DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (fce0b326cd31)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

/**
 * Conversions from jsval to primitive values
 */

#ifndef mozilla_dom_PrimitiveConversions_h
#define mozilla_dom_PrimitiveConversions_h

#include <limits>
#include <math.h>
#include <stdint.h>

#include "jsapi.h"
#include "js/Conversions.h"
#include "mozilla/Assertions.h"
#include "mozilla/ErrorResult.h"
#include "mozilla/FloatingPoint.h"

namespace mozilla {
namespace dom {

template <typename T>
struct TypeName {};

template <>
struct TypeName<int8_t> {
  static const char* value() { return "byte"; }
};
template <>
struct TypeName<uint8_t> {
  static const char* value() { return "octet"; }
};
template <>
struct TypeName<int16_t> {
  static const char* value() { return "short"; }
};
template <>
struct TypeName<uint16_t> {
  static const char* value() { return "unsigned short"; }
};
template <>
struct TypeName<int32_t> {
  static const char* value() { return "long"; }
};
template <>
struct TypeName<uint32_t> {
  static const char* value() { return "unsigned long"; }
};
template <>
struct TypeName<int64_t> {
  static const char* value() { return "long long"; }
};
template <>
struct TypeName<uint64_t> {
  static const char* value() { return "unsigned long long"; }
};

enum ConversionBehavior { eDefault, eEnforceRange, eClamp };

template <typename T, ConversionBehavior B>
struct PrimitiveConversionTraits {};

template <typename T>
struct DisallowedConversion {
  typedef int jstype;
  typedef int intermediateType;

 private:
  static inline bool converter(JSContext* cx, JS::Handle<JS::Value> v,
                               jstype* retval) {
    MOZ_CRASH("This should never be instantiated!");
  }
};

struct PrimitiveConversionTraits_smallInt {
  // The output of JS::ToInt32 is determined as follows:
  //   1) The value is converted to a double
  //   2) Anything that's not a finite double returns 0
  //   3) The double is rounded towards zero to the nearest integer
  //   4) The resulting integer is reduced mod 2^32.  The output of this
  //      operation is an integer in the range [0, 2^32).
  //   5) If the resulting number is >= 2^31, 2^32 is subtracted from it.
  //
  // The result of all this is a number in the range [-2^31, 2^31)
  //
  // WebIDL conversions for the 8-bit, 16-bit, and 32-bit integer types
  // are defined in the same way, except that step 4 uses reduction mod
  // 2^8 and 2^16 for the 8-bit and 16-bit types respectively, and step 5
  // is only done for the signed types.
  //
  // C/C++ define integer conversion semantics to unsigned types as taking
  // your input integer mod (1 + largest value representable in the
  // unsigned type).  Since 2^32 is zero mod 2^8, 2^16, and 2^32,
  // converting to the unsigned int of the relevant width will correctly
  // perform step 4; in particular, the 2^32 possibly subtracted in step 5
  // will become 0.
  //
  // Once we have step 4 done, we're just going to assume 2s-complement
  // representation and cast directly to the type we really want.
  //
  // So we can cast directly for all unsigned types and for int32_t; for
  // the smaller-width signed types we need to cast through the
  // corresponding unsigned type.
  typedef int32_t jstype;
  typedef int32_t intermediateType;
  static inline bool converter(JSContext* cx, JS::Handle<JS::Value> v,
                               jstype* retval) {
    return JS::ToInt32(cx, v, retval);
  }
};
template <>
struct PrimitiveConversionTraits<int8_t, eDefault>
    : PrimitiveConversionTraits_smallInt {
  typedef uint8_t intermediateType;
};
template <>
struct PrimitiveConversionTraits<uint8_t, eDefault>
    : PrimitiveConversionTraits_smallInt {};
template <>
struct PrimitiveConversionTraits<int16_t, eDefault>
    : PrimitiveConversionTraits_smallInt {
  typedef uint16_t intermediateType;
};
template <>
struct PrimitiveConversionTraits<uint16_t, eDefault>
    : PrimitiveConversionTraits_smallInt {};
template <>
struct PrimitiveConversionTraits<int32_t, eDefault>
    : PrimitiveConversionTraits_smallInt {};
template <>
struct PrimitiveConversionTraits<uint32_t, eDefault>
    : PrimitiveConversionTraits_smallInt {};

template <>
struct PrimitiveConversionTraits<int64_t, eDefault> {
  typedef int64_t jstype;
  typedef int64_t intermediateType;
  static inline bool converter(JSContext* cx, JS::Handle<JS::Value> v,
                               jstype* retval) {
    return JS::ToInt64(cx, v, retval);
  }
};

template <>
struct PrimitiveConversionTraits<uint64_t, eDefault> {
  typedef uint64_t jstype;
  typedef uint64_t intermediateType;
  static inline bool converter(JSContext* cx, JS::Handle<JS::Value> v,
                               jstype* retval) {
    return JS::ToUint64(cx, v, retval);
  }
};

template <typename T>
struct PrimitiveConversionTraits_Limits {
  static inline T min() { return std::numeric_limits<T>::min(); }
  static inline T max() { return std::numeric_limits<T>::max(); }
};

template <>
struct PrimitiveConversionTraits_Limits<int64_t> {
  static inline int64_t min() { return -(1LL << 53) + 1; }
  static inline int64_t max() { return (1LL << 53) - 1; }
};

template <>
struct PrimitiveConversionTraits_Limits<uint64_t> {
  static inline uint64_t min() { return 0; }
  static inline uint64_t max() { return (1LL << 53) - 1; }
};

template <typename T,
          bool (*Enforce)(JSContext* cx, const double& d, T* retval)>
struct PrimitiveConversionTraits_ToCheckedIntHelper {
  typedef T jstype;
  typedef T intermediateType;

  static inline bool converter(JSContext* cx, JS::Handle<JS::Value> v,
                               jstype* retval) {
    double intermediate;
    if (!JS::ToNumber(cx, v, &intermediate)) {
      return false;
    }

    return Enforce(cx, intermediate, retval);
  }
};

template <typename T>
inline bool PrimitiveConversionTraits_EnforceRange(JSContext* cx,
                                                   const double& d, T* retval) {
  static_assert(std::numeric_limits<T>::is_integer,
                "This can only be applied to integers!");

  if (!mozilla::IsFinite(d)) {
    return ThrowErrorMessage(cx, MSG_ENFORCE_RANGE_NON_FINITE,
                             TypeName<T>::value());
  }

  bool neg = (d < 0);
  double rounded = floor(neg ? -d : d);
  rounded = neg ? -rounded : rounded;
  if (rounded < PrimitiveConversionTraits_Limits<T>::min() ||
      rounded > PrimitiveConversionTraits_Limits<T>::max()) {
    return ThrowErrorMessage(cx, MSG_ENFORCE_RANGE_OUT_OF_RANGE,
                             TypeName<T>::value());
  }

  *retval = static_cast<T>(rounded);
  return true;
}

template <typename T>
struct PrimitiveConversionTraits<T, eEnforceRange>
    : public PrimitiveConversionTraits_ToCheckedIntHelper<
          T, PrimitiveConversionTraits_EnforceRange<T> > {};

template <typename T>
inline bool PrimitiveConversionTraits_Clamp(JSContext* cx, const double& d,
                                            T* retval) {
  static_assert(std::numeric_limits<T>::is_integer,
                "This can only be applied to integers!");

  if (mozilla::IsNaN(d)) {
    *retval = 0;
    return true;
  }
  if (d >= PrimitiveConversionTraits_Limits<T>::max()) {
    *retval = PrimitiveConversionTraits_Limits<T>::max();
    return true;
  }
  if (d <= PrimitiveConversionTraits_Limits<T>::min()) {
    *retval = PrimitiveConversionTraits_Limits<T>::min();
    return true;
  }

  MOZ_ASSERT(mozilla::IsFinite(d));

  // Banker's rounding (round ties towards even).
  // We move away from 0 by 0.5f and then truncate.  That gets us the right
  // answer for any starting value except plus or minus N.5.  With a starting
  // value of that form, we now have plus or minus N+1.  If N is odd, this is
  // the correct result.  If N is even, plus or minus N is the correct result.
  double toTruncate = (d < 0) ? d - 0.5 : d + 0.5;

  T truncated = static_cast<T>(toTruncate);

  if (truncated == toTruncate) {
    /*
     * It was a tie (since moving away from 0 by 0.5 gave us the exact integer
     * we want). Since we rounded away from 0, we either already have an even
     * number or we have an odd number but the number we want is one closer to
     * 0. So just unconditionally masking out the ones bit should do the trick
     * to get us the value we want.
     */
    truncated &= ~1;
  }

  *retval = truncated;
  return true;
}

template <typename T>
struct PrimitiveConversionTraits<T, eClamp>
    : public PrimitiveConversionTraits_ToCheckedIntHelper<
          T, PrimitiveConversionTraits_Clamp<T> > {};

template <ConversionBehavior B>
struct PrimitiveConversionTraits<bool, B> : public DisallowedConversion<bool> {
};

template <>
struct PrimitiveConversionTraits<bool, eDefault> {
  typedef bool jstype;
  typedef bool intermediateType;
  static inline bool converter(JSContext* /* unused */, JS::Handle<JS::Value> v,
                               jstype* retval) {
    *retval = JS::ToBoolean(v);
    return true;
  }
};

template <ConversionBehavior B>
struct PrimitiveConversionTraits<float, B>
    : public DisallowedConversion<float> {};

template <ConversionBehavior B>
struct PrimitiveConversionTraits<double, B>
    : public DisallowedConversion<double> {};

struct PrimitiveConversionTraits_float {
  typedef double jstype;
  typedef double intermediateType;
  static inline bool converter(JSContext* cx, JS::Handle<JS::Value> v,
                               jstype* retval) {
    return JS::ToNumber(cx, v, retval);
  }
};

template <>
struct PrimitiveConversionTraits<float, eDefault>
    : PrimitiveConversionTraits_float {};
template <>
struct PrimitiveConversionTraits<double, eDefault>
    : PrimitiveConversionTraits_float {};

template <typename T, ConversionBehavior B>
bool ValueToPrimitive(JSContext* cx, JS::Handle<JS::Value> v, T* retval) {
  typename PrimitiveConversionTraits<T, B>::jstype t;
  if (!PrimitiveConversionTraits<T, B>::converter(cx, v, &t)) return false;

  *retval = static_cast<T>(
      static_cast<typename PrimitiveConversionTraits<T, B>::intermediateType>(
          t));
  return true;
}

}  // namespace dom
}  // namespace mozilla

#endif /* mozilla_dom_PrimitiveConversions_h */