DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
"use strict";

const { Services } = ChromeUtils.import("resource://gre/modules/Services.jsm");

ChromeUtils.defineModuleGetter(
  this,
  "PlacesUtils",
  "resource://gre/modules/PlacesUtils.jsm"
);

const DEFAULT_TIME_SEGMENTS = [
  { id: "hour", startTime: 3600, endTime: 0, weightPosition: 1 },
  { id: "day", startTime: 86400, endTime: 3600, weightPosition: 0.75 },
  { id: "week", startTime: 604800, endTime: 86400, weightPosition: 0.5 },
  { id: "weekPlus", startTime: 0, endTime: 604800, weightPosition: 0.25 },
  { id: "alltime", startTime: 0, endTime: 0, weightPosition: 0.25 },
];

const DEFAULT_PARAMETER_SETS = {
  "linear-frequency": {
    recencyFactor: 0.4,
    frequencyFactor: 0.5,
    combinedDomainFactor: 0.5,
    perfectFrequencyVisits: 10,
    perfectCombinedDomainScore: 2,
    multiDomainBoost: 0.1,
    itemScoreFactor: 0,
  },
};

const DEFAULT_MAX_HISTORY_QUERY_RESULTS = 1000;

function merge(...args) {
  return Object.assign.apply(this, args);
}

/**
 * Provides functionality to personalize content recommendations by calculating
 * user domain affinity scores. These scores are used to calculate relevance
 * scores for items/recs/stories that have domain affinities.
 *
 * The algorithm works as follows:
 *
 * - The recommendation endpoint returns a settings object containing
 * timeSegments and parametersets.
 *
 * - For every time segment we calculate the corresponding domain visit counts,
 * yielding result objects of the following structure: {"mozilla.org": 12,
 * "mozilla.com": 34} (see UserDomainAffinityProvider#queryVisits)
 *
 * - These visit counts are transformed to domain affinity scores for all
 * provided parameter sets: {"mozilla.org": {"paramSet1": 0.8,
 * "paramSet2": 0.9}, "mozilla.org": {"paramSet1": 1, "paramSet2": 0.9}}
 * (see UserDomainAffinityProvider#calculateScoresForParameterSets)
 *
 * - The parameter sets provide factors for weighting which allows for
 * flexible targeting. The functionality to calculate final scores can
 * be seen in UserDomainAffinityProvider#calculateScores
 *
 * - The user domain affinity scores are summed up across all time segments
 * see UserDomainAffinityProvider#calculateAllUserDomainAffinityScores
 *
 * - An item's domain affinities are matched to the user's domain affinity
 * scores by calculating an item relevance score
 * (see UserDomainAffinityProvider#calculateItemRelevanceScore)
 *
 * - The item relevance scores are used to sort items (see TopStoriesFeed for
 * more details)
 *
 * - The data structure was chosen to allow for fast cache lookups during
 * relevance score calculation. While user domain affinities are calculated
 * infrequently (i.e. only once a day), the item relevance score (potentially)
 * needs to be calculated every time the feed updates. Therefore allowing cache
 * lookups of scores[domain][parameterSet] is beneficial
 */
this.UserDomainAffinityProvider = class UserDomainAffinityProvider {
  constructor(
    timeSegments = DEFAULT_TIME_SEGMENTS,
    parameterSets = DEFAULT_PARAMETER_SETS,
    maxHistoryQueryResults = DEFAULT_MAX_HISTORY_QUERY_RESULTS,
    version,
    scores
  ) {
    this.timeSegments = timeSegments;
    this.maxHistoryQueryResults = maxHistoryQueryResults;
    this.version = version;
    if (scores) {
      this.parameterSets = parameterSets;
      this.scores = scores;
    } else {
      this.parameterSets = this.prepareParameterSets(parameterSets);
      this.scores = this.calculateAllUserDomainAffinityScores();
    }
  }

  /**
   * Adds dynamic parameters to the given parameter sets that need to be
   * computed based on time segments.
   *
   * @param ps The parameter sets
   * @return Updated parameter sets with additional fields (i.e. timeSegmentWeights)
   */
  prepareParameterSets(ps) {
    return (
      Object.keys(ps)
        // Add timeSegmentWeight fields to param sets e.g. timeSegmentWeights: {"hour": 1, "day": 0.8915, ...}
        .map(k => ({
          [k]: merge(ps[k], {
            timeSegmentWeights: this.calculateTimeSegmentWeights(
              ps[k].recencyFactor
            ),
          }),
        }))
        .reduce((acc, cur) => merge(acc, cur))
    );
  }

  /**
   * Calculates a time segment weight based on the provided recencyFactor.
   *
   * @param recencyFactor The recency factor indicating how to weigh recency
   * @return An object containing time segment weights: {"hour": 0.987, "day": 1}
   */
  calculateTimeSegmentWeights(recencyFactor) {
    return this.timeSegments.reduce(
      (acc, cur) =>
        merge(acc, {
          [cur.id]: this.calculateScore(cur.weightPosition, 1, recencyFactor),
        }),
      {}
    );
  }

  /**
   * Calculates user domain affinity scores based on browsing history and the
   * available times segments and parameter sets.
   */
  calculateAllUserDomainAffinityScores() {
    return (
      this.timeSegments
        // Calculate parameter set specific domain scores for each time segment
        // => [{"a.com": {"ps1": 12, "ps2": 34}, "b.com": {"ps1": 56, "ps2": 78}}, ...]
        .map(ts => this.calculateUserDomainAffinityScores(ts))
        // Keep format, but reduce to single object, with combined scores across all time segments
        // => "{a.com":{"ps1":2,"ps2":2}, "b.com":{"ps1":3,"ps2":3}}""
        .reduce((acc, cur) => this._combineScores(acc, cur))
    );
  }

  /**
   * Calculates the user domain affinity scores for the given time segment.
   *
   * @param ts The time segment
   * @return The parameter specific scores for all domains with visits in
   * this time segment: {"a.com": {"ps1": 12, "ps2": 34}, "b.com" ...}
   */
  calculateUserDomainAffinityScores(ts) {
    // Returns domains and visit counts for this time segment: {"a.com": 1, "b.com": 2}
    let visits = this.queryVisits(ts);

    return Object.keys(visits).reduce(
      (acc, d) =>
        merge(acc, {
          [d]: this.calculateScoresForParameterSets(ts, visits[d]),
        }),
      {}
    );
  }

  /**
   * Calculates the scores for all parameter sets for the given time segment
   * and domain visit count.
   *
   * @param ts The time segment
   * @param vc The domain visit count in the given time segment
   * @return The parameter specific scores for the visit count in
   * this time segment: {"ps1": 12, "ps2": 34}
   */
  calculateScoresForParameterSets(ts, vc) {
    return Object.keys(this.parameterSets).reduce(
      (acc, ps) =>
        merge(acc, {
          [ps]: this.calculateScoreForParameterSet(
            ts,
            vc,
            this.parameterSets[ps]
          ),
        }),
      {}
    );
  }

  /**
   * Calculates the final affinity score in the given time segment for the given parameter set
   *
   * @param timeSegment The time segment
   * @param visitCount The domain visit count in the given time segment
   * @param parameterSet The parameter set to use for scoring
   * @return The final score
   */
  calculateScoreForParameterSet(timeSegment, visitCount, parameterSet) {
    return this.calculateScore(
      visitCount * parameterSet.timeSegmentWeights[timeSegment.id],
      parameterSet.perfectFrequencyVisits,
      parameterSet.frequencyFactor
    );
  }

  /**
   * Keeps the same format, but reduces the two objects to a single object, with
   * combined scores across all time segments  => {a.com":{"ps1":2,"ps2":2},
   * "b.com":{"ps1":3,"ps2":3}}
   */
  _combineScores(a, b) {
    // Merge both score objects so we get a combined object holding all domains.
    // This is so we can combine them without missing domains that are in a and not in b and vice versa.
    const c = merge({}, a, b);
    return Object.keys(c).reduce(
      (acc, d) => merge(acc, this._combine(a, b, c, d)),
      {}
    );
  }

  _combine(a, b, c, d) {
    return (
      Object.keys(c[d])
        // Summing up the parameter set specific scores of each domain
        .map(ps => ({
          [d]: {
            [ps]: Math.min(
              1,
              ((a[d] && a[d][ps]) || 0) + ((b[d] && b[d][ps]) || 0)
            ),
          },
        }))
        // Reducing from an array of objects with a single parameter set to a single object
        // [{"a.com":{"ps1":11}}, {"a.com: {"ps2":12}}] => {"a.com":{"ps1":11,"ps2":12}}
        .reduce((acc, cur) => ({ [d]: merge(acc[d], cur[d]) }))
    );
  }

  /**
   * Calculates a value on the curve described by the provided parameters. The curve we're using is
   * (a^(b*x) - 1) / (a^b - 1): https://www.desmos.com/calculator/maqhpttupp
   *
   * @param {number} score A value between 0 and maxScore, representing x.
   * @param {number} maxScore Highest possible score.
   * @param {number} factor The slope describing the curve to get to maxScore. A low slope value
   * [0, 0.5] results in a log-shaped curve, a high slope [0.5, 1] results in a exp-shaped curve,
   * a slope of exactly 0.5 is linear.
   * @param {number} ease Adjusts how much bend is in the curve i.e. how dramatic the maximum
   * effect of the slope can be. This represents b in the formula above.
   * @return {number} the final score
   */
  calculateScore(score, maxScore, factor, ease = 2) {
    let a = 0;
    let x = Math.max(0, score / maxScore);

    if (x >= 1) {
      return 1;
    }

    if (factor === 0.5) {
      return x;
    }

    if (factor < 0.5) {
      // We want a log-shaped curve so we scale "a" between 0 and .99
      a = (factor / 0.5) * 0.49;
    } else if (factor > 0.5) {
      // We want an exp-shaped curve so we scale "a" between 1.01 and 10
      a = 1 + ((factor - 0.5) / 0.5) * 9;
    }

    return (Math.pow(a, ease * x) - 1) / (Math.pow(a, ease) - 1);
  }

  /**
   * Queries the visit counts in the given time segment.
   *
   * @param ts the time segment
   * @return the visit count object: {"a.com": 1, "b.com": 2}
   */
  queryVisits(ts) {
    const visitCounts = {};
    const query = PlacesUtils.history.getNewQuery();
    if (!query) {
      return visitCounts;
    }
    const wwwRegEx = /^www\./;

    query.beginTimeReference = query.TIME_RELATIVE_NOW;
    query.beginTime =
      ts.startTime && ts.startTime !== 0
        ? -(ts.startTime * 1000 * 1000)
        : -(Date.now() * 1000);

    query.endTimeReference = query.TIME_RELATIVE_NOW;
    query.endTime =
      ts.endTime && ts.endTime !== 0 ? -(ts.endTime * 1000 * 1000) : 0;

    const options = PlacesUtils.history.getNewQueryOptions();
    options.sortingMode = options.SORT_BY_VISITCOUNT_DESCENDING;
    options.maxResults = this.maxHistoryQueryResults;

    const { root } = PlacesUtils.history.executeQuery(query, options);
    root.containerOpen = true;
    for (let i = 0; i < root.childCount; i++) {
      let node = root.getChild(i);
      let host = Services.io.newURI(node.uri).host.replace(wwwRegEx, "");
      if (!visitCounts[host]) {
        visitCounts[host] = 0;
      }
      visitCounts[host] += node.accessCount;
    }
    root.containerOpen = false;
    return visitCounts;
  }

  /**
   * Calculates an item's relevance score.
   *
   * @param item the item (story), must contain domain affinities, otherwise a
   * score of 1 is returned.
   * @return the calculated item's score or 1 if item has no domain_affinities
   * or references an unknown parameter set.
   */
  calculateItemRelevanceScore(item) {
    const params = this.parameterSets[item.parameter_set];
    if (!item.domain_affinities || !params) {
      return item.item_score;
    }

    const scores = Object.keys(item.domain_affinities).reduce(
      (acc, d) => {
        let userDomainAffinityScore = this.scores[d]
          ? this.scores[d][item.parameter_set]
          : false;
        if (userDomainAffinityScore) {
          acc.combinedDomainScore +=
            userDomainAffinityScore * item.domain_affinities[d];
          acc.matchingDomainsCount++;
        }
        return acc;
      },
      { combinedDomainScore: 0, matchingDomainsCount: 0 }
    );

    // Boost the score as configured in the provided parameter set
    const boostedCombinedDomainScore =
      scores.combinedDomainScore *
      Math.pow(params.multiDomainBoost + 1, scores.matchingDomainsCount);

    // Calculate what the score would be if the item score is ignored
    const normalizedCombinedDomainScore = this.calculateScore(
      boostedCombinedDomainScore,
      params.perfectCombinedDomainScore,
      params.combinedDomainFactor
    );

    // Calculate the final relevance score using the itemScoreFactor. The itemScoreFactor
    // allows weighting the item score in relation to the normalizedCombinedDomainScore:
    // An itemScoreFactor of 1 results in the item score and ignores the combined domain score
    // An itemScoreFactor of 0.5 results in the the average of item score and combined domain score
    // An itemScoreFactor of 0 results in the combined domain score and ignores the item score
    return (
      params.itemScoreFactor *
        (item.item_score - normalizedCombinedDomainScore) +
      normalizedCombinedDomainScore
    );
  }

  /**
   * Returns an object holding the settings and affinity scores of this provider instance.
   */
  getAffinities() {
    return {
      timeSegments: this.timeSegments,
      parameterSets: this.parameterSets,
      maxHistoryQueryResults: this.maxHistoryQueryResults,
      version: this.version,
      scores: this.scores,
    };
  }
};

const EXPORTED_SYMBOLS = ["UserDomainAffinityProvider"];