRejected:WaitDataRejected",
MEDIA_PLAYBACK);
SLOG("OnSeekRejected wait promise rejected");
mWaitRequest.Complete();
mMaster->DecodeError(NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA);
})
->Track(mWaitRequest);
return;
}
if (aReject.mError == NS_ERROR_DOM_MEDIA_END_OF_STREAM) {
if (!mDoneAudioSeeking) {
HandleEndOfAudioInternal();
}
if (!mDoneVideoSeeking) {
HandleEndOfVideoInternal();
}
MaybeFinishSeek();
return;
}
MOZ_ASSERT(NS_FAILED(aReject.mError),
"Cancels should also disconnect mSeekRequest");
mMaster->DecodeError(aReject.mError);
}
void RequestAudioData() {
MOZ_ASSERT(!mDoneAudioSeeking);
mMaster->RequestAudioData();
}
virtual void RequestVideoData() {
MOZ_ASSERT(!mDoneVideoSeeking);
mMaster->RequestVideoData(media::TimeUnit());
}
void AdjustFastSeekIfNeeded(MediaData* aSample) {
if (mSeekJob.mTarget->IsFast() &&
mSeekJob.mTarget->GetTime() > mCurrentTimeBeforeSeek &&
aSample->mTime < mCurrentTimeBeforeSeek) {
// We are doing a fastSeek, but we ended up *before* the previous
// playback position. This is surprising UX, so switch to an accurate
// seek and decode to the seek target. This is not conformant to the
// spec, fastSeek should always be fast, but until we get the time to
// change all Readers to seek to the keyframe after the currentTime
// in this case, we'll just decode forward. Bug 1026330.
mSeekJob.mTarget->SetType(SeekTarget::Accurate);
}
}
nsresult DropAudioUpToSeekTarget(AudioData* aAudio) {
MOZ_ASSERT(aAudio && mSeekJob.mTarget->IsAccurate());
if (mSeekJob.mTarget->GetTime() >= aAudio->GetEndTime()) {
// Our seek target lies after the frames in this AudioData. Don't
// push it onto the audio queue, and keep decoding forwards.
return NS_OK;
}
if (aAudio->mTime > mSeekJob.mTarget->GetTime()) {
// The seek target doesn't lie in the audio block just after the last
// audio frames we've seen which were before the seek target. This
// could have been the first audio data we've seen after seek, i.e. the
// seek terminated after the seek target in the audio stream. Just
// abort the audio decode-to-target, the state machine will play
// silence to cover the gap. Typically this happens in poorly muxed
// files.
SLOGW("Audio not synced after seek, maybe a poorly muxed file?");
mMaster->PushAudio(aAudio);
mDoneAudioSeeking = true;
return NS_OK;
}
bool ok = aAudio->SetTrimWindow(
{mSeekJob.mTarget->GetTime().ToBase(aAudio->mTime),
aAudio->GetEndTime()});
if (!ok) {
return NS_ERROR_DOM_MEDIA_OVERFLOW_ERR;
}
MOZ_ASSERT(AudioQueue().GetSize() == 0,
"Should be the 1st sample after seeking");
mMaster->PushAudio(aAudio);
mDoneAudioSeeking = true;
return NS_OK;
}
nsresult DropVideoUpToSeekTarget(VideoData* aVideo) {
MOZ_ASSERT(aVideo);
SLOG("DropVideoUpToSeekTarget() frame [%" PRId64 ", %" PRId64 "]",
aVideo->mTime.ToMicroseconds(), aVideo->GetEndTime().ToMicroseconds());
const auto target = GetSeekTarget();
// If the frame end time is less than the seek target, we won't want
// to display this frame after the seek, so discard it.
if (target >= aVideo->GetEndTime()) {
SLOG("DropVideoUpToSeekTarget() pop video frame [%" PRId64 ", %" PRId64
"] target=%" PRId64,
aVideo->mTime.ToMicroseconds(),
aVideo->GetEndTime().ToMicroseconds(), target.ToMicroseconds());
PROFILER_MARKER_UNTYPED("MDSM::DropVideoUpToSeekTarget", MEDIA_PLAYBACK);
mFirstVideoFrameAfterSeek = aVideo;
} else {
if (target >= aVideo->mTime && aVideo->GetEndTime() >= target) {
// The seek target lies inside this frame's time slice. Adjust the
// frame's start time to match the seek target.
aVideo->UpdateTimestamp(target);
}
mFirstVideoFrameAfterSeek = nullptr;
SLOG("DropVideoUpToSeekTarget() found video frame [%" PRId64 ", %" PRId64
"] containing target=%" PRId64,
aVideo->mTime.ToMicroseconds(),
aVideo->GetEndTime().ToMicroseconds(), target.ToMicroseconds());
MOZ_ASSERT(VideoQueue().GetSize() == 0,
"Should be the 1st sample after seeking");
mMaster->PushVideo(aVideo);
mDoneVideoSeeking = true;
}
return NS_OK;
}
void HandleEndOfAudioInternal() {
MOZ_ASSERT(!mDoneAudioSeeking);
AudioQueue().Finish();
mDoneAudioSeeking = true;
}
void HandleEndOfVideoInternal() {
MOZ_ASSERT(!mDoneVideoSeeking);
if (mFirstVideoFrameAfterSeek) {
// Hit the end of stream. Move mFirstVideoFrameAfterSeek into
// mSeekedVideoData so we have something to display after seeking.
mMaster->PushVideo(mFirstVideoFrameAfterSeek);
}
VideoQueue().Finish();
mDoneVideoSeeking = true;
}
void MaybeFinishSeek() {
if (mDoneAudioSeeking && mDoneVideoSeeking) {
SeekCompleted();
}
}
/*
* Track the current seek promise made by the reader.
*/
MozPromiseRequestHolder<MediaFormatReader::SeekPromise> mSeekRequest;
/*
* Internal state.
*/
media::TimeUnit mCurrentTimeBeforeSeek;
bool mDoneAudioSeeking = false;
bool mDoneVideoSeeking = false;
MozPromiseRequestHolder<WaitForDataPromise> mWaitRequest;
// This temporarily stores the first frame we decode after we seek.
// This is so that if we hit end of stream while we're decoding to reach
// the seek target, we will still have a frame that we can display as the
// last frame in the media.
RefPtr<VideoData> mFirstVideoFrameAfterSeek;
private:
virtual media::TimeUnit GetSeekTarget() const {
return mSeekJob.mTarget->GetTime();
}
};
/*
* Remove samples from the queue until aCompare() returns false.
* aCompare A function object with the signature bool(int64_t) which returns
* true for samples that should be removed.
*/
template <typename Type, typename Function>
static void DiscardFrames(MediaQueue<Type>& aQueue, const Function& aCompare) {
while (aQueue.GetSize() > 0) {
if (aCompare(aQueue.PeekFront()->mTime.ToMicroseconds())) {
RefPtr<Type> releaseMe = aQueue.PopFront();
continue;
}
break;
}
}
class MediaDecoderStateMachine::NextFrameSeekingState
: public MediaDecoderStateMachine::SeekingState {
public:
explicit NextFrameSeekingState(Master* aPtr) : SeekingState(aPtr) {}
State GetState() const override {
return DECODER_STATE_SEEKING_NEXTFRAMESEEKING;
}
RefPtr<MediaDecoder::SeekPromise> Enter(SeekJob&& aSeekJob,
EventVisibility aVisibility) {
MOZ_ASSERT(aSeekJob.mTarget->IsNextFrame());
mCurrentTime = mMaster->GetMediaTime();
mDuration = mMaster->Duration();
return SeekingState::Enter(std::move(aSeekJob), aVisibility);
}
void Exit() override {
// Disconnect my async seek operation.
if (mAsyncSeekTask) {
mAsyncSeekTask->Cancel();
}
// Disconnect MediaDecoder.
mSeekJob.RejectIfExists(__func__);
}
void HandleAudioDecoded(AudioData* aAudio) override {
mMaster->PushAudio(aAudio);
}
void HandleVideoDecoded(VideoData* aVideo) override {
MOZ_ASSERT(aVideo);
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
if (aVideo->mTime > mCurrentTime) {
mMaster->PushVideo(aVideo);
FinishSeek();
} else {
RequestVideoData();
}
}
void HandleWaitingForAudio() override {
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
// We don't care about audio decode errors in this state which will be
// handled by other states after seeking.
}
void HandleAudioCanceled() override {
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
// We don't care about audio decode errors in this state which will be
// handled by other states after seeking.
}
void HandleEndOfAudio() override {
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
// We don't care about audio decode errors in this state which will be
// handled by other states after seeking.
}
void HandleWaitingForVideo() override {
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
mMaster->WaitForData(MediaData::Type::VIDEO_DATA);
}
void HandleVideoCanceled() override {
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
RequestVideoData();
}
void HandleEndOfVideo() override {
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
VideoQueue().Finish();
FinishSeek();
}
void HandleAudioWaited(MediaData::Type aType) override {
// We don't care about audio in this state.
}
void HandleVideoWaited(MediaData::Type aType) override {
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
RequestVideoData();
}
TimeUnit CalculateNewCurrentTime() const override {
// The HTMLMediaElement.currentTime should be updated to the seek target
// which has been updated to the next frame's time.
return mSeekJob.mTarget->GetTime();
}
void DoSeek() override {
mMaster->StopMediaSink();
auto currentTime = mCurrentTime;
DiscardFrames(VideoQueue(), [currentTime](int64_t aSampleTime) {
return aSampleTime <= currentTime.ToMicroseconds();
});
// If there is a pending video request, finish the seeking if we don't need
// more data, or wait for HandleVideoDecoded() to finish seeking.
if (mMaster->IsRequestingVideoData()) {
if (!NeedMoreVideo()) {
FinishSeek();
}
return;
}
// Otherwise, we need to do the seek operation asynchronously for a special
// case (video with no data)which has no data at all, the 1st
// seekToNextFrame() operation reaches the end of the media. If we did the
// seek operation synchronously, we immediately resolve the SeekPromise in
// mSeekJob and then switch to the CompletedState which dispatches an
// "ended" event. However, the ThenValue of the SeekPromise has not yet been
// set, so the promise resolving is postponed and then the JS developer
// receives the "ended" event before the seek promise is resolved. An
// asynchronous seek operation helps to solve this issue since while the
// seek is actually performed, the ThenValue of SeekPromise has already been
// set so that it won't be postponed.
RefPtr<Runnable> r = mAsyncSeekTask = new AysncNextFrameSeekTask(this);
nsresult rv = OwnerThread()->Dispatch(r.forget());
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
}
private:
void DoSeekInternal() {
// We don't need to discard frames to the mCurrentTime here because we have
// done it at DoSeek() and any video data received in between either
// finishes the seek operation or be discarded, see HandleVideoDecoded().
if (!NeedMoreVideo()) {
FinishSeek();
} else if (!mMaster->IsRequestingVideoData() &&
!mMaster->IsWaitingVideoData()) {
RequestVideoData();
}
}
class AysncNextFrameSeekTask : public Runnable {
public:
explicit AysncNextFrameSeekTask(NextFrameSeekingState* aStateObject)
: Runnable(
"MediaDecoderStateMachine::NextFrameSeekingState::"
"AysncNextFrameSeekTask"),
mStateObj(aStateObject) {}
void Cancel() { mStateObj = nullptr; }
NS_IMETHOD Run() override {
if (mStateObj) {
AUTO_PROFILER_LABEL("AysncNextFrameSeekTask::Run", MEDIA_PLAYBACK);
mStateObj->DoSeekInternal();
}
return NS_OK;
}
private:
NextFrameSeekingState* mStateObj;
};
void RequestVideoData() { mMaster->RequestVideoData(media::TimeUnit()); }
bool NeedMoreVideo() const {
// Need to request video when we have none and video queue is not finished.
return VideoQueue().GetSize() == 0 && !VideoQueue().IsFinished();
}
// Update the seek target's time before resolving this seek task, the updated
// time will be used in the MDSM::SeekCompleted() to update the MDSM's
// position.
void UpdateSeekTargetTime() {
RefPtr<VideoData> data = VideoQueue().PeekFront();
if (data) {
mSeekJob.mTarget->SetTime(data->mTime);
} else {
MOZ_ASSERT(VideoQueue().AtEndOfStream());
mSeekJob.mTarget->SetTime(mDuration);
}
}
void FinishSeek() {
MOZ_ASSERT(!NeedMoreVideo());
UpdateSeekTargetTime();
auto time = mSeekJob.mTarget->GetTime().ToMicroseconds();
DiscardFrames(AudioQueue(),
[time](int64_t aSampleTime) { return aSampleTime < time; });
SeekCompleted();
}
/*
* Internal state.
*/
TimeUnit mCurrentTime;
TimeUnit mDuration;
RefPtr<AysncNextFrameSeekTask> mAsyncSeekTask;
};
class MediaDecoderStateMachine::NextFrameSeekingFromDormantState
: public MediaDecoderStateMachine::AccurateSeekingState {
public:
explicit NextFrameSeekingFromDormantState(Master* aPtr)
: AccurateSeekingState(aPtr) {}
State GetState() const override { return DECODER_STATE_SEEKING_FROMDORMANT; }
RefPtr<MediaDecoder::SeekPromise> Enter(SeekJob&& aCurrentSeekJob,
SeekJob&& aFutureSeekJob) {
mFutureSeekJob = std::move(aFutureSeekJob);
AccurateSeekingState::Enter(std::move(aCurrentSeekJob),
EventVisibility::Suppressed);
// Once seekToNextFrame() is called, we assume the user is likely to keep
// calling seekToNextFrame() repeatedly, and so, we should prevent the MDSM
// from getting into Dormant state.
mMaster->mMinimizePreroll = false;
return mFutureSeekJob.mPromise.Ensure(__func__);
}
void Exit() override {
mFutureSeekJob.RejectIfExists(__func__);
AccurateSeekingState::Exit();
}
private:
SeekJob mFutureSeekJob;
// We don't want to transition to DecodingState once this seek completes,
// instead, we transition to NextFrameSeekingState.
void GoToNextState() override {
SetState<NextFrameSeekingState>(std::move(mFutureSeekJob),
EventVisibility::Observable);
}
};
class MediaDecoderStateMachine::VideoOnlySeekingState
: public MediaDecoderStateMachine::AccurateSeekingState {
public:
explicit VideoOnlySeekingState(Master* aPtr) : AccurateSeekingState(aPtr) {}
State GetState() const override { return DECODER_STATE_SEEKING_VIDEOONLY; }
RefPtr<MediaDecoder::SeekPromise> Enter(SeekJob&& aSeekJob,
EventVisibility aVisibility) {
MOZ_ASSERT(aSeekJob.mTarget->IsVideoOnly());
MOZ_ASSERT(aVisibility == EventVisibility::Suppressed);
RefPtr<MediaDecoder::SeekPromise> p =
AccurateSeekingState::Enter(std::move(aSeekJob), aVisibility);
// Dispatch a mozvideoonlyseekbegin event to indicate UI for corresponding
// changes.
mMaster->mOnPlaybackEvent.Notify(MediaPlaybackEvent::VideoOnlySeekBegin);
return p;
}
void Exit() override {
// We are completing or discarding this video-only seek operation now,
// dispatch an event so that the UI can change in response to the end
// of video-only seek.
mMaster->mOnPlaybackEvent.Notify(
MediaPlaybackEvent::VideoOnlySeekCompleted);
AccurateSeekingState::Exit();
}
void HandleAudioDecoded(AudioData* aAudio) override {
MOZ_ASSERT(mDoneAudioSeeking && !mDoneVideoSeeking,
"Seek shouldn't be finished");
MOZ_ASSERT(aAudio);
// Video-only seek doesn't reset audio decoder. There might be pending audio
// requests when AccurateSeekTask::Seek() begins. We will just store the
// data without checking |mDiscontinuity| or calling
// DropAudioUpToSeekTarget().
mMaster->PushAudio(aAudio);
}
void HandleWaitingForAudio() override {}
void HandleAudioCanceled() override {}
void HandleEndOfAudio() override {}
void HandleAudioWaited(MediaData::Type aType) override {
MOZ_ASSERT(!mDoneAudioSeeking || !mDoneVideoSeeking,
"Seek shouldn't be finished");
// Ignore pending requests from video-only seek.
}
void DoSeek() override {
// TODO: keep decoding audio.
mDoneAudioSeeking = true;
mDoneVideoSeeking = !Info().HasVideo();
const auto offset = VideoQueue().GetOffset();
mMaster->ResetDecode(TrackInfo::kVideoTrack);
// Entering video-only state and we've looped at least once before, so we
// need to set offset in order to let new video frames catch up with the
// clock time.
if (offset != media::TimeUnit::Zero()) {
VideoQueue().SetOffset(offset);
}
DemuxerSeek();
}
protected:
// Allow skip-to-next-key-frame to kick in if we fall behind the current
// playback position so decoding has a better chance to catch up.
void RequestVideoData() override {
MOZ_ASSERT(!mDoneVideoSeeking);
auto clock = mMaster->mMediaSink->IsStarted() ? mMaster->GetClock()
: mMaster->GetMediaTime();
mMaster->AdjustByLooping(clock);
const auto& nextKeyFrameTime = GetNextKeyFrameTime();
auto threshold = clock;
if (nextKeyFrameTime.IsValid() &&
clock >= (nextKeyFrameTime - sSkipToNextKeyFrameThreshold)) {
threshold = nextKeyFrameTime;
}
mMaster->RequestVideoData(threshold);
}
private:
// Trigger skip to next key frame if the current playback position is very
// close the next key frame's time.
static constexpr TimeUnit sSkipToNextKeyFrameThreshold =
TimeUnit::FromMicroseconds(5000);
// If the media is playing, drop video until catch up playback position.
media::TimeUnit GetSeekTarget() const override {
auto target = mMaster->mMediaSink->IsStarted()
? mMaster->GetClock()
: mSeekJob.mTarget->GetTime();
mMaster->AdjustByLooping(target);
return target;
}
media::TimeUnit GetNextKeyFrameTime() const {
// We only call this method in RequestVideoData() and we only request video
// data if we haven't done video seeking.
MOZ_DIAGNOSTIC_ASSERT(!mDoneVideoSeeking);
MOZ_DIAGNOSTIC_ASSERT(mMaster->VideoQueue().GetSize() == 0);
if (mFirstVideoFrameAfterSeek) {
return mFirstVideoFrameAfterSeek->NextKeyFrameTime();
}
return TimeUnit::Invalid();
}
};
constexpr TimeUnit MediaDecoderStateMachine::VideoOnlySeekingState::
sSkipToNextKeyFrameThreshold;
RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::DormantState::HandleSeek(const SeekTarget& aTarget) {
if (aTarget.IsNextFrame()) {
// NextFrameSeekingState doesn't reset the decoder unlike
// AccurateSeekingState. So we first must come out of dormant by seeking to
// mPendingSeek and continue later with the NextFrameSeek
SLOG("Changed state to SEEKING (to %" PRId64 ")",
aTarget.GetTime().ToMicroseconds());
SeekJob seekJob;
seekJob.mTarget = Some(aTarget);
return StateObject::SetState<NextFrameSeekingFromDormantState>(
std::move(mPendingSeek), std::move(seekJob));
}
return StateObject::HandleSeek(aTarget);
}
/**
* Purpose: stop playback until enough data is decoded to continue playback.
*
* Transition to:
* SEEKING if any seek request.
* SHUTDOWN if any decode error.
* COMPLETED when having decoded all audio/video data.
* DECODING/LOOPING_DECODING when having decoded enough data to continue
* playback.
*/
class MediaDecoderStateMachine::BufferingState
: public MediaDecoderStateMachine::StateObject {
public:
explicit BufferingState(Master* aPtr) : StateObject(aPtr) {}
void Enter() {
if (mMaster->IsPlaying()) {
mMaster->StopPlayback();
}
mBufferingStart = TimeStamp::Now();
mMaster->ScheduleStateMachineIn(TimeUnit::FromMicroseconds(USECS_PER_S));
mMaster->mOnNextFrameStatus.Notify(
MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_BUFFERING);
}
void Step() override;
State GetState() const override { return DECODER_STATE_BUFFERING; }
void HandleAudioDecoded(AudioData* aAudio) override {
mMaster->PushAudio(aAudio);
if (!mMaster->HaveEnoughDecodedAudio()) {
mMaster->RequestAudioData();
}
// This might be the sample we need to exit buffering.
// Schedule Step() to check it.
mMaster->ScheduleStateMachine();
}
void HandleVideoDecoded(VideoData* aVideo) override {
mMaster->PushVideo(aVideo);
if (!mMaster->HaveEnoughDecodedVideo()) {
mMaster->RequestVideoData(media::TimeUnit());
}
// This might be the sample we need to exit buffering.
// Schedule Step() to check it.
mMaster->ScheduleStateMachine();
}
void HandleAudioCanceled() override { mMaster->RequestAudioData(); }
void HandleVideoCanceled() override {
mMaster->RequestVideoData(media::TimeUnit());
}
void HandleWaitingForAudio() override {
mMaster->WaitForData(MediaData::Type::AUDIO_DATA);
}
void HandleWaitingForVideo() override {
mMaster->WaitForData(MediaData::Type::VIDEO_DATA);
}
void HandleAudioWaited(MediaData::Type aType) override {
mMaster->RequestAudioData();
}
void HandleVideoWaited(MediaData::Type aType) override {
mMaster->RequestVideoData(media::TimeUnit());
}
void HandleEndOfAudio() override;
void HandleEndOfVideo() override;
void HandleVideoSuspendTimeout() override {
// No video, so nothing to suspend.
if (!mMaster->HasVideo()) {
return;
}
mMaster->mVideoDecodeSuspended = true;
mMaster->mOnPlaybackEvent.Notify(MediaPlaybackEvent::EnterVideoSuspend);
Reader()->SetVideoBlankDecode(true);
}
private:
TimeStamp mBufferingStart;
// The maximum number of second we spend buffering when we are short on
// unbuffered data.
const uint32_t mBufferingWait = 15;
};
/**
* Purpose: play all the decoded data and fire the 'ended' event.
*
* Transition to:
* SEEKING if any seek request.
* LOOPING_DECODING if MDSM enable looping.
*/
class MediaDecoderStateMachine::CompletedState
: public MediaDecoderStateMachine::StateObject {
public:
explicit CompletedState(Master* aPtr) : StateObject(aPtr) {}
void Enter() {
// On Android, the life cycle of graphic buffer is equal to Android's codec,
// we couldn't release it if we still need to render the frame.
#ifndef MOZ_WIDGET_ANDROID
if (!mMaster->mLooping) {
// We've decoded all samples.
// We don't need decoders anymore if not looping.
Reader()->ReleaseResources();
}
#endif
bool hasNextFrame = (!mMaster->HasAudio() || !mMaster->mAudioCompleted) &&
(!mMaster->HasVideo() || !mMaster->mVideoCompleted);
mMaster->mOnNextFrameStatus.Notify(
hasNextFrame ? MediaDecoderOwner::NEXT_FRAME_AVAILABLE
: MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE);
Step();
}
void Exit() override { mSentPlaybackEndedEvent = false; }
void Step() override {
if (mMaster->mPlayState != MediaDecoder::PLAY_STATE_PLAYING &&
mMaster->IsPlaying()) {
mMaster->StopPlayback();
}
// Play the remaining media. We want to run AdvanceFrame() at least
// once to ensure the current playback position is advanced to the
// end of the media, and so that we update the readyState.
if ((mMaster->HasVideo() && !mMaster->mVideoCompleted) ||
(mMaster->HasAudio() && !mMaster->mAudioCompleted)) {
// Start playback if necessary to play the remaining media.
mMaster->MaybeStartPlayback();
mMaster->UpdatePlaybackPositionPeriodically();
MOZ_ASSERT(!mMaster->IsPlaying() || mMaster->IsStateMachineScheduled(),
"Must have timer scheduled");
return;
}
// StopPlayback in order to reset the IsPlaying() state so audio
// is restarted correctly.
mMaster->StopPlayback();
if (!mSentPlaybackEndedEvent) {
auto clockTime =
std::max(mMaster->AudioEndTime(), mMaster->VideoEndTime());
// Correct the time over the end once looping was turned on.
mMaster->AdjustByLooping(clockTime);
if (mMaster->mDuration.Ref()->IsInfinite()) {
// We have a finite duration when playback reaches the end.
mMaster->mDuration = Some(clockTime);
DDLOGEX(mMaster, DDLogCategory::Property, "duration_us",
mMaster->mDuration.Ref()->ToMicroseconds());
}
mMaster->UpdatePlaybackPosition(clockTime);
// Ensure readyState is updated before firing the 'ended' event.
mMaster->mOnNextFrameStatus.Notify(
MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE);
mMaster->mOnPlaybackEvent.Notify(MediaPlaybackEvent::PlaybackEnded);
mSentPlaybackEndedEvent = true;
// MediaSink::GetEndTime() must be called before stopping playback.
mMaster->StopMediaSink();
}
}
State GetState() const override { return DECODER_STATE_COMPLETED; }
void HandleLoopingChanged() override {
if (mMaster->mLooping) {
SetDecodingState();
}
}
void HandleAudioCaptured() override {
// MediaSink is changed. Schedule Step() to check if we can start playback.
mMaster->ScheduleStateMachine();
}
void HandleVideoSuspendTimeout() override {
// Do nothing since no decoding is going on.
}
void HandleResumeVideoDecoding(const TimeUnit&) override {
// Resume the video decoder and seek to the last video frame.
// This triggers a video-only seek which won't update the playback position.
auto target = mMaster->mDecodedVideoEndTime;
mMaster->AdjustByLooping(target);
StateObject::HandleResumeVideoDecoding(target);
}
void HandlePlayStateChanged(MediaDecoder::PlayState aPlayState) override {
if (aPlayState == MediaDecoder::PLAY_STATE_PLAYING) {
// Schedule Step() to check if we can start playback.
mMaster->ScheduleStateMachine();
}
}
private:
bool mSentPlaybackEndedEvent = false;
};
/**
* Purpose: release all resources allocated by MDSM.
*
* Transition to:
* None since this is the final state.
*
* Transition from:
* Any states other than SHUTDOWN.
*/
class MediaDecoderStateMachine::ShutdownState
: public MediaDecoderStateMachine::StateObject {
public:
explicit ShutdownState(Master* aPtr) : StateObject(aPtr) {}
RefPtr<ShutdownPromise> Enter();
void Exit() override {
MOZ_DIAGNOSTIC_ASSERT(false, "Shouldn't escape the SHUTDOWN state.");
}
State GetState() const override { return DECODER_STATE_SHUTDOWN; }
RefPtr<MediaDecoder::SeekPromise> HandleSeek(
const SeekTarget& aTarget) override {
MOZ_DIAGNOSTIC_ASSERT(false, "Can't seek in shutdown state.");
return MediaDecoder::SeekPromise::CreateAndReject(true, __func__);
}
RefPtr<ShutdownPromise> HandleShutdown() override {
MOZ_DIAGNOSTIC_ASSERT(false, "Already shutting down.");
return nullptr;
}
void HandleVideoSuspendTimeout() override {
MOZ_DIAGNOSTIC_ASSERT(false, "Already shutting down.");
}
void HandleResumeVideoDecoding(const TimeUnit&) override {
MOZ_DIAGNOSTIC_ASSERT(false, "Already shutting down.");
}
};
RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::StateObject::HandleSeek(const SeekTarget& aTarget) {
SLOG("Changed state to SEEKING (to %" PRId64 ")",
aTarget.GetTime().ToMicroseconds());
SeekJob seekJob;
seekJob.mTarget = Some(aTarget);
return SetSeekingState(std::move(seekJob), EventVisibility::Observable);
}
RefPtr<ShutdownPromise>
MediaDecoderStateMachine::StateObject::HandleShutdown() {
return SetState<ShutdownState>();
}
static void ReportRecoveryTelemetry(const TimeStamp& aRecoveryStart,
const MediaInfo& aMediaInfo,
bool aIsHardwareAccelerated) {
MOZ_ASSERT(NS_IsMainThread());
if (!aMediaInfo.HasVideo()) {
return;
}
// Keyed by audio+video or video alone, hardware acceleration,
// and by a resolution range.
nsCString key(aMediaInfo.HasAudio() ? "AV" : "V");
key.AppendASCII(aIsHardwareAccelerated ? "(hw)," : ",");
static const struct {
int32_t mH;
const char* mRes;
} sResolutions[] = {{240, "0-240"},
{480, "241-480"},
{720, "481-720"},
{1080, "721-1080"},
{2160, "1081-2160"}};
const char* resolution = "2161+";
int32_t height = aMediaInfo.mVideo.mImage.height;
for (const auto& res : sResolutions) {
if (height <= res.mH) {
resolution = res.mRes;
break;
}
}
key.AppendASCII(resolution);
TimeDuration duration = TimeStamp::Now() - aRecoveryStart;
double duration_ms = duration.ToMilliseconds();
Telemetry::Accumulate(Telemetry::VIDEO_SUSPEND_RECOVERY_TIME_MS, key,
static_cast<uint32_t>(lround(duration_ms)));
Telemetry::Accumulate(Telemetry::VIDEO_SUSPEND_RECOVERY_TIME_MS, "All"_ns,
static_cast<uint32_t>(lround(duration_ms)));
}
void MediaDecoderStateMachine::StateObject::HandleResumeVideoDecoding(
const TimeUnit& aTarget) {
MOZ_ASSERT(mMaster->mVideoDecodeSuspended);
mMaster->mVideoDecodeSuspended = false;
mMaster->mOnPlaybackEvent.Notify(MediaPlaybackEvent::ExitVideoSuspend);
Reader()->SetVideoBlankDecode(false);
// Start counting recovery time from right now.
TimeStamp start = TimeStamp::Now();
// Local reference to mInfo, so that it will be copied in the lambda below.
const auto& info = Info();
bool hw = Reader()->VideoIsHardwareAccelerated();
// Start video-only seek to the current time.
SeekJob seekJob;
// We use fastseek to optimize the resuming time.
// FastSeek is only used for video-only media since we don't need to worry
// about A/V sync.
// Don't use fastSeek if we want to seek to the end because it might seek to a
// keyframe before the last frame (if the last frame itself is not a keyframe)
// and we always want to present the final frame to the user when seeking to
// the end.
const auto type = mMaster->HasAudio() || aTarget == mMaster->Duration()
? SeekTarget::Type::Accurate
: SeekTarget::Type::PrevSyncPoint;
seekJob.mTarget.emplace(aTarget, type, SeekTarget::Track::VideoOnly);
SLOG("video-only seek target=%" PRId64 ", current time=%" PRId64,
aTarget.ToMicroseconds(), mMaster->GetMediaTime().ToMicroseconds());
// Hold mMaster->mAbstractMainThread here because this->mMaster will be
// invalid after the current state object is deleted in SetState();
RefPtr<AbstractThread> mainThread = mMaster->mAbstractMainThread;
SetSeekingState(std::move(seekJob), EventVisibility::Suppressed)
->Then(
mainThread, __func__,
[start, info, hw]() { ReportRecoveryTelemetry(start, info, hw); },
[]() {});
}
RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::StateObject::SetSeekingState(
SeekJob&& aSeekJob, EventVisibility aVisibility) {
if (aSeekJob.mTarget->IsAccurate() || aSeekJob.mTarget->IsFast()) {
if (aSeekJob.mTarget->IsVideoOnly()) {
return SetState<VideoOnlySeekingState>(std::move(aSeekJob), aVisibility);
}
return SetState<AccurateSeekingState>(std::move(aSeekJob), aVisibility);
}
if (aSeekJob.mTarget->IsNextFrame()) {
return SetState<NextFrameSeekingState>(std::move(aSeekJob), aVisibility);
}
MOZ_ASSERT_UNREACHABLE("Unknown SeekTarget::Type.");
return nullptr;
}
void MediaDecoderStateMachine::StateObject::SetDecodingState() {
if (mMaster->IsInSeamlessLooping()) {
SetState<LoopingDecodingState>();
return;
}
SetState<DecodingState>();
}
void MediaDecoderStateMachine::DecodeMetadataState::OnMetadataRead(
MetadataHolder&& aMetadata) {
mMetadataRequest.Complete();
AUTO_PROFILER_LABEL("DecodeMetadataState::OnMetadataRead", MEDIA_PLAYBACK);
mMaster->mInfo.emplace(*aMetadata.mInfo);
mMaster->mMediaSeekable = Info().mMediaSeekable;
mMaster->mMediaSeekableOnlyInBufferedRanges =
Info().mMediaSeekableOnlyInBufferedRanges;
if (Info().mMetadataDuration.isSome()) {
mMaster->mDuration = Info().mMetadataDuration;
} else if (Info().mUnadjustedMetadataEndTime.isSome()) {
const TimeUnit unadjusted = Info().mUnadjustedMetadataEndTime.ref();
const TimeUnit adjustment = Info().mStartTime;
mMaster->mInfo->mMetadataDuration.emplace(unadjusted - adjustment);
mMaster->mDuration = Info().mMetadataDuration;
}
// If we don't know the duration by this point, we assume infinity, per spec.
if (mMaster->mDuration.Ref().isNothing()) {
mMaster->mDuration = Some(TimeUnit::FromInfinity());
}
DDLOGEX(mMaster, DDLogCategory::Property, "duration_us",
mMaster->mDuration.Ref()->ToMicroseconds());
if (mMaster->HasVideo()) {
SLOG("Video decode HWAccel=%d videoQueueSize=%d",
Reader()->VideoIsHardwareAccelerated(),
mMaster->GetAmpleVideoFrames());
}
MOZ_ASSERT(mMaster->mDuration.Ref().isSome());
mMaster->mMetadataLoadedEvent.Notify(std::move(aMetadata.mInfo),
std::move(aMetadata.mTags),
MediaDecoderEventVisibility::Observable);
// Check whether the media satisfies the requirement of seamless looping.
// TODO : after we ensure video seamless looping is stable enough, then we can
// remove this to make the condition always true.
mMaster->mSeamlessLoopingAllowed = StaticPrefs::media_seamless_looping();
if (mMaster->HasVideo()) {
mMaster->mSeamlessLoopingAllowed =
StaticPrefs::media_seamless_looping_video();
}
SetState<DecodingFirstFrameState>();
}
void MediaDecoderStateMachine::DormantState::HandlePlayStateChanged(
MediaDecoder::PlayState aPlayState) {
if (aPlayState == MediaDecoder::PLAY_STATE_PLAYING) {
// Exit dormant when the user wants to play.
MOZ_ASSERT(mMaster->mSentFirstFrameLoadedEvent);
SetSeekingState(std::move(mPendingSeek), EventVisibility::Suppressed);
}
}
void MediaDecoderStateMachine::DecodingFirstFrameState::Enter() {
// Transition to DECODING if we've decoded first frames.
if (mMaster->mSentFirstFrameLoadedEvent) {
SetDecodingState();
return;
}
MOZ_ASSERT(!mMaster->mVideoDecodeSuspended);
// Dispatch tasks to decode first frames.
if (mMaster->HasAudio()) {
mMaster->RequestAudioData();
}
if (mMaster->HasVideo()) {
mMaster->RequestVideoData(media::TimeUnit());
}
}
void MediaDecoderStateMachine::DecodingFirstFrameState::
MaybeFinishDecodeFirstFrame() {
MOZ_ASSERT(!mMaster->mSentFirstFrameLoadedEvent);
if ((mMaster->IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
(mMaster->IsVideoDecoding() && VideoQueue().GetSize() == 0)) {
return;
}
mMaster->FinishDecodeFirstFrame();
if (mPendingSeek.Exists()) {
SetSeekingState(std::move(mPendingSeek), EventVisibility::Observable);
} else {
SetDecodingState();
}
}
void MediaDecoderStateMachine::DecodingState::Enter() {
MOZ_ASSERT(mMaster->mSentFirstFrameLoadedEvent);
if (mMaster->mVideoDecodeSuspended &&
mMaster->mVideoDecodeMode == VideoDecodeMode::Normal) {
StateObject::HandleResumeVideoDecoding(mMaster->GetMediaTime());
return;
}
if (mMaster->mVideoDecodeMode == VideoDecodeMode::Suspend &&
!mMaster->mVideoDecodeSuspendTimer.IsScheduled() &&
!mMaster->mVideoDecodeSuspended) {
// If the VideoDecodeMode is Suspend and the timer is not schedule, it means
// the timer has timed out and we should suspend video decoding now if
// necessary.
HandleVideoSuspendTimeout();
}
// If we're in the normal decoding mode and the decoding has finished, then we
// should go to `completed` state because we don't need to decode anything
// later. However, if we're in the saemless decoding mode, we will restart
// decoding ASAP so we can still stay in `decoding` state.
if (!mMaster->IsVideoDecoding() && !mMaster->IsAudioDecoding() &&
!mMaster->IsInSeamlessLooping()) {
SetState<CompletedState>();
return;
}
mOnAudioPopped =
AudioQueue().PopFrontEvent().Connect(OwnerThread(), [this]() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::OnAudioPopped",
MEDIA_PLAYBACK);
if (mMaster->IsAudioDecoding() && !mMaster->HaveEnoughDecodedAudio()) {
EnsureAudioDecodeTaskQueued();
}
});
mOnVideoPopped =
VideoQueue().PopFrontEvent().Connect(OwnerThread(), [this]() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::OnVideoPopped",
MEDIA_PLAYBACK);
if (mMaster->IsVideoDecoding() && !mMaster->HaveEnoughDecodedVideo()) {
EnsureVideoDecodeTaskQueued();
}
});
mMaster->mOnNextFrameStatus.Notify(MediaDecoderOwner::NEXT_FRAME_AVAILABLE);
mDecodeStartTime = TimeStamp::Now();
MaybeStopPrerolling();
// Ensure that we've got tasks enqueued to decode data if we need to.
DispatchDecodeTasksIfNeeded();
mMaster->ScheduleStateMachine();
// Will enter dormant when playback is paused for a while.
if (mMaster->mPlayState == MediaDecoder::PLAY_STATE_PAUSED) {
StartDormantTimer();
}
}
void MediaDecoderStateMachine::DecodingState::Step() {
if (mMaster->mPlayState != MediaDecoder::PLAY_STATE_PLAYING &&
mMaster->IsPlaying()) {
// We're playing, but the element/decoder is in paused state. Stop
// playing!
mMaster->StopPlayback();
}
// Start playback if necessary so that the clock can be properly queried.
if (!mIsPrerolling) {
mMaster->MaybeStartPlayback();
}
mMaster->UpdatePlaybackPositionPeriodically();
MOZ_ASSERT(!mMaster->IsPlaying() || mMaster->IsStateMachineScheduled(),
"Must have timer scheduled");
if (IsBufferingAllowed()) {
MaybeStartBuffering();
}
}
void MediaDecoderStateMachine::DecodingState::HandleEndOfAudio() {
AudioQueue().Finish();
if (!mMaster->IsVideoDecoding()) {
SetState<CompletedState>();
} else {
MaybeStopPrerolling();
}
}
void MediaDecoderStateMachine::DecodingState::HandleEndOfVideo() {
VideoQueue().Finish();
if (!mMaster->IsAudioDecoding()) {
SetState<CompletedState>();
} else {
MaybeStopPrerolling();
}
}
void MediaDecoderStateMachine::DecodingState::DispatchDecodeTasksIfNeeded() {
if (mMaster->IsAudioDecoding() && !mMaster->mMinimizePreroll &&
!mMaster->HaveEnoughDecodedAudio()) {
EnsureAudioDecodeTaskQueued();
}
if (mMaster->IsVideoDecoding() && !mMaster->mMinimizePreroll &&
!mMaster->HaveEnoughDecodedVideo()) {
EnsureVideoDecodeTaskQueued();
}
}
void MediaDecoderStateMachine::DecodingState::EnsureAudioDecodeTaskQueued() {
if (!mMaster->IsAudioDecoding() || mMaster->IsRequestingAudioData() ||
mMaster->IsWaitingAudioData()) {
return;
}
mMaster->RequestAudioData();
}
void MediaDecoderStateMachine::DecodingState::EnsureVideoDecodeTaskQueued() {
if (!mMaster->IsVideoDecoding() || mMaster->IsRequestingVideoData() ||
mMaster->IsWaitingVideoData()) {
return;
}
mMaster->RequestVideoData(mMaster->GetMediaTime(),
ShouldRequestNextKeyFrame());
}
void MediaDecoderStateMachine::DecodingState::MaybeStartBuffering() {
// Buffering makes senses only after decoding first frames.
MOZ_ASSERT(mMaster->mSentFirstFrameLoadedEvent);
// Don't enter buffering when MediaDecoder is not playing.
if (mMaster->mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
return;
}
// Don't enter buffering while prerolling so that the decoder has a chance to
// enqueue some decoded data before we give up and start buffering.
if (!mMaster->IsPlaying()) {
return;
}
// Note we could have a wait promise pending when playing non-MSE EME.
if (mMaster->OutOfDecodedAudio() && mMaster->IsWaitingAudioData()) {
PROFILER_MARKER_TEXT("MDSM::StartBuffering", MEDIA_PLAYBACK, {},
"OutOfDecodedAudio");
SLOG("Enter buffering due to out of decoded audio");
SetState<BufferingState>();
return;
}
if (mMaster->OutOfDecodedVideo() && mMaster->IsWaitingVideoData()) {
PROFILER_MARKER_TEXT("MDSM::StartBuffering", MEDIA_PLAYBACK, {},
"OutOfDecodedVideo");
SLOG("Enter buffering due to out of decoded video");
SetState<BufferingState>();
return;
}
if (Reader()->UseBufferingHeuristics() && mMaster->HasLowDecodedData() &&
mMaster->HasLowBufferedData() && !mMaster->mCanPlayThrough) {
PROFILER_MARKER_TEXT("MDSM::StartBuffering", MEDIA_PLAYBACK, {},
"BufferingHeuristics");
SLOG("Enter buffering due to buffering heruistics");
SetState<BufferingState>();
}
}
void MediaDecoderStateMachine::LoopingDecodingState::HandleError(
const MediaResult& aError, bool aIsAudio) {
SLOG("%s looping failed, aError=%s", aIsAudio ? "audio" : "video",
aError.ErrorName().get());
switch (aError.Code()) {
case NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA:
if (aIsAudio) {
HandleWaitingForAudio();
} else {
HandleWaitingForVideo();
}
[[fallthrough]];
case NS_ERROR_DOM_MEDIA_END_OF_STREAM:
// This could happen after either the resource has been close, or the data
// hasn't been appended in MSE, so that we won't be able to get any
// sample and need to fallback to normal looping.
if (mIsReachingAudioEOS && mIsReachingVideoEOS) {
SetState<CompletedState>();
}
break;
default:
mMaster->DecodeError(aError);
break;
}
}
void MediaDecoderStateMachine::SeekingState::SeekCompleted() {
const auto newCurrentTime = CalculateNewCurrentTime();
if ((newCurrentTime == mMaster->Duration() ||
newCurrentTime.EqualsAtLowestResolution(
mMaster->Duration().ToBase(USECS_PER_S))) &&
!mMaster->mIsLiveStream) {
SLOG("Seek completed, seeked to end: %s", newCurrentTime.ToString().get());
// will transition to COMPLETED immediately. Note we don't do
// this when playing a live stream, since the end of media will advance
// once we download more data!
AudioQueue().Finish();
VideoQueue().Finish();
// We won't start MediaSink when paused. m{Audio,Video}Completed will
// remain false and 'playbackEnded' won't be notified. Therefore we
// need to set these flags explicitly when seeking to the end.
mMaster->mAudioCompleted = true;
mMaster->mVideoCompleted = true;
// There might still be a pending audio request when doing video-only or
// next-frame seek. Discard it so we won't break the invariants of the
// COMPLETED state by adding audio samples to a finished queue.
mMaster->mAudioDataRequest.DisconnectIfExists();
}
// We want to resolve the seek request prior finishing the first frame
// to ensure that the seeked event is fired prior loadeded.
// Note: SeekJob.Resolve() resets SeekJob.mTarget. Don't use mSeekJob anymore
// hereafter.
mSeekJob.Resolve(__func__);
// Notify FirstFrameLoaded now if we haven't since we've decoded some data
// for readyState to transition to HAVE_CURRENT_DATA and fire 'loadeddata'.
if (!mMaster->mSentFirstFrameLoadedEvent) {
mMaster->FinishDecodeFirstFrame();
}
// Ensure timestamps are up to date.
// Suppressed visibility comes from two cases: (1) leaving dormant state,
// and (2) resuming suspended video decoder. We want both cases to be
// transparent to the user. So we only notify the change when the seek
// request is from the user.
if (mVisibility == EventVisibility::Observable) {
// Don't update playback position for video-only seek.
// Otherwise we might have |newCurrentTime > mMediaSink->GetPosition()|
// and fail the assertion in GetClock() since we didn't stop MediaSink.
mMaster->UpdatePlaybackPositionInternal(newCurrentTime);
}
// Try to decode another frame to detect if we're at the end...
SLOG("Seek completed, mCurrentPosition=%" PRId64,
mMaster->mCurrentPosition.Ref().ToMicroseconds());
if (mMaster->VideoQueue().PeekFront()) {
mMaster->mMediaSink->Redraw(Info().mVideo);
mMaster->mOnPlaybackEvent.Notify(MediaPlaybackEvent::Invalidate);
}
GoToNextState();
}
void MediaDecoderStateMachine::BufferingState::Step() {
TimeStamp now = TimeStamp::Now();
MOZ_ASSERT(!mBufferingStart.IsNull(), "Must know buffering start time.");
if (Reader()->UseBufferingHeuristics()) {
if (mMaster->IsWaitingAudioData() || mMaster->IsWaitingVideoData()) {
// Can't exit buffering when we are still waiting for data.
// Note we don't schedule next loop for we will do that when the wait
// promise is resolved.
return;
}
// With buffering heuristics, we exit buffering state when we:
// 1. can play through or
// 2. time out (specified by mBufferingWait) or
// 3. have enough buffered data.
TimeDuration elapsed = now - mBufferingStart;
TimeDuration timeout =
TimeDuration::FromSeconds(mBufferingWait * mMaster->mPlaybackRate);
bool stopBuffering =
mMaster->mCanPlayThrough || elapsed >= timeout ||
!mMaster->HasLowBufferedData(TimeUnit::FromSeconds(mBufferingWait));
if (!stopBuffering) {
SLOG("Buffering: wait %ds, timeout in %.3lfs", mBufferingWait,
mBufferingWait - elapsed.ToSeconds());
mMaster->ScheduleStateMachineIn(TimeUnit::FromMicroseconds(USECS_PER_S));
return;
}
} else if (mMaster->OutOfDecodedAudio() || mMaster->OutOfDecodedVideo()) {
MOZ_ASSERT(!mMaster->OutOfDecodedAudio() ||
mMaster->IsRequestingAudioData() ||
mMaster->IsWaitingAudioData());
MOZ_ASSERT(!mMaster->OutOfDecodedVideo() ||
mMaster->IsRequestingVideoData() ||
mMaster->IsWaitingVideoData());
SLOG(
"In buffering mode, waiting to be notified: outOfAudio: %d, "
"mAudioStatus: %s, outOfVideo: %d, mVideoStatus: %s",
mMaster->OutOfDecodedAudio(), mMaster->AudioRequestStatus(),
mMaster->OutOfDecodedVideo(), mMaster->VideoRequestStatus());
return;
}
SLOG("Buffered for %.3lfs", (now - mBufferingStart).ToSeconds());
mMaster->mTotalBufferingDuration += (now - mBufferingStart);
SetDecodingState();
}
void MediaDecoderStateMachine::BufferingState::HandleEndOfAudio() {
AudioQueue().Finish();
if (!mMaster->IsVideoDecoding()) {
SetState<CompletedState>();
} else {
// Check if we can exit buffering.
mMaster->ScheduleStateMachine();
}
}
void MediaDecoderStateMachine::BufferingState::HandleEndOfVideo() {
VideoQueue().Finish();
if (!mMaster->IsAudioDecoding()) {
SetState<CompletedState>();
} else {
// Check if we can exit buffering.
mMaster->ScheduleStateMachine();
}
}
RefPtr<ShutdownPromise> MediaDecoderStateMachine::ShutdownState::Enter() {
auto* master = mMaster;
master->mDelayedScheduler.Reset();
// Shutdown happens while decode timer is active, we need to disconnect and
// dispose of the timer.
master->CancelSuspendTimer();
if (master->IsPlaying()) {
master->StopPlayback();
}
master->mAudioDataRequest.DisconnectIfExists();
master->mVideoDataRequest.DisconnectIfExists();
master->mAudioWaitRequest.DisconnectIfExists();
master->mVideoWaitRequest.DisconnectIfExists();
// Resetting decode should be called after stopping media sink, which can
// ensure that we have an empty media queue before seeking the demuxer.
master->StopMediaSink();
master->ResetDecode();
master->mMediaSink->Shutdown();
// Prevent dangling pointers by disconnecting the listeners.
master->mAudioQueueListener.Disconnect();
master->mVideoQueueListener.Disconnect();
master->mMetadataManager.Disconnect();
master->mOnMediaNotSeekable.Disconnect();
master->mAudibleListener.DisconnectIfExists();
// Disconnect canonicals and mirrors before shutting down our task queue.
master->mStreamName.DisconnectIfConnected();
master->mSinkDevice.DisconnectIfConnected();
master->mOutputCaptureState.DisconnectIfConnected();
master->mOutputDummyTrack.DisconnectIfConnected();
master->mOutputTracks.DisconnectIfConnected();
master->mOutputPrincipal.DisconnectIfConnected();
master->mDuration.DisconnectAll();
master->mCurrentPosition.DisconnectAll();
master->mIsAudioDataAudible.DisconnectAll();
// Shut down the watch manager to stop further notifications.
master->mWatchManager.Shutdown();
return Reader()->Shutdown()->Then(OwnerThread(), __func__, master,
&MediaDecoderStateMachine::FinishShutdown,
&MediaDecoderStateMachine::FinishShutdown);
}
#define INIT_WATCHABLE(name, val) name(val, "MediaDecoderStateMachine::" #name)
#define INIT_MIRROR(name, val) \
name(mTaskQueue, val, "MediaDecoderStateMachine::" #name " (Mirror)")
#define INIT_CANONICAL(name, val) \
name(mTaskQueue, val, "MediaDecoderStateMachine::" #name " (Canonical)")
MediaDecoderStateMachine::MediaDecoderStateMachine(MediaDecoder* aDecoder,
MediaFormatReader* aReader)
: MediaDecoderStateMachineBase(aDecoder, aReader),
mWatchManager(this, mTaskQueue),
mDispatchedStateMachine(false),
mDelayedScheduler(mTaskQueue, true /*aFuzzy*/),
mCurrentFrameID(0),
mAmpleAudioThreshold(detail::AMPLE_AUDIO_THRESHOLD),
mVideoDecodeSuspended(false),
mVideoDecodeSuspendTimer(mTaskQueue),
mVideoDecodeMode(VideoDecodeMode::Normal),
mIsMSE(aDecoder->IsMSE()),
mShouldResistFingerprinting(aDecoder->ShouldResistFingerprinting()),
mSeamlessLoopingAllowed(false),
mTotalBufferingDuration(TimeDuration::Zero()),
INIT_MIRROR(mStreamName, nsAutoString()),
INIT_MIRROR(mSinkDevice, nullptr),
INIT_MIRROR(mOutputCaptureState, MediaDecoder::OutputCaptureState::None),
INIT_MIRROR(mOutputDummyTrack, nullptr),
INIT_MIRROR(mOutputTracks, nsTArray<RefPtr<ProcessedMediaTrack>>()),
INIT_MIRROR(mOutputPrincipal, PRINCIPAL_HANDLE_NONE),
INIT_CANONICAL(mCanonicalOutputPrincipal, PRINCIPAL_HANDLE_NONE),
mShuttingDown(false) {
MOZ_COUNT_CTOR(MediaDecoderStateMachine);
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
InitVideoQueuePrefs();
DDLINKCHILD("reader", aReader);
}
#undef INIT_WATCHABLE
#undef INIT_MIRROR
#undef INIT_CANONICAL
MediaDecoderStateMachine::~MediaDecoderStateMachine() {
MOZ_ASSERT(NS_IsMainThread(), "Should be on main thread.");
MOZ_COUNT_DTOR(MediaDecoderStateMachine);
}
void MediaDecoderStateMachine::InitializationTask(MediaDecoder* aDecoder) {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::InitializationTask",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
MediaDecoderStateMachineBase::InitializationTask(aDecoder);
// Initialize watchers.
mWatchManager.Watch(mStreamName,
&MediaDecoderStateMachine::StreamNameChanged);
mWatchManager.Watch(mOutputCaptureState,
&MediaDecoderStateMachine::UpdateOutputCaptured);
mWatchManager.Watch(mOutputDummyTrack,
&MediaDecoderStateMachine::UpdateOutputCaptured);
mWatchManager.Watch(mOutputTracks,
&MediaDecoderStateMachine::UpdateOutputCaptured);
mWatchManager.Watch(mOutputPrincipal,
&MediaDecoderStateMachine::OutputPrincipalChanged);
mMediaSink = CreateMediaSink();
MOZ_ASSERT(!mStateObj);
auto* s = new DecodeMetadataState(this);
mStateObj.reset(s);
s->Enter();
}
void MediaDecoderStateMachine::AudioAudibleChanged(bool aAudible) {
mIsAudioDataAudible = aAudible;
}
MediaSink* MediaDecoderStateMachine::CreateAudioSink() {
if (mOutputCaptureState != MediaDecoder::OutputCaptureState::None) {
DecodedStream* stream = new DecodedStream(
this,
mOutputCaptureState == MediaDecoder::OutputCaptureState::Capture
? mOutputDummyTrack.Ref()
: nullptr,
mOutputTracks, mVolume, mPlaybackRate, mPreservesPitch, mAudioQueue,
mVideoQueue, mSinkDevice.Ref());
mAudibleListener.DisconnectIfExists();
mAudibleListener = stream->AudibleEvent().Connect(
OwnerThread(), this, &MediaDecoderStateMachine::AudioAudibleChanged);
return stream;
}
auto audioSinkCreator = [s = RefPtr<MediaDecoderStateMachine>(this), this]() {
MOZ_ASSERT(OnTaskQueue());
UniquePtr<AudioSink> audioSink{new AudioSink(
mTaskQueue, mAudioQueue, Info().mAudio, mShouldResistFingerprinting)};
mAudibleListener.DisconnectIfExists();
mAudibleListener = audioSink->AudibleEvent().Connect(
mTaskQueue, this, &MediaDecoderStateMachine::AudioAudibleChanged);
return audioSink;
};
return new AudioSinkWrapper(
mTaskQueue, mAudioQueue, std::move(audioSinkCreator), mVolume,
mPlaybackRate, mPreservesPitch, mSinkDevice.Ref());
}
already_AddRefed<MediaSink> MediaDecoderStateMachine::CreateMediaSink() {
MOZ_ASSERT(OnTaskQueue());
RefPtr<MediaSink> audioSink = CreateAudioSink();
RefPtr<MediaSink> mediaSink =
new VideoSink(mTaskQueue, audioSink, mVideoQueue, mVideoFrameContainer,
*mFrameStats, sVideoQueueSendToCompositorSize);
if (mSecondaryVideoContainer.Ref()) {
mediaSink->SetSecondaryVideoContainer(mSecondaryVideoContainer.Ref());
}
return mediaSink.forget();
}
TimeUnit MediaDecoderStateMachine::GetDecodedAudioDuration() const {
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
return mMediaSink->UnplayedDuration(TrackInfo::kAudioTrack) +
TimeUnit::FromMicroseconds(AudioQueue().Duration());
}
// MediaSink not started. All audio samples are in the queue.
return TimeUnit::FromMicroseconds(AudioQueue().Duration());
}
bool MediaDecoderStateMachine::HaveEnoughDecodedAudio() const {
MOZ_ASSERT(OnTaskQueue());
auto ampleAudio = mAmpleAudioThreshold.MultDouble(mPlaybackRate);
return AudioQueue().GetSize() > 0 && GetDecodedAudioDuration() >= ampleAudio;
}
bool MediaDecoderStateMachine::HaveEnoughDecodedVideo() const {
MOZ_ASSERT(OnTaskQueue());
return static_cast<double>(VideoQueue().GetSize()) >=
GetAmpleVideoFrames() * mPlaybackRate + 1 &&
IsVideoDataEnoughComparedWithAudio();
}
bool MediaDecoderStateMachine::IsVideoDataEnoughComparedWithAudio() const {
// HW decoding is usually fast enough and we don't need to worry about its
// speed.
// TODO : we can consider whether we need to enable this on other HW decoding
// except VAAPI. When enabling VAAPI on Linux, ffmpeg is not able to store too
// many frames because it has a limitation of amount of stored video frames.
// See bug1716638 and 1718309.
if (mReader->VideoIsHardwareAccelerated()) {
return true;
}
// In extreme situations (e.g. 4k+ video without hardware acceleration), the
// video decoding will be much slower than audio. So for 4K+ video, we want to
// consider audio decoding speed as well in order to reduce frame drops. This
// check tries to keep the decoded video buffered as much as audio.
if (HasAudio() && Info().mVideo.mImage.width >= 3840 &&
Info().mVideo.mImage.height >= 2160) {
return VideoQueue().Duration() >= AudioQueue().Duration();
}
// For non-4k video, the video decoding is usually really fast so we won't
// need to consider audio decoding speed to store extra frames.
return true;
}
void MediaDecoderStateMachine::PushAudio(AudioData* aSample) {
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
AudioQueue().Push(aSample);
PROFILER_MARKER("MDSM::PushAudio", MEDIA_PLAYBACK, {}, MediaSampleMarker,
aSample->mTime.ToMicroseconds(),
aSample->GetEndTime().ToMicroseconds(),
AudioQueue().GetSize());
}
void MediaDecoderStateMachine::PushVideo(VideoData* aSample) {
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
aSample->mFrameID = ++mCurrentFrameID;
VideoQueue().Push(aSample);
PROFILER_MARKER("MDSM::PushVideo", MEDIA_PLAYBACK, {}, MediaSampleMarker,
aSample->mTime.ToMicroseconds(),
aSample->GetEndTime().ToMicroseconds(),
VideoQueue().GetSize());
}
void MediaDecoderStateMachine::OnAudioPopped(const RefPtr<AudioData>& aSample) {
MOZ_ASSERT(OnTaskQueue());
mPlaybackOffset = std::max(mPlaybackOffset, aSample->mOffset);
}
void MediaDecoderStateMachine::OnVideoPopped(const RefPtr<VideoData>& aSample) {
MOZ_ASSERT(OnTaskQueue());
mPlaybackOffset = std::max(mPlaybackOffset, aSample->mOffset);
}
bool MediaDecoderStateMachine::IsAudioDecoding() {
MOZ_ASSERT(OnTaskQueue());
return HasAudio() && !AudioQueue().IsFinished();
}
bool MediaDecoderStateMachine::IsVideoDecoding() {
MOZ_ASSERT(OnTaskQueue());
return HasVideo() && !VideoQueue().IsFinished();
}
bool MediaDecoderStateMachine::IsPlaying() const {
MOZ_ASSERT(OnTaskQueue());
return mMediaSink->IsPlaying();
}
void MediaDecoderStateMachine::SetMediaNotSeekable() { mMediaSeekable = false; }
nsresult MediaDecoderStateMachine::Init(MediaDecoder* aDecoder) {
MOZ_ASSERT(NS_IsMainThread());
nsresult rv = MediaDecoderStateMachineBase::Init(aDecoder);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
// Connect mirrors.
aDecoder->CanonicalStreamName().ConnectMirror(&mStreamName);
aDecoder->CanonicalSinkDevice().ConnectMirror(&mSinkDevice);
aDecoder->CanonicalOutputCaptureState().ConnectMirror(&mOutputCaptureState);
aDecoder->CanonicalOutputDummyTrack().ConnectMirror(&mOutputDummyTrack);
aDecoder->CanonicalOutputTracks().ConnectMirror(&mOutputTracks);
aDecoder->CanonicalOutputPrincipal().ConnectMirror(&mOutputPrincipal);
mAudioQueueListener = AudioQueue().PopFrontEvent().Connect(
mTaskQueue, this, &MediaDecoderStateMachine::OnAudioPopped);
mVideoQueueListener = VideoQueue().PopFrontEvent().Connect(
mTaskQueue, this, &MediaDecoderStateMachine::OnVideoPopped);
mOnMediaNotSeekable = mReader->OnMediaNotSeekable().Connect(
OwnerThread(), this, &MediaDecoderStateMachine::SetMediaNotSeekable);
return NS_OK;
}
void MediaDecoderStateMachine::StopPlayback() {
MOZ_ASSERT(OnTaskQueue());
LOG("StopPlayback()");
if (IsPlaying()) {
mOnPlaybackEvent.Notify(MediaPlaybackEvent{
MediaPlaybackEvent::PlaybackStopped, mPlaybackOffset});
mMediaSink->SetPlaying(false);
MOZ_ASSERT(!IsPlaying());
}
}
void MediaDecoderStateMachine::MaybeStartPlayback() {
MOZ_ASSERT(OnTaskQueue());
// Should try to start playback only after decoding first frames.
if (!mSentFirstFrameLoadedEvent) {
LOG("MaybeStartPlayback: Not starting playback before loading first frame");
return;
}
if (IsPlaying()) {
// Logging this case is really spammy - don't do it.
return;
}
if (mIsMediaSinkSuspended) {
LOG("MaybeStartPlayback: Not starting playback when sink is suspended");
return;
}
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
LOG("MaybeStartPlayback: Not starting playback [mPlayState=%d]",
mPlayState.Ref());
return;
}
LOG("MaybeStartPlayback() starting playback");
StartMediaSink();
if (!IsPlaying()) {
mMediaSink->SetPlaying(true);
MOZ_ASSERT(IsPlaying());
}
mOnPlaybackEvent.Notify(
MediaPlaybackEvent{MediaPlaybackEvent::PlaybackStarted, mPlaybackOffset});
}
void MediaDecoderStateMachine::UpdatePlaybackPositionInternal(
const TimeUnit& aTime) {
MOZ_ASSERT(OnTaskQueue());
LOGV("UpdatePlaybackPositionInternal(%" PRId64 ")", aTime.ToMicroseconds());
// Ensure the position has a precision that matches other TimeUnit such as
// buffering ranges and duration.
mCurrentPosition = aTime.ToBase(1000000);
NS_ASSERTION(mCurrentPosition.Ref() >= TimeUnit::Zero(),
"CurrentTime should be positive!");
if (mDuration.Ref().ref() < mCurrentPosition.Ref()) {
mDuration = Some(mCurrentPosition.Ref());
DDLOG(DDLogCategory::Property, "duration_us",
mDuration.Ref()->ToMicroseconds());
}
}
void MediaDecoderStateMachine::UpdatePlaybackPosition(const TimeUnit& aTime) {
MOZ_ASSERT(OnTaskQueue());
UpdatePlaybackPositionInternal(aTime);
bool fragmentEnded =
mFragmentEndTime.IsValid() && GetMediaTime() >= mFragmentEndTime;
mMetadataManager.DispatchMetadataIfNeeded(aTime);
if (fragmentEnded) {
StopPlayback();
}
}
/* static */ const char* MediaDecoderStateMachine::ToStateStr(State aState) {
switch (aState) {
case DECODER_STATE_DECODING_METADATA:
return "DECODING_METADATA";
case DECODER_STATE_DORMANT:
return "DORMANT";
case DECODER_STATE_DECODING_FIRSTFRAME:
return "DECODING_FIRSTFRAME";
case DECODER_STATE_DECODING:
return "DECODING";
case DECODER_STATE_SEEKING_ACCURATE:
return "SEEKING_ACCURATE";
case DECODER_STATE_SEEKING_FROMDORMANT:
return "SEEKING_FROMDORMANT";
case DECODER_STATE_SEEKING_NEXTFRAMESEEKING:
return "DECODER_STATE_SEEKING_NEXTFRAMESEEKING";
case DECODER_STATE_SEEKING_VIDEOONLY:
return "SEEKING_VIDEOONLY";
case DECODER_STATE_BUFFERING:
return "BUFFERING";
case DECODER_STATE_COMPLETED:
return "COMPLETED";
case DECODER_STATE_SHUTDOWN:
return "SHUTDOWN";
case DECODER_STATE_LOOPING_DECODING:
return "LOOPING_DECODING";
default:
MOZ_ASSERT_UNREACHABLE("Invalid state.");
}
return "UNKNOWN";
}
const char* MediaDecoderStateMachine::ToStateStr() {
MOZ_ASSERT(OnTaskQueue());
return ToStateStr(mStateObj->GetState());
}
void MediaDecoderStateMachine::VolumeChanged() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::VolumeChanged",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
mMediaSink->SetVolume(mVolume);
}
RefPtr<ShutdownPromise> MediaDecoderStateMachine::Shutdown() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::Shutdown", MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
mShuttingDown = true;
return mStateObj->HandleShutdown();
}
void MediaDecoderStateMachine::PlayStateChanged() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::PlayStateChanged",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
CancelSuspendTimer();
} else if (mMinimizePreroll) {
// Once we start playing, we don't want to minimize our prerolling, as we
// assume the user is likely to want to keep playing in future. This needs
// to happen before we invoke StartDecoding().
mMinimizePreroll = false;
}
mStateObj->HandlePlayStateChanged(mPlayState);
}
void MediaDecoderStateMachine::SetVideoDecodeMode(VideoDecodeMode aMode) {
MOZ_ASSERT(NS_IsMainThread());
nsCOMPtr<nsIRunnable> r = NewRunnableMethod<VideoDecodeMode>(
"MediaDecoderStateMachine::SetVideoDecodeModeInternal", this,
&MediaDecoderStateMachine::SetVideoDecodeModeInternal, aMode);
OwnerThread()->DispatchStateChange(r.forget());
}
void MediaDecoderStateMachine::SetVideoDecodeModeInternal(
VideoDecodeMode aMode) {
MOZ_ASSERT(OnTaskQueue());
LOG("SetVideoDecodeModeInternal(), VideoDecodeMode=(%s->%s), "
"mVideoDecodeSuspended=%c",
mVideoDecodeMode == VideoDecodeMode::Normal ? "Normal" : "Suspend",
aMode == VideoDecodeMode::Normal ? "Normal" : "Suspend",
mVideoDecodeSuspended ? 'T' : 'F');
// Should not suspend decoding if we don't turn on the pref.
if (!StaticPrefs::media_suspend_background_video_enabled() &&
aMode == VideoDecodeMode::Suspend) {
LOG("SetVideoDecodeModeInternal(), early return because preference off and "
"set to Suspend");
return;
}
if (aMode == mVideoDecodeMode) {
LOG("SetVideoDecodeModeInternal(), early return because the mode does not "
"change");
return;
}
// Set new video decode mode.
mVideoDecodeMode = aMode;
// Start timer to trigger suspended video decoding.
if (mVideoDecodeMode == VideoDecodeMode::Suspend) {
TimeStamp target = TimeStamp::Now() + SuspendBackgroundVideoDelay();
RefPtr<MediaDecoderStateMachine> self = this;
mVideoDecodeSuspendTimer.Ensure(
target, [=]() { self->OnSuspendTimerResolved(); },
[]() { MOZ_DIAGNOSTIC_ASSERT(false); });
mOnPlaybackEvent.Notify(MediaPlaybackEvent::StartVideoSuspendTimer);
return;
}
// Resuming from suspended decoding
// If suspend timer exists, destroy it.
CancelSuspendTimer();
if (mVideoDecodeSuspended) {
auto target = mMediaSink->IsStarted() ? GetClock() : GetMediaTime();
AdjustByLooping(target);
mStateObj->HandleResumeVideoDecoding(target + detail::RESUME_VIDEO_PREMIUM);
}
}
void MediaDecoderStateMachine::BufferedRangeUpdated() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::BufferedRangeUpdated",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
// While playing an unseekable stream of unknown duration, mDuration
// is updated as we play. But if data is being downloaded
// faster than played, mDuration won't reflect the end of playable data
// since we haven't played the frame at the end of buffered data. So update
// mDuration here as new data is downloaded to prevent such a lag.
if (mBuffered.Ref().IsInvalid()) {
return;
}
bool exists;
media::TimeUnit end{mBuffered.Ref().GetEnd(&exists)};
if (!exists) {
return;
}
// Use estimated duration from buffer ranges when mDuration is unknown or
// the estimated duration is larger.
if (mDuration.Ref().isNothing() || mDuration.Ref()->IsInfinite() ||
end > mDuration.Ref().ref()) {
mDuration = Some(end);
DDLOG(DDLogCategory::Property, "duration_us",
mDuration.Ref()->ToMicroseconds());
}
}
RefPtr<MediaDecoder::SeekPromise> MediaDecoderStateMachine::Seek(
const SeekTarget& aTarget) {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::Seek", MEDIA_PLAYBACK);
PROFILER_MARKER_UNTYPED("MDSM::Seek", MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
// We need to be able to seek in some way
if (!mMediaSeekable && !mMediaSeekableOnlyInBufferedRanges) {
LOGW("Seek() should not be called on a non-seekable media");
return MediaDecoder::SeekPromise::CreateAndReject(/* aRejectValue = */ true,
__func__);
}
if (aTarget.IsNextFrame() && !HasVideo()) {
LOGW("Ignore a NextFrameSeekTask on a media file without video track.");
return MediaDecoder::SeekPromise::CreateAndReject(/* aRejectValue = */ true,
__func__);
}
MOZ_ASSERT(mDuration.Ref().isSome(), "We should have got duration already");
return mStateObj->HandleSeek(aTarget);
}
void MediaDecoderStateMachine::StopMediaSink() {
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
LOG("Stop MediaSink");
mMediaSink->Stop();
mMediaSinkAudioEndedPromise.DisconnectIfExists();
mMediaSinkVideoEndedPromise.DisconnectIfExists();
}
}
void MediaDecoderStateMachine::RequestAudioData() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::RequestAudioData",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(IsAudioDecoding());
MOZ_ASSERT(!IsRequestingAudioData());
MOZ_ASSERT(!IsWaitingAudioData());
LOGV("Queueing audio task - queued=%zu, decoder-queued=%zu",
AudioQueue().GetSize(), mReader->SizeOfAudioQueueInFrames());
PerformanceRecorder<PlaybackStage> perfRecorder(MediaStage::RequestData);
RefPtr<MediaDecoderStateMachine> self = this;
mReader->RequestAudioData()
->Then(
OwnerThread(), __func__,
[this, self, perfRecorder(std::move(perfRecorder))](
const RefPtr<AudioData>& aAudio) mutable {
perfRecorder.Record();
AUTO_PROFILER_LABEL(
"MediaDecoderStateMachine::RequestAudioData:Resolved",
MEDIA_PLAYBACK);
MOZ_ASSERT(aAudio);
mAudioDataRequest.Complete();
// audio->GetEndTime() is not always mono-increasing in chained
// ogg.
mDecodedAudioEndTime =
std::max(aAudio->GetEndTime(), mDecodedAudioEndTime);
LOGV("OnAudioDecoded [%" PRId64 ",%" PRId64 "]",
aAudio->mTime.ToMicroseconds(),
aAudio->GetEndTime().ToMicroseconds());
mStateObj->HandleAudioDecoded(aAudio);
},
[this, self](const MediaResult& aError) {
AUTO_PROFILER_LABEL(
"MediaDecoderStateMachine::RequestAudioData:Rejected",
MEDIA_PLAYBACK);
LOGV("OnAudioNotDecoded ErrorName=%s Message=%s",
aError.ErrorName().get(), aError.Message().get());
mAudioDataRequest.Complete();
switch (aError.Code()) {
case NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA:
mStateObj->HandleWaitingForAudio();
break;
case NS_ERROR_DOM_MEDIA_CANCELED:
mStateObj->HandleAudioCanceled();
break;
case NS_ERROR_DOM_MEDIA_END_OF_STREAM:
mStateObj->HandleEndOfAudio();
break;
default:
DecodeError(aError);
}
})
->Track(mAudioDataRequest);
}
void MediaDecoderStateMachine::RequestVideoData(
const media::TimeUnit& aCurrentTime, bool aRequestNextKeyFrame) {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::RequestVideoData",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(IsVideoDecoding());
MOZ_ASSERT(!IsRequestingVideoData());
MOZ_ASSERT(!IsWaitingVideoData());
LOGV(
"Queueing video task - queued=%zu, decoder-queued=%zo"
", stime=%" PRId64 ", by-pass-skip=%d",
VideoQueue().GetSize(), mReader->SizeOfVideoQueueInFrames(),
aCurrentTime.ToMicroseconds(), mBypassingSkipToNextKeyFrameCheck);
PerformanceRecorder<PlaybackStage> perfRecorder(MediaStage::RequestData,
Info().mVideo.mImage.height);
RefPtr<MediaDecoderStateMachine> self = this;
mReader
->RequestVideoData(
mBypassingSkipToNextKeyFrameCheck ? media::TimeUnit() : aCurrentTime,
mBypassingSkipToNextKeyFrameCheck ? false : aRequestNextKeyFrame)
->Then(
OwnerThread(), __func__,
[this, self, perfRecorder(std::move(perfRecorder))](
const RefPtr<VideoData>& aVideo) mutable {
perfRecorder.Record();
AUTO_PROFILER_LABEL(
"MediaDecoderStateMachine::RequestVideoData:Resolved",
MEDIA_PLAYBACK);
MOZ_ASSERT(aVideo);
mVideoDataRequest.Complete();
// Handle abnormal or negative timestamps.
mDecodedVideoEndTime =
std::max(mDecodedVideoEndTime, aVideo->GetEndTime());
LOGV("OnVideoDecoded [%" PRId64 ",%" PRId64 "]",
aVideo->mTime.ToMicroseconds(),
aVideo->GetEndTime().ToMicroseconds());
mStateObj->HandleVideoDecoded(aVideo);
},
[this, self](const MediaResult& aError) {
AUTO_PROFILER_LABEL(
"MediaDecoderStateMachine::RequestVideoData:Rejected",
MEDIA_PLAYBACK);
LOGV("OnVideoNotDecoded ErrorName=%s Message=%s",
aError.ErrorName().get(), aError.Message().get());
mVideoDataRequest.Complete();
switch (aError.Code()) {
case NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA:
mStateObj->HandleWaitingForVideo();
break;
case NS_ERROR_DOM_MEDIA_CANCELED:
mStateObj->HandleVideoCanceled();
break;
case NS_ERROR_DOM_MEDIA_END_OF_STREAM:
mStateObj->HandleEndOfVideo();
break;
default:
DecodeError(aError);
}
})
->Track(mVideoDataRequest);
}
void MediaDecoderStateMachine::WaitForData(MediaData::Type aType) {
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aType == MediaData::Type::AUDIO_DATA ||
aType == MediaData::Type::VIDEO_DATA);
RefPtr<MediaDecoderStateMachine> self = this;
if (aType == MediaData::Type::AUDIO_DATA) {
mReader->WaitForData(MediaData::Type::AUDIO_DATA)
->Then(
OwnerThread(), __func__,
[self](MediaData::Type aType) {
AUTO_PROFILER_LABEL(
"MediaDecoderStateMachine::WaitForData:AudioResolved",
MEDIA_PLAYBACK);
self->mAudioWaitRequest.Complete();
MOZ_ASSERT(aType == MediaData::Type::AUDIO_DATA);
self->mStateObj->HandleAudioWaited(aType);
},
[self](const WaitForDataRejectValue& aRejection) {
AUTO_PROFILER_LABEL(
"MediaDecoderStateMachine::WaitForData:AudioRejected",
MEDIA_PLAYBACK);
self->mAudioWaitRequest.Complete();
self->DecodeError(NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA);
})
->Track(mAudioWaitRequest);
} else {
mReader->WaitForData(MediaData::Type::VIDEO_DATA)
->Then(
OwnerThread(), __func__,
[self](MediaData::Type aType) {
AUTO_PROFILER_LABEL(
"MediaDecoderStateMachine::WaitForData:VideoResolved",
MEDIA_PLAYBACK);
self->mVideoWaitRequest.Complete();
MOZ_ASSERT(aType == MediaData::Type::VIDEO_DATA);
self->mStateObj->HandleVideoWaited(aType);
},
[self](const WaitForDataRejectValue& aRejection) {
AUTO_PROFILER_LABEL(
"MediaDecoderStateMachine::WaitForData:VideoRejected",
MEDIA_PLAYBACK);
self->mVideoWaitRequest.Complete();
self->DecodeError(NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA);
})
->Track(mVideoWaitRequest);
}
}
nsresult MediaDecoderStateMachine::StartMediaSink() {
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
return NS_OK;
}
mAudioCompleted = false;
const auto startTime = GetMediaTime();
LOG("StartMediaSink, mediaTime=%" PRId64, startTime.ToMicroseconds());
nsresult rv = mMediaSink->Start(startTime, Info());
StreamNameChanged();
auto videoPromise = mMediaSink->OnEnded(TrackInfo::kVideoTrack);
auto audioPromise = mMediaSink->OnEnded(TrackInfo::kAudioTrack);
if (audioPromise) {
audioPromise
->Then(OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnMediaSinkAudioComplete,
&MediaDecoderStateMachine::OnMediaSinkAudioError)
->Track(mMediaSinkAudioEndedPromise);
}
if (videoPromise) {
videoPromise
->Then(OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnMediaSinkVideoComplete,
&MediaDecoderStateMachine::OnMediaSinkVideoError)
->Track(mMediaSinkVideoEndedPromise);
}
// Remember the initial offset when playback starts. This will be used
// to calculate the rate at which bytes are consumed as playback moves on.
RefPtr<MediaData> sample = mAudioQueue.PeekFront();
mPlaybackOffset = sample ? sample->mOffset : 0;
sample = mVideoQueue.PeekFront();
if (sample && sample->mOffset > mPlaybackOffset) {
mPlaybackOffset = sample->mOffset;
}
return rv;
}
bool MediaDecoderStateMachine::HasLowDecodedAudio() {
MOZ_ASSERT(OnTaskQueue());
return IsAudioDecoding() &&
GetDecodedAudioDuration() <
EXHAUSTED_DATA_MARGIN.MultDouble(mPlaybackRate);
}
bool MediaDecoderStateMachine::HasLowDecodedVideo() {
MOZ_ASSERT(OnTaskQueue());
return IsVideoDecoding() &&
VideoQueue().GetSize() <
static_cast<size_t>(floorl(LOW_VIDEO_FRAMES * mPlaybackRate));
}
bool MediaDecoderStateMachine::HasLowDecodedData() {
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mReader->UseBufferingHeuristics());
return HasLowDecodedAudio() || HasLowDecodedVideo();
}
bool MediaDecoderStateMachine::OutOfDecodedAudio() {
MOZ_ASSERT(OnTaskQueue());
return IsAudioDecoding() && !AudioQueue().IsFinished() &&
AudioQueue().GetSize() == 0 &&
!mMediaSink->HasUnplayedFrames(TrackInfo::kAudioTrack);
}
bool MediaDecoderStateMachine::HasLowBufferedData() {
MOZ_ASSERT(OnTaskQueue());
return HasLowBufferedData(detail::LOW_BUFFER_THRESHOLD);
}
bool MediaDecoderStateMachine::HasLowBufferedData(const TimeUnit& aThreshold) {
MOZ_ASSERT(OnTaskQueue());
// If we don't have a duration, mBuffered is probably not going to have
// a useful buffered range. Return false here so that we don't get stuck in
// buffering mode for live streams.
if (Duration().IsInfinite()) {
return false;
}
if (mBuffered.Ref().IsInvalid()) {
return false;
}
// We are never low in decoded data when we don't have audio/video or have
// decoded all audio/video samples.
TimeUnit endOfDecodedVideo = (HasVideo() && !VideoQueue().IsFinished())
? mDecodedVideoEndTime
: TimeUnit::FromNegativeInfinity();
TimeUnit endOfDecodedAudio = (HasAudio() && !AudioQueue().IsFinished())
? mDecodedAudioEndTime
: TimeUnit::FromNegativeInfinity();
auto endOfDecodedData = std::max(endOfDecodedVideo, endOfDecodedAudio);
if (Duration() < endOfDecodedData) {
// Our duration is not up to date. No point buffering.
return false;
}
if (endOfDecodedData.IsInfinite()) {
// Have decoded all samples. No point buffering.
return false;
}
auto start = endOfDecodedData;
auto end = std::min(GetMediaTime() + aThreshold, Duration());
if (start >= end) {
// Duration of decoded samples is greater than our threshold.
return false;
}
media::TimeInterval interval(start, end);
return !mBuffered.Ref().Contains(interval);
}
void MediaDecoderStateMachine::EnqueueFirstFrameLoadedEvent() {
MOZ_ASSERT(OnTaskQueue());
// Track value of mSentFirstFrameLoadedEvent from before updating it
bool firstFrameBeenLoaded = mSentFirstFrameLoadedEvent;
mSentFirstFrameLoadedEvent = true;
MediaDecoderEventVisibility visibility =
firstFrameBeenLoaded ? MediaDecoderEventVisibility::Suppressed
: MediaDecoderEventVisibility::Observable;
mFirstFrameLoadedEvent.Notify(UniquePtr<MediaInfo>(new MediaInfo(Info())),
visibility);
}
void MediaDecoderStateMachine::FinishDecodeFirstFrame() {
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(!mSentFirstFrameLoadedEvent);
LOG("FinishDecodeFirstFrame");
mMediaSink->Redraw(Info().mVideo);
LOG("Media duration %" PRId64 ", mediaSeekable=%d",
Duration().ToMicroseconds(), mMediaSeekable);
// Get potentially updated metadata
mReader->ReadUpdatedMetadata(mInfo.ptr());
EnqueueFirstFrameLoadedEvent();
}
RefPtr<ShutdownPromise> MediaDecoderStateMachine::FinishShutdown() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::FinishShutdown",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
LOG("Shutting down state machine task queue");
return OwnerThread()->BeginShutdown();
}
void MediaDecoderStateMachine::RunStateMachine() {
MOZ_ASSERT(OnTaskQueue());
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::RunStateMachine",
MEDIA_PLAYBACK);
mDelayedScheduler.Reset(); // Must happen on state machine task queue.
mDispatchedStateMachine = false;
mStateObj->Step();
}
void MediaDecoderStateMachine::ResetDecode(const TrackSet& aTracks) {
MOZ_ASSERT(OnTaskQueue());
LOG("MediaDecoderStateMachine::Reset");
// Assert that aTracks specifies to reset the video track because we
// don't currently support resetting just the audio track.
MOZ_ASSERT(aTracks.contains(TrackInfo::kVideoTrack));
if (aTracks.contains(TrackInfo::kVideoTrack)) {
mDecodedVideoEndTime = TimeUnit::Zero();
mVideoCompleted = false;
VideoQueue().Reset();
mVideoDataRequest.DisconnectIfExists();
mVideoWaitRequest.DisconnectIfExists();
}
if (aTracks.contains(TrackInfo::kAudioTrack)) {
mDecodedAudioEndTime = TimeUnit::Zero();
mAudioCompleted = false;
AudioQueue().Reset();
mAudioDataRequest.DisconnectIfExists();
mAudioWaitRequest.DisconnectIfExists();
}
mReader->ResetDecode(aTracks);
}
media::TimeUnit MediaDecoderStateMachine::GetClock(
TimeStamp* aTimeStamp) const {
MOZ_ASSERT(OnTaskQueue());
auto clockTime = mMediaSink->GetPosition(aTimeStamp);
// This fails on Windows some times, see 1765563
#if defined(XP_WIN)
NS_ASSERTION(GetMediaTime() <= clockTime, "Clock should go forwards.");
#else
MOZ_ASSERT(GetMediaTime() <= clockTime, "Clock should go forwards.");
#endif
return clockTime;
}
void MediaDecoderStateMachine::UpdatePlaybackPositionPeriodically() {
MOZ_ASSERT(OnTaskQueue());
if (!IsPlaying()) {
return;
}
// Cap the current time to the larger of the audio and video end time.
// This ensures that if we're running off the system clock, we don't
// advance the clock to after the media end time.
if (VideoEndTime() > TimeUnit::Zero() || AudioEndTime() > TimeUnit::Zero()) {
auto clockTime = GetClock();
// Once looping was turned on, the time is probably larger than the duration
// of the media track, so the time over the end should be corrected.
AdjustByLooping(clockTime);
bool loopback = clockTime < GetMediaTime() && mLooping;
if (loopback && mBypassingSkipToNextKeyFrameCheck) {
LOG("media has looped back, no longer bypassing skip-to-next-key-frame");
mBypassingSkipToNextKeyFrameCheck = false;
}
// Skip frames up to the frame at the playback position, and figure out
// the time remaining until it's time to display the next frame and drop
// the current frame.
NS_ASSERTION(clockTime >= TimeUnit::Zero(),
"Should have positive clock time.");
// These will be non -1 if we've displayed a video frame, or played an audio
// frame.
auto maxEndTime = std::max(VideoEndTime(), AudioEndTime());
auto t = std::min(clockTime, maxEndTime);
// FIXME: Bug 1091422 - chained ogg files hit this assertion.
// MOZ_ASSERT(t >= GetMediaTime());
if (loopback || t > GetMediaTime()) {
UpdatePlaybackPosition(t);
}
}
// Note we have to update playback position before releasing the monitor.
// Otherwise, MediaDecoder::AddOutputTrack could kick in when we are outside
// the monitor and get a staled value from GetCurrentTimeUs() which hits the
// assertion in GetClock().
int64_t delay = std::max<int64_t>(
1, static_cast<int64_t>(AUDIO_DURATION_USECS / mPlaybackRate));
ScheduleStateMachineIn(TimeUnit::FromMicroseconds(delay));
// Notify the listener as we progress in the playback offset. Note it would
// be too intensive to send notifications for each popped audio/video sample.
// It is good enough to send 'PlaybackProgressed' events every 40us (defined
// by AUDIO_DURATION_USECS), and we ensure 'PlaybackProgressed' events are
// always sent after 'PlaybackStarted' and before 'PlaybackStopped'.
mOnPlaybackEvent.Notify(MediaPlaybackEvent{
MediaPlaybackEvent::PlaybackProgressed, mPlaybackOffset});
}
void MediaDecoderStateMachine::ScheduleStateMachine() {
MOZ_ASSERT(OnTaskQueue());
if (mDispatchedStateMachine) {
return;
}
mDispatchedStateMachine = true;
nsresult rv = OwnerThread()->Dispatch(
NewRunnableMethod("MediaDecoderStateMachine::RunStateMachine", this,
&MediaDecoderStateMachine::RunStateMachine));
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
}
void MediaDecoderStateMachine::ScheduleStateMachineIn(const TimeUnit& aTime) {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::ScheduleStateMachineIn",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue()); // mDelayedScheduler.Ensure() may Disconnect()
// the promise, which must happen on the state
// machine task queue.
MOZ_ASSERT(aTime > TimeUnit::Zero());
if (mDispatchedStateMachine) {
return;
}
TimeStamp target = TimeStamp::Now() + aTime.ToTimeDuration();
// It is OK to capture 'this' without causing UAF because the callback
// always happens before shutdown.
RefPtr<MediaDecoderStateMachine> self = this;
mDelayedScheduler.Ensure(
target,
[self]() {
self->mDelayedScheduler.CompleteRequest();
self->RunStateMachine();
},
[]() { MOZ_DIAGNOSTIC_ASSERT(false); });
}
bool MediaDecoderStateMachine::IsStateMachineScheduled() const {
MOZ_ASSERT(OnTaskQueue());
return mDispatchedStateMachine || mDelayedScheduler.IsScheduled();
}
void MediaDecoderStateMachine::SetPlaybackRate(double aPlaybackRate) {
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aPlaybackRate != 0, "Should be handled by MediaDecoder::Pause()");
mPlaybackRate = aPlaybackRate;
mMediaSink->SetPlaybackRate(mPlaybackRate);
// Schedule next cycle to check if we can stop prerolling.
ScheduleStateMachine();
}
void MediaDecoderStateMachine::PreservesPitchChanged() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::PreservesPitchChanged",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
mMediaSink->SetPreservesPitch(mPreservesPitch);
}
void MediaDecoderStateMachine::LoopingChanged() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::LoopingChanged",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
LOGV("LoopingChanged, looping=%d", mLooping.Ref());
PROFILER_MARKER_TEXT("MDSM::LoopingChanged", MEDIA_PLAYBACK, {},
mLooping ? "true"_ns : "false"_ns);
if (mSeamlessLoopingAllowed) {
mStateObj->HandleLoopingChanged();
}
}
void MediaDecoderStateMachine::StreamNameChanged() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::StreamNameChanged",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
mMediaSink->SetStreamName(mStreamName);
}
void MediaDecoderStateMachine::UpdateOutputCaptured() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::UpdateOutputCaptured",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT_IF(
mOutputCaptureState == MediaDecoder::OutputCaptureState::Capture,
mOutputDummyTrack.Ref());
// Reset these flags so they are consistent with the status of the sink.
// TODO: Move these flags into MediaSink to improve cohesion so we don't need
// to reset these flags when switching MediaSinks.
mAudioCompleted = false;
mVideoCompleted = false;
// Don't create a new media sink if we're still suspending media sink.
if (!mIsMediaSinkSuspended) {
const bool wasPlaying = IsPlaying();
// Stop and shut down the existing sink.
StopMediaSink();
mMediaSink->Shutdown();
// Create a new sink according to whether output is captured.
mMediaSink = CreateMediaSink();
if (wasPlaying) {
DebugOnly<nsresult> rv = StartMediaSink();
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
}
// Don't buffer as much when audio is captured because we don't need to worry
// about high latency audio devices.
mAmpleAudioThreshold =
mOutputCaptureState != MediaDecoder::OutputCaptureState::None
? detail::AMPLE_AUDIO_THRESHOLD / 2
: detail::AMPLE_AUDIO_THRESHOLD;
mStateObj->HandleAudioCaptured();
}
void MediaDecoderStateMachine::OutputPrincipalChanged() {
MOZ_ASSERT(OnTaskQueue());
mCanonicalOutputPrincipal = mOutputPrincipal;
}
RefPtr<GenericPromise> MediaDecoderStateMachine::InvokeSetSink(
const RefPtr<AudioDeviceInfo>& aSink) {
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(aSink);
return InvokeAsync(OwnerThread(), this, __func__,
&MediaDecoderStateMachine::SetSink, aSink);
}
RefPtr<GenericPromise> MediaDecoderStateMachine::SetSink(
RefPtr<AudioDeviceInfo> aDevice) {
MOZ_ASSERT(OnTaskQueue());
if (mIsMediaSinkSuspended) {
// Don't create a new media sink when suspended.
return GenericPromise::CreateAndResolve(true, __func__);
}
return mMediaSink->SetAudioDevice(std::move(aDevice));
}
void MediaDecoderStateMachine::InvokeSuspendMediaSink() {
MOZ_ASSERT(NS_IsMainThread());
nsresult rv = OwnerThread()->Dispatch(
NewRunnableMethod("MediaDecoderStateMachine::SuspendMediaSink", this,
&MediaDecoderStateMachine::SuspendMediaSink));
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
}
void MediaDecoderStateMachine::SuspendMediaSink() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::SuspendMediaSink",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
if (mIsMediaSinkSuspended) {
return;
}
LOG("SuspendMediaSink");
mIsMediaSinkSuspended = true;
StopMediaSink();
mMediaSink->Shutdown();
}
void MediaDecoderStateMachine::InvokeResumeMediaSink() {
MOZ_ASSERT(NS_IsMainThread());
nsresult rv = OwnerThread()->Dispatch(
NewRunnableMethod("MediaDecoderStateMachine::ResumeMediaSink", this,
&MediaDecoderStateMachine::ResumeMediaSink));
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
}
void MediaDecoderStateMachine::ResumeMediaSink() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::ResumeMediaSink",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
if (!mIsMediaSinkSuspended) {
return;
}
LOG("ResumeMediaSink");
mIsMediaSinkSuspended = false;
if (!mMediaSink->IsStarted()) {
mMediaSink = CreateMediaSink();
MaybeStartPlayback();
}
}
void MediaDecoderStateMachine::UpdateSecondaryVideoContainer() {
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::UpdateSecondaryVideoContainer",
MEDIA_PLAYBACK);
MOZ_ASSERT(OnTaskQueue());
MOZ_DIAGNOSTIC_ASSERT(mMediaSink);
mMediaSink->SetSecondaryVideoContainer(mSecondaryVideoContainer.Ref());
mOnSecondaryVideoContainerInstalled.Notify(mSecondaryVideoContainer.Ref());
}
TimeUnit MediaDecoderStateMachine::AudioEndTime() const {
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
return mMediaSink->GetEndTime(TrackInfo::kAudioTrack);
}
return GetMediaTime();
}
TimeUnit MediaDecoderStateMachine::VideoEndTime() const {
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
return mMediaSink->GetEndTime(TrackInfo::kVideoTrack);
}
return GetMediaTime();
}
void MediaDecoderStateMachine::OnMediaSinkVideoComplete() {
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(HasVideo());
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::OnMediaSinkVideoComplete",
MEDIA_PLAYBACK);
LOG("[%s]", __func__);
mMediaSinkVideoEndedPromise.Complete();
mVideoCompleted = true;
ScheduleStateMachine();
}
void MediaDecoderStateMachine::OnMediaSinkVideoError() {
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(HasVideo());
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::OnMediaSinkVideoError",
MEDIA_PLAYBACK);
LOGE("[%s]", __func__);
mMediaSinkVideoEndedPromise.Complete();
mVideoCompleted = true;
if (HasAudio()) {
return;
}
DecodeError(MediaResult(NS_ERROR_DOM_MEDIA_MEDIASINK_ERR, __func__));
}
void MediaDecoderStateMachine::OnMediaSinkAudioComplete() {
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(HasAudio());
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::OnMediaSinkAudioComplete",
MEDIA_PLAYBACK);
LOG("[%s]", __func__);
mMediaSinkAudioEndedPromise.Complete();
mAudioCompleted = true;
// To notify PlaybackEnded as soon as possible.
ScheduleStateMachine();
// Report OK to Decoder Doctor (to know if issue may have been resolved).
mOnDecoderDoctorEvent.Notify(
DecoderDoctorEvent{DecoderDoctorEvent::eAudioSinkStartup, NS_OK});
}
void MediaDecoderStateMachine::OnMediaSinkAudioError(nsresult aResult) {
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(HasAudio());
AUTO_PROFILER_LABEL("MediaDecoderStateMachine::OnMediaSinkAudioError",
MEDIA_PLAYBACK);
LOGE("[%s]", __func__);
mMediaSinkAudioEndedPromise.Complete();
mAudioCompleted = true;
// Result should never be NS_OK in this *error* handler. Report to Dec-Doc.
MOZ_ASSERT(NS_FAILED(aResult));
mOnDecoderDoctorEvent.Notify(
DecoderDoctorEvent{DecoderDoctorEvent::eAudioSinkStartup, aResult});
// Make the best effort to continue playback when there is video.
if (HasVideo()) {
return;
}
// Otherwise notify media decoder/element about this error for it makes
// no sense to play an audio-only file without sound output.
DecodeError(MediaResult(NS_ERROR_DOM_MEDIA_MEDIASINK_ERR, __func__));
}
uint32_t MediaDecoderStateMachine::GetAmpleVideoFrames() const {
MOZ_ASSERT(OnTaskQueue());
return mReader->VideoIsHardwareAccelerated()
? std::max<uint32_t>(sVideoQueueHWAccelSize, MIN_VIDEO_QUEUE_SIZE)
: std::max<uint32_t>(sVideoQueueDefaultSize, MIN_VIDEO_QUEUE_SIZE);
}
void MediaDecoderStateMachine::GetDebugInfo(
dom::MediaDecoderStateMachineDebugInfo& aInfo) {
MOZ_ASSERT(OnTaskQueue());
aInfo.mDuration =
mDuration.Ref() ? mDuration.Ref().ref().ToMicroseconds() : -1;
aInfo.mMediaTime = GetMediaTime().ToMicroseconds();
aInfo.mClock = mMediaSink->IsStarted() ? GetClock().ToMicroseconds() : -1;
aInfo.mPlayState = int32_t(mPlayState.Ref());
aInfo.mSentFirstFrameLoadedEvent = mSentFirstFrameLoadedEvent;
aInfo.mIsPlaying = IsPlaying();
CopyUTF8toUTF16(MakeStringSpan(AudioRequestStatus()),
aInfo.mAudioRequestStatus);
CopyUTF8toUTF16(MakeStringSpan(VideoRequestStatus()),
aInfo.mVideoRequestStatus);
aInfo.mDecodedAudioEndTime = mDecodedAudioEndTime.ToMicroseconds();
aInfo.mDecodedVideoEndTime = mDecodedVideoEndTime.ToMicroseconds();
aInfo.mAudioCompleted = mAudioCompleted;
aInfo.mVideoCompleted = mVideoCompleted;
mStateObj->GetDebugInfo(aInfo.mStateObj);
mMediaSink->GetDebugInfo(aInfo.mMediaSink);
aInfo.mTotalBufferingTimeMs = mTotalBufferingDuration.ToMilliseconds();
}
RefPtr<GenericPromise> MediaDecoderStateMachine::RequestDebugInfo(
dom::MediaDecoderStateMachineDebugInfo& aInfo) {
if (mShuttingDown) {
return GenericPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
RefPtr<GenericPromise::Private> p = new GenericPromise::Private(__func__);
RefPtr<MediaDecoderStateMachine> self = this;
nsresult rv = OwnerThread()->Dispatch(
NS_NewRunnableFunction("MediaDecoderStateMachine::RequestDebugInfo",
[self, p, &aInfo]() {
self->GetDebugInfo(aInfo);
p->Resolve(true, __func__);
}),
AbstractThread::TailDispatch);
MOZ_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
return p;
}
class VideoQueueMemoryFunctor : public nsDequeFunctor<VideoData> {
public:
VideoQueueMemoryFunctor() : mSize(0) {}
MOZ_DEFINE_MALLOC_SIZE_OF(MallocSizeOf);
virtual void operator()(VideoData* aObject) override {
mSize += aObject->SizeOfIncludingThis(MallocSizeOf);
}
size_t mSize;
};
class AudioQueueMemoryFunctor : public nsDequeFunctor<AudioData> {
public:
AudioQueueMemoryFunctor() : mSize(0) {}
MOZ_DEFINE_MALLOC_SIZE_OF(MallocSizeOf);
virtual void operator()(AudioData* aObject) override {
mSize += aObject->SizeOfIncludingThis(MallocSizeOf);
}
size_t mSize;
};
size_t MediaDecoderStateMachine::SizeOfVideoQueue() const {
VideoQueueMemoryFunctor functor;
mVideoQueue.LockedForEach(functor);
return functor.mSize;
}
size_t MediaDecoderStateMachine::SizeOfAudioQueue() const {
AudioQueueMemoryFunctor functor;
mAudioQueue.LockedForEach(functor);
return functor.mSize;
}
const char* MediaDecoderStateMachine::AudioRequestStatus() const {
MOZ_ASSERT(OnTaskQueue());
if (IsRequestingAudioData()) {
MOZ_DIAGNOSTIC_ASSERT(!IsWaitingAudioData());
return "pending";
}
if (IsWaitingAudioData()) {
return "waiting";
}
return "idle";
}
const char* MediaDecoderStateMachine::VideoRequestStatus() const {
MOZ_ASSERT(OnTaskQueue());
if (IsRequestingVideoData()) {
MOZ_DIAGNOSTIC_ASSERT(!IsWaitingVideoData());
return "pending";
}
if (IsWaitingVideoData()) {
return "waiting";
}
return "idle";
}
void MediaDecoderStateMachine::OnSuspendTimerResolved() {
LOG("OnSuspendTimerResolved");
mVideoDecodeSuspendTimer.CompleteRequest();
mStateObj->HandleVideoSuspendTimeout();
}
void MediaDecoderStateMachine::CancelSuspendTimer() {
LOG("CancelSuspendTimer: State: %s, Timer.IsScheduled: %c",
ToStateStr(mStateObj->GetState()),
mVideoDecodeSuspendTimer.IsScheduled() ? 'T' : 'F');
MOZ_ASSERT(OnTaskQueue());
if (mVideoDecodeSuspendTimer.IsScheduled()) {
mOnPlaybackEvent.Notify(MediaPlaybackEvent::CancelVideoSuspendTimer);
}
mVideoDecodeSuspendTimer.Reset();
}
void MediaDecoderStateMachine::AdjustByLooping(media::TimeUnit& aTime) const {
MOZ_ASSERT(OnTaskQueue());
// No need to adjust time.
if (mOriginalDecodedDuration == media::TimeUnit::Zero()) {
return;
}
// There are situations where we need to perform subtraction instead of modulo
// to accurately adjust the clock. When we are not in a state of seamless
// looping, it is usually necessary to normalize the clock time within the
// range of [0, duration]. However, if the current clock time is greater than
// the duration (i.e., duration+1) and not in looping, we should not adjust it
// to 1 as we are not looping back to the starting position. Instead, we
// should leave the clock time unchanged and trim it later to match the
// maximum duration time.
if (mStateObj->GetState() != DECODER_STATE_LOOPING_DECODING) {
// Use the smaller offset rather than the larger one, as the larger offset
// indicates the next round of looping. For example, if the duration is X
// and the playback is currently in the third round of looping, both
// queues will have an offset of 3X. However, if the audio decoding is
// faster and the fourth round of data has already been added to the audio
// queue, the audio offset will become 4X. Since playback is still in the
// third round, we should use the smaller offset of 3X to adjust the time.
TimeUnit offset = TimeUnit::FromInfinity();
if (HasAudio()) {
offset = std::min(AudioQueue().GetOffset(), offset);
}
if (HasVideo()) {
offset = std::min(VideoQueue().GetOffset(), offset);
}
if (aTime > offset) {
aTime -= offset;
return;
}
}
// When seamless looping happens at least once, it doesn't matter if we're
// looping or not.
aTime = aTime % mOriginalDecodedDuration;
}
bool MediaDecoderStateMachine::IsInSeamlessLooping() const {
return mLooping && mSeamlessLoopingAllowed;
}
bool MediaDecoderStateMachine::HasLastDecodedData(MediaData::Type aType) {
MOZ_DIAGNOSTIC_ASSERT(aType == MediaData::Type::AUDIO_DATA ||
aType == MediaData::Type::VIDEO_DATA);
if (aType == MediaData::Type::AUDIO_DATA) {
return mDecodedAudioEndTime != TimeUnit::Zero();
}
return mDecodedVideoEndTime != TimeUnit::Zero();
}
bool MediaDecoderStateMachine::IsCDMProxySupported(CDMProxy* aProxy) {
#ifdef MOZ_WMF_CDM
MOZ_ASSERT(aProxy);
// This proxy only works with the external state machine.
return !aProxy->AsWMFCDMProxy();
#else
return true;
#endif
}
} // namespace mozilla
// avoid redefined macro in unified build
#undef LOG
#undef LOGV
#undef LOGW
#undef LOGE
#undef SLOGW
#undef SLOGE
#undef NS_DispatchToMainThread