DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (2cd3752963fc)

VCS Links

MatchedNodes

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ChildIterator.h"
#include "nsContentUtils.h"
#include "mozilla/dom/XBLChildrenElement.h"
#include "mozilla/dom/HTMLContentElement.h"
#include "mozilla/dom/HTMLShadowElement.h"
#include "mozilla/dom/ShadowRoot.h"
#include "nsIAnonymousContentCreator.h"
#include "nsIFrame.h"
#include "nsCSSAnonBoxes.h"

namespace mozilla {
namespace dom {

class MatchedNodes {
public:
  explicit MatchedNodes(HTMLContentElement* aInsertionPoint)
    : mIsContentElement(true), mContentElement(aInsertionPoint) {}

  explicit MatchedNodes(XBLChildrenElement* aInsertionPoint)
    : mIsContentElement(false), mChildrenElement(aInsertionPoint) {}

  uint32_t Length() const
  {
    return mIsContentElement ? mContentElement->MatchedNodes().Length()
                             : mChildrenElement->InsertedChildrenLength();
  }

  nsIContent* operator[](int32_t aIndex) const
  {
    return mIsContentElement ? mContentElement->MatchedNodes()[aIndex]
                             : mChildrenElement->InsertedChild(aIndex);
  }

  bool IsEmpty() const
  {
    return mIsContentElement ? mContentElement->MatchedNodes().IsEmpty()
                             : !mChildrenElement->HasInsertedChildren();
  }
protected:
  bool mIsContentElement;
  union {
    HTMLContentElement* mContentElement;
    XBLChildrenElement* mChildrenElement;
  };
};

static inline MatchedNodes
GetMatchedNodesForPoint(nsIContent* aContent)
{
  if (aContent->NodeInfo()->Equals(nsGkAtoms::children, kNameSpaceID_XBL)) {
    // XBL case
    return MatchedNodes(static_cast<XBLChildrenElement*>(aContent));
  }

  // Web components case
  MOZ_ASSERT(aContent->IsHTMLElement(nsGkAtoms::content));
  return MatchedNodes(HTMLContentElement::FromContent(aContent));
}

nsIContent*
ExplicitChildIterator::GetNextChild()
{
  // If we're already in the inserted-children array, look there first
  if (mIndexInInserted) {
    MOZ_ASSERT(mChild);
    MOZ_ASSERT(nsContentUtils::IsContentInsertionPoint(mChild));
    MOZ_ASSERT(!mDefaultChild);

    MatchedNodes assignedChildren = GetMatchedNodesForPoint(mChild);
    if (mIndexInInserted < assignedChildren.Length()) {
      return assignedChildren[mIndexInInserted++];
    }
    mIndexInInserted = 0;
    mChild = mChild->GetNextSibling();
  } else if (mShadowIterator) {
    // If we're inside of a <shadow> element, look through the
    // explicit children of the projected ShadowRoot via
    // the mShadowIterator.
    nsIContent* nextChild = mShadowIterator->GetNextChild();
    if (nextChild) {
      return nextChild;
    }

    mShadowIterator = nullptr;
    mChild = mChild->GetNextSibling();
  } else if (mDefaultChild) {
    // If we're already in default content, check if there are more nodes there
    MOZ_ASSERT(mChild);
    MOZ_ASSERT(nsContentUtils::IsContentInsertionPoint(mChild));

    mDefaultChild = mDefaultChild->GetNextSibling();
    if (mDefaultChild) {
      return mDefaultChild;
    }

    mChild = mChild->GetNextSibling();
  } else if (mIsFirst) {  // at the beginning of the child list
    mChild = mParent->GetFirstChild();
    mIsFirst = false;
  } else if (mChild) { // in the middle of the child list
    mChild = mChild->GetNextSibling();
  }

  // Iterate until we find a non-insertion point, or an insertion point with
  // content.
  while (mChild) {
    // If the current child being iterated is a shadow insertion point then
    // the iterator needs to go into the projected ShadowRoot.
    if (ShadowRoot::IsShadowInsertionPoint(mChild)) {
      // Look for the next child in the projected ShadowRoot for the <shadow>
      // element.
      HTMLShadowElement* shadowElem = HTMLShadowElement::FromContent(mChild);
      ShadowRoot* projectedShadow = shadowElem->GetOlderShadowRoot();
      if (projectedShadow) {
        mShadowIterator = new ExplicitChildIterator(projectedShadow);
        nsIContent* nextChild = mShadowIterator->GetNextChild();
        if (nextChild) {
          return nextChild;
        }
        mShadowIterator = nullptr;
      }
      mChild = mChild->GetNextSibling();
    } else if (nsContentUtils::IsContentInsertionPoint(mChild)) {
      // If the current child being iterated is a content insertion point
      // then the iterator needs to return the nodes distributed into
      // the content insertion point.
      MatchedNodes assignedChildren = GetMatchedNodesForPoint(mChild);
      if (!assignedChildren.IsEmpty()) {
        // Iterate through elements projected on insertion point.
        mIndexInInserted = 1;
        return assignedChildren[0];
      }

      // Insertion points inside fallback/default content
      // are considered inactive and do not get assigned nodes.
      mDefaultChild = mChild->GetFirstChild();
      if (mDefaultChild) {
        return mDefaultChild;
      }

      // If we have an insertion point with no assigned nodes and
      // no default content, move on to the next node.
      mChild = mChild->GetNextSibling();
    } else {
      // mChild is not an insertion point, thus it is the next node to
      // return from this iterator.
      break;
    }
  }

  return mChild;
}

void
FlattenedChildIterator::Init(bool aIgnoreXBL)
{
  if (aIgnoreXBL) {
    return;
  }

  nsXBLBinding* binding =
    mParent->OwnerDoc()->BindingManager()->GetBindingWithContent(mParent);

  if (binding) {
    MOZ_ASSERT(binding->GetAnonymousContent());
    mParent = binding->GetAnonymousContent();
    mXBLInvolved = true;
  }

  // We set mXBLInvolved to true if either:
  // - The node we're iterating has a binding with content attached to it.
  // - The node is generated XBL content and has an <xbl:children> child.
  if (!mXBLInvolved && mParent->GetBindingParent()) {
    for (nsIContent* child = mParent->GetFirstChild();
         child;
         child = child->GetNextSibling()) {
      if (child->NodeInfo()->Equals(nsGkAtoms::children, kNameSpaceID_XBL)) {
        MOZ_ASSERT(child->GetBindingParent());
        mXBLInvolved = true;
        break;
      }
    }
  }
}

bool
ExplicitChildIterator::Seek(nsIContent* aChildToFind)
{
  if (aChildToFind->GetParent() == mParent &&
      !aChildToFind->IsRootOfAnonymousSubtree()) {
    // Fast path: just point ourselves to aChildToFind, which is a
    // normal DOM child of ours.
    MOZ_ASSERT(!ShadowRoot::IsShadowInsertionPoint(aChildToFind));
    MOZ_ASSERT(!nsContentUtils::IsContentInsertionPoint(aChildToFind));
    mChild = aChildToFind;
    mIndexInInserted = 0;
    mShadowIterator = nullptr;
    mDefaultChild = nullptr;
    mIsFirst = false;
    return true;
  }

  // Can we add more fast paths here based on whether the parent of aChildToFind
  // is a shadow insertion point or content insertion point?

  // Slow path: just walk all our kids.
  return Seek(aChildToFind, nullptr);
}

nsIContent*
ExplicitChildIterator::Get() const
{
  MOZ_ASSERT(!mIsFirst);

  if (mIndexInInserted) {
    MatchedNodes assignedChildren = GetMatchedNodesForPoint(mChild);
    return assignedChildren[mIndexInInserted - 1];
  } else if (mShadowIterator)  {
    return mShadowIterator->Get();
  }
  return mDefaultChild ? mDefaultChild : mChild;
}

nsIContent*
ExplicitChildIterator::GetPreviousChild()
{
  // If we're already in the inserted-children array, look there first
  if (mIndexInInserted) {
    // NB: mIndexInInserted points one past the last returned child so we need
    // to look *two* indices back in order to return the previous child.
    MatchedNodes assignedChildren = GetMatchedNodesForPoint(mChild);
    if (--mIndexInInserted) {
      return assignedChildren[mIndexInInserted - 1];
    }
    mChild = mChild->GetPreviousSibling();
  } else if (mShadowIterator) {
    nsIContent* previousChild = mShadowIterator->GetPreviousChild();
    if (previousChild) {
      return previousChild;
    }
    mShadowIterator = nullptr;
    mChild = mChild->GetPreviousSibling();
  } else if (mDefaultChild) {
    // If we're already in default content, check if there are more nodes there
    mDefaultChild = mDefaultChild->GetPreviousSibling();
    if (mDefaultChild) {
      return mDefaultChild;
    }

    mChild = mChild->GetPreviousSibling();
  } else if (mIsFirst) { // at the beginning of the child list
    return nullptr;
  } else if (mChild) { // in the middle of the child list
    mChild = mChild->GetPreviousSibling();
  } else { // at the end of the child list
    mChild = mParent->GetLastChild();
  }

  // Iterate until we find a non-insertion point, or an insertion point with
  // content.
  while (mChild) {
    if (ShadowRoot::IsShadowInsertionPoint(mChild)) {
      // If the current child being iterated is a shadow insertion point then
      // the iterator needs to go into the projected ShadowRoot.
      HTMLShadowElement* shadowElem = HTMLShadowElement::FromContent(mChild);
      ShadowRoot* projectedShadow = shadowElem->GetOlderShadowRoot();
      if (projectedShadow) {
        // Create a ExplicitChildIterator that begins iterating from the end.
        mShadowIterator = new ExplicitChildIterator(projectedShadow, false);
        nsIContent* previousChild = mShadowIterator->GetPreviousChild();
        if (previousChild) {
          return previousChild;
        }
        mShadowIterator = nullptr;
      }
      mChild = mChild->GetPreviousSibling();
    } else if (nsContentUtils::IsContentInsertionPoint(mChild)) {
      // If the current child being iterated is a content insertion point
      // then the iterator needs to return the nodes distributed into
      // the content insertion point.
      MatchedNodes assignedChildren = GetMatchedNodesForPoint(mChild);
      if (!assignedChildren.IsEmpty()) {
        mIndexInInserted = assignedChildren.Length();
        return assignedChildren[mIndexInInserted - 1];
      }

      mDefaultChild = mChild->GetLastChild();
      if (mDefaultChild) {
        return mDefaultChild;
      }

      mChild = mChild->GetPreviousSibling();
    } else {
      // mChild is not an insertion point, thus it is the next node to
      // return from this iterator.
      break;
    }
  }

  if (!mChild) {
    mIsFirst = true;
  }

  return mChild;
}

nsIContent*
AllChildrenIterator::Get() const
{
  switch (mPhase) {
    case eAtBeforeKid: {
      Element* before = nsLayoutUtils::GetBeforePseudo(mOriginalContent);
      MOZ_ASSERT(before, "No content before frame at eAtBeforeKid phase");
      return before;
    }

    case eAtExplicitKids:
      return ExplicitChildIterator::Get();

    case eAtAnonKids:
      return mAnonKids[mAnonKidsIdx];

    case eAtAfterKid: {
      Element* after = nsLayoutUtils::GetAfterPseudo(mOriginalContent);
      MOZ_ASSERT(after, "No content after frame at eAtAfterKid phase");
      return after;
    }

    default:
      return nullptr;
  }
}


bool
AllChildrenIterator::Seek(nsIContent* aChildToFind)
{
  if (mPhase == eAtBegin || mPhase == eAtBeforeKid) {
    mPhase = eAtExplicitKids;
    Element* beforePseudo = nsLayoutUtils::GetBeforePseudo(mOriginalContent);
    if (beforePseudo && beforePseudo == aChildToFind) {
      mPhase = eAtBeforeKid;
      return true;
    }
  }

  if (mPhase == eAtExplicitKids) {
    if (ExplicitChildIterator::Seek(aChildToFind)) {
      return true;
    }
    mPhase = eAtAnonKids;
  }

  nsIContent* child = nullptr;
  do {
    child = GetNextChild();
  } while (child && child != aChildToFind);

  return child == aChildToFind;
}

void
AllChildrenIterator::AppendNativeAnonymousChildren()
{
  nsContentUtils::AppendNativeAnonymousChildren(
      mOriginalContent, mAnonKids, mFlags);
}

nsIContent*
AllChildrenIterator::GetNextChild()
{
  if (mPhase == eAtBegin) {
    mPhase = eAtExplicitKids;
    Element* beforeContent = nsLayoutUtils::GetBeforePseudo(mOriginalContent);
    if (beforeContent) {
      mPhase = eAtBeforeKid;
      return beforeContent;
    }
  }

  if (mPhase == eAtBeforeKid) {
    // Advance into our explicit kids.
    mPhase = eAtExplicitKids;
  }

  if (mPhase == eAtExplicitKids) {
    nsIContent* kid = ExplicitChildIterator::GetNextChild();
    if (kid) {
      return kid;
    }
    mPhase = eAtAnonKids;
  }

  if (mPhase == eAtAnonKids) {
    if (mAnonKids.IsEmpty()) {
      MOZ_ASSERT(mAnonKidsIdx == UINT32_MAX);
      AppendNativeAnonymousChildren();
      mAnonKidsIdx = 0;
    }
    else {
      if (mAnonKidsIdx == UINT32_MAX) {
        mAnonKidsIdx = 0;
      }
      else {
        mAnonKidsIdx++;
      }
    }

    if (mAnonKidsIdx < mAnonKids.Length()) {
      return mAnonKids[mAnonKidsIdx];
    }

    Element* afterContent = nsLayoutUtils::GetAfterPseudo(mOriginalContent);
    if (afterContent) {
      mPhase = eAtAfterKid;
      return afterContent;
    }
  }

  mPhase = eAtEnd;
  return nullptr;
}

nsIContent*
AllChildrenIterator::GetPreviousChild()
{
  if (mPhase == eAtEnd) {
    MOZ_ASSERT(mAnonKidsIdx == mAnonKids.Length());
    mPhase = eAtAnonKids;
    Element* afterContent = nsLayoutUtils::GetAfterPseudo(mOriginalContent);
    if (afterContent) {
      mPhase = eAtAfterKid;
      return afterContent;
    }
  }

  if (mPhase == eAtAfterKid) {
    mPhase = eAtAnonKids;
  }

  if (mPhase == eAtAnonKids) {
    if (mAnonKids.IsEmpty()) {
      AppendNativeAnonymousChildren();
      mAnonKidsIdx = mAnonKids.Length();
    }

    // If 0 then it turns into UINT32_MAX, which indicates the iterator is
    // before the anonymous children.
    --mAnonKidsIdx;
    if (mAnonKidsIdx < mAnonKids.Length()) {
      return mAnonKids[mAnonKidsIdx];
    }
    mPhase = eAtExplicitKids;
  }

  if (mPhase == eAtExplicitKids) {
    nsIContent* kid = ExplicitChildIterator::GetPreviousChild();
    if (kid) {
      return kid;
    }

    Element* beforeContent = nsLayoutUtils::GetBeforePseudo(mOriginalContent);
    if (beforeContent) {
      mPhase = eAtBeforeKid;
      return beforeContent;
    }
  }

  mPhase = eAtBegin;
  return nullptr;
}

nsIContent*
StyleChildrenIterator::GetNextChild()
{
  return AllChildrenIterator::GetNextChild();
}

} // namespace dom
} // namespace mozilla