DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// This program provides processor power estimates. It does this by reading
// model-specific registers (MSRs) that are part Intel's Running Average Power
// Limit (RAPL) interface. These MSRs provide good quality estimates of the
// energy consumption of up to four system components:
// - PKG: the entire processor package;
// - PP0: the cores (a subset of the package);
// - PP1: the GPU (a subset of the package);
// - DRAM: main memory.
//
// For more details about RAPL, see section 14.9 of Volume 3 of the "Intel 64
// and IA-32 Architecture's Software Developer's Manual", Order Number 325384.
//
// This program exists because there are no existing tools on Mac that can
// obtain all four RAPL estimates. (|powermetrics| can obtain the package
// estimate, but not the others. Intel Power Gadget can obtain the package and
// cores estimates.)
//
// On Linux |perf| can obtain all four estimates (as Joules, which are easily
// converted to Watts), but this program is implemented for Linux because it's
// not too hard to do, and that gives us multi-platform consistency.
//
// This program does not support Windows, unfortunately. It's not obvious how
// to access the RAPL MSRs on Windows.
//
// This program deliberately uses only standard libraries and avoids
// Mozilla-specific code, to make it easy to compile and test on different
// machines.

#include <assert.h>
#include <getopt.h>
#include <math.h>
#include <signal.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>

#include <algorithm>
#include <numeric>
#include <vector>

//---------------------------------------------------------------------------
// Utilities
//---------------------------------------------------------------------------

// MOZ_FALLTHROUGH is an annotation to suppress compiler warnings about switch
// cases that fall through without a break or return statement. MOZ_FALLTHROUGH
// is only needed on cases that have code. This definition of MOZ_FALLTHROUGH
// is identical to the one in mfbt/Attributes.h, which we don't use here because
// this file avoids depending on Mozilla headers.
#if defined(__clang__) && __cplusplus >= 201103L
   /* clang's fallthrough annotations are only available starting in C++11. */
#  define MOZ_FALLTHROUGH [[clang::fallthrough]]
#elif defined(_MSC_VER)
   /*
    * MSVC's __fallthrough annotations are checked by /analyze (Code Analysis):
    * https://msdn.microsoft.com/en-us/library/ms235402%28VS.80%29.aspx
    */
#  include <sal.h>
#  define MOZ_FALLTHROUGH __fallthrough
#else
#  define MOZ_FALLTHROUGH /* FALLTHROUGH */
#endif

// The value of argv[0] passed to main(). Used in error messages.
static const char* gArgv0;

static void
Abort(const char* aFormat, ...)
{
  va_list vargs;
  va_start(vargs, aFormat);
  fprintf(stderr, "%s: ", gArgv0);
  vfprintf(stderr, aFormat, vargs);
  fprintf(stderr, "\n");
  va_end(vargs);

  exit(1);
}

static void
CmdLineAbort(const char* aMsg)
{
  if (aMsg) {
    fprintf(stderr, "%s: %s\n", gArgv0, aMsg);
  }
  fprintf(stderr, "Use --help for more information.\n");
  exit(1);
}

// A special value that represents an estimate from an unsupported RAPL domain.
static const double kUnsupported_j = -1.0;

// Print to stdout and flush it, so that the output appears immediately even if
// being redirected through |tee| or anything like that.
static void
PrintAndFlush(const char* aFormat, ...)
{
  va_list vargs;
  va_start(vargs, aFormat);
  vfprintf(stdout, aFormat, vargs);
  va_end(vargs);

  fflush(stdout);
}

//---------------------------------------------------------------------------
// Mac-specific code
//---------------------------------------------------------------------------

#if defined(__APPLE__)

// Because of the pkg_energy_statistics_t::pkes_version check below, the
// earliest OS X version this code will work with is 10.9.0 (xnu-2422.1.72).

#include <sys/types.h>
#include <sys/sysctl.h>

// OS X has four kinds of system calls:
//
//  1. Mach traps;
//  2. UNIX system calls;
//  3. machine-dependent calls;
//  4. diagnostic calls.
//
// (See "Mac OS X and iOS Internals" by Jonathan Levin for more details.)
//
// The last category has a single call named diagCall() or diagCall64(). Its
// mode is controlled by its first argument, and one of the modes allows access
// to the Intel RAPL MSRs.
//
// The interface to diagCall64() is not exported, so we have to import some
// definitions from the XNU kernel. All imported definitions are annotated with
// the XNU source file they come from, and information about what XNU versions
// they were introduced in and (if relevant) modified.

// The diagCall64() mode.
// From osfmk/i386/Diagnostics.h
// - In 10.8.4 (xnu-2050.24.15) this value was introduced. (In 10.8.3 the value
//   17 was used for dgGzallocTest.)
#define dgPowerStat 17

// From osfmk/i386/cpu_data.h
// - In 10.8.5 these values were introduced, along with core_energy_stat_t.
#define CPU_RTIME_BINS (12)
#define CPU_ITIME_BINS (CPU_RTIME_BINS)

// core_energy_stat_t and pkg_energy_statistics_t are both from
// osfmk/i386/Diagnostics.c.
// - In 10.8.4 (xnu-2050.24.15) both structs were introduced, but with many
//   fewer fields.
// - In 10.8.5 (xnu-2050.48.11) both structs were substantially expanded, with
//   numerous new fields.
// - In 10.9.0 (xnu-2422.1.72) pkg_energy_statistics_t::pkes_version was added.
//   diagCall64(dgPowerStat) fills it with '1' in all versions since (up to
//   10.10.2 at time of writing).
// - in 10.10.2 (xnu-2782.10.72) core_energy_stat_t::gpmcs was conditionally
//   added, if DIAG_ALL_PMCS is true. (DIAG_ALL_PMCS is not even defined in the
//   source code, but it could be defined at compile-time via compiler flags.)
//   pkg_energy_statistics_t::pkes_version did not change, though.

typedef struct {
        uint64_t caperf;
        uint64_t cmperf;
        uint64_t ccres[6];
        uint64_t crtimes[CPU_RTIME_BINS];
        uint64_t citimes[CPU_ITIME_BINS];
        uint64_t crtime_total;
        uint64_t citime_total;
        uint64_t cpu_idle_exits;
        uint64_t cpu_insns;
        uint64_t cpu_ucc;
        uint64_t cpu_urc;
#if     DIAG_ALL_PMCS           // Added in 10.10.2 (xnu-2782.10.72).
        uint64_t gpmcs[4];      // Added in 10.10.2 (xnu-2782.10.72).
#endif /* DIAG_ALL_PMCS */      // Added in 10.10.2 (xnu-2782.10.72).
} core_energy_stat_t;

typedef struct {
        uint64_t pkes_version;  // Added in 10.9.0 (xnu-2422.1.72).
        uint64_t pkg_cres[2][7];

        // This is read from MSR 0x606, which Intel calls MSR_RAPL_POWER_UNIT
        // and XNU calls MSR_IA32_PKG_POWER_SKU_UNIT.
        uint64_t pkg_power_unit;

        // These are the four fields for the four RAPL domains. For each field
        // we list:
        //
        // - the corresponding MSR number;
        // - Intel's name for that MSR;
        // - XNU's name for that MSR;
        // - which Intel processors the MSR is supported on.
        //
        // The last of these is determined from chapter 35 of Volume 3 of the
        // "Intel 64 and IA-32 Architecture's Software Developer's Manual",
        // Order Number 325384. (Note that chapter 35 contradicts section 14.9
        // to some degree.)

        // 0x611 == MSR_PKG_ENERGY_STATUS == MSR_IA32_PKG_ENERGY_STATUS
        // Atom (various), Sandy Bridge, Next Gen Xeon Phi (model 0x57).
        uint64_t pkg_energy;

        // 0x639 == MSR_PP0_ENERGY_STATUS == MSR_IA32_PP0_ENERGY_STATUS
        // Atom (various), Sandy Bridge, Next Gen Xeon Phi (model 0x57).
        uint64_t pp0_energy;

        // 0x641 == MSR_PP1_ENERGY_STATUS == MSR_PP1_ENERGY_STATUS
        // Sandy Bridge, Haswell.
        uint64_t pp1_energy;

        // 0x619 == MSR_DRAM_ENERGY_STATUS == MSR_IA32_DDR_ENERGY_STATUS
        // Xeon E5, Xeon E5 v2, Haswell/Haswell-E, Next Gen Xeon Phi (model
        // 0x57)
        uint64_t ddr_energy;

        uint64_t llc_flushed_cycles;
        uint64_t ring_ratio_instantaneous;
        uint64_t IA_frequency_clipping_cause;
        uint64_t GT_frequency_clipping_cause;
        uint64_t pkg_idle_exits;
        uint64_t pkg_rtimes[CPU_RTIME_BINS];
        uint64_t pkg_itimes[CPU_ITIME_BINS];
        uint64_t mbus_delay_time;
        uint64_t mint_delay_time;
        uint32_t ncpus;
        core_energy_stat_t cest[];
} pkg_energy_statistics_t;

static int
diagCall64(uint64_t aMode, void* aBuf)
{
  // We cannot use syscall() here because it doesn't work with diagnostic
  // system calls -- it raises SIGSYS if you try. So we have to use asm.

#ifdef __x86_64__
  // The 0x40000 prefix indicates it's a diagnostic system call. The 0x01
  // suffix indicates the syscall number is 1, which also happens to be the
  // only diagnostic system call. See osfmk/mach/i386/syscall_sw.h for more
  // details.
  static const uint64_t diagCallNum = 0x4000001;
  uint64_t rv;

  __asm__ __volatile__(
    "syscall"

    // Return value goes in "a" (%rax).
    : /* outputs */ "=a"(rv)

    // The syscall number goes in "0", a synonym (from outputs) for "a" (%rax).
    // The syscall arguments go in "D" (%rdi) and "S" (%rsi).
    : /* inputs */ "0"(diagCallNum), "D"(aMode), "S"(aBuf)

    // The |syscall| instruction clobbers %rcx, %r11, and %rflags ("cc"). And
    // this particular syscall also writes memory (aBuf).
    : /* clobbers */ "rcx", "r11", "cc", "memory"
  );
  return rv;
#else
#error Sorry, only x86-64 is supported
#endif
}

static void
diagCall64_dgPowerStat(pkg_energy_statistics_t* aPkes)
{
  static const uint64_t supported_version = 1;

  // Write an unsupported version number into pkes_version so that the check
  // below cannot succeed by dumb luck.
  aPkes->pkes_version = supported_version - 1;

  // diagCall64() returns 1 on success, and 0 on failure (which can only happen
  // if the mode is unrecognized, e.g. in 10.7.x or earlier versions).
  if (diagCall64(dgPowerStat, aPkes) != 1) {
    Abort("diagCall64() failed");
  }

  if (aPkes->pkes_version != 1) {
    Abort("unexpected pkes_version: %llu", aPkes->pkes_version);
  }
}

class RAPL
{
  bool mIsGpuSupported;   // Is the GPU domain supported by the processor?
  bool mIsRamSupported;   // Is the RAM domain supported by the processor?

  // The DRAM domain on Haswell servers has a fixed energy unit (1/65536 J ==
  // 15.3 microJoules) which is different to the power unit MSR. (See the
  // "Intel Xeon Processor E5-1600 and E5-2600 v3 Product Families, Volume 2 of
  // 2, Registers" datasheet, September 2014, Reference Number: 330784-001.)
  // This field records whether the quirk is present.
  bool mHasRamUnitsQuirk;

  // The abovementioned 15.3 microJoules value.
  static const double kQuirkyRamJoulesPerTick;

  // The previous sample's MSR values.
  uint64_t mPrevPkgTicks;
  uint64_t mPrevPp0Ticks;
  uint64_t mPrevPp1Ticks;
  uint64_t mPrevDdrTicks;

  // The struct passed to diagCall64().
  pkg_energy_statistics_t* mPkes;

public:
  RAPL()
    : mHasRamUnitsQuirk(false)
  {
    // Work out which RAPL MSRs this CPU model supports.
    int cpuModel;
    size_t size = sizeof(cpuModel);
    if (sysctlbyname("machdep.cpu.model", &cpuModel, &size, NULL, 0) != 0) {
      Abort("sysctlbyname(\"machdep.cpu.model\") failed");
    }

    // This is similar to arch/x86/kernel/cpu/perf_event_intel_rapl.c in
    // linux-4.1.5/.
    switch (cpuModel) {
      case 60:  // 0x3c: Haswell
      case 69:  // 0x45: Haswell-Celeron
      case 70:  // 0x46: Haswell
      case 61:  // 0x3d: Broadwell
        // Supports package, cores, GPU, RAM.
        mIsGpuSupported = true;
        mIsRamSupported = true;
        break;

      case 42:  // 0x2a: Sandy Bridge
      case 58:  // 0x3a: Ivy Bridge
        // Supports package, cores, GPU.
        mIsGpuSupported = true;
        mIsRamSupported = false;
        break;

      case 63:  // 0x3f: Haswell-Server
        mHasRamUnitsQuirk = true;
        MOZ_FALLTHROUGH;
      case 45:  // 0x2d: Sandy Bridge-EP
      case 62:  // 0x3e: Ivy Bridge-E
        // Supports package, cores, RAM.
        mIsGpuSupported = false;
        mIsRamSupported = true;
        break;

      default:
        Abort("unknown CPU model: %d", cpuModel);
        break;
    }

    // Get the maximum number of logical CPUs so that we know how big to make
    // |mPkes|.
    int logicalcpu_max;
    size = sizeof(logicalcpu_max);
    if (sysctlbyname("hw.logicalcpu_max",
                     &logicalcpu_max, &size, NULL, 0) != 0) {
      Abort("sysctlbyname(\"hw.logicalcpu_max\") failed");
    }

    // Over-allocate by 1024 bytes per CPU to allow for the uncertainty around
    // core_energy_stat_t::gpmcs and for any other future extensions to that
    // struct. (The fields we read all come before the core_energy_stat_t
    // array, so it won't matter to us whether gpmcs is present or not.)
    size_t pkesSize = sizeof(pkg_energy_statistics_t) +
                      logicalcpu_max * sizeof(core_energy_stat_t) +
                      logicalcpu_max * 1024;
    mPkes = (pkg_energy_statistics_t*) malloc(pkesSize);
    if (!mPkes) {
      Abort("malloc() failed");
    }

    // Do an initial measurement so that the first sample's diffs are sensible.
    double dummy1, dummy2, dummy3, dummy4;
    EnergyEstimates(dummy1, dummy2, dummy3, dummy4);
  }

  ~RAPL()
  {
    free(mPkes);
  }

  static double Joules(uint64_t aTicks, double aJoulesPerTick)
  {
    return double(aTicks) * aJoulesPerTick;
  }

  void EnergyEstimates(double& aPkg_J, double& aCores_J, double& aGpu_J,
                       double& aRam_J)
  {
    diagCall64_dgPowerStat(mPkes);

    // Bits 12:8 are the ESU.
    // Energy measurements come in multiples of 1/(2^ESU).
    uint32_t energyStatusUnits = (mPkes->pkg_power_unit >> 8) & 0x1f;
    double joulesPerTick = ((double)1 / (1 << energyStatusUnits));

    aPkg_J   = Joules(mPkes->pkg_energy - mPrevPkgTicks, joulesPerTick);
    aCores_J = Joules(mPkes->pp0_energy - mPrevPp0Ticks, joulesPerTick);
    aGpu_J   = mIsGpuSupported
             ? Joules(mPkes->pp1_energy - mPrevPp1Ticks, joulesPerTick)
             : kUnsupported_j;
    aRam_J   = mIsRamSupported
             ? Joules(mPkes->ddr_energy - mPrevDdrTicks,
                      mHasRamUnitsQuirk ? kQuirkyRamJoulesPerTick
                                        : joulesPerTick)
             : kUnsupported_j;

    mPrevPkgTicks = mPkes->pkg_energy;
    mPrevPp0Ticks = mPkes->pp0_energy;
    if (mIsGpuSupported) {
      mPrevPp1Ticks = mPkes->pp1_energy;
    }
    if (mIsRamSupported) {
      mPrevDdrTicks = mPkes->ddr_energy;
    }
  }
};

/* static */ const double RAPL::kQuirkyRamJoulesPerTick = (double)1 / 65536;

//---------------------------------------------------------------------------
// Linux-specific code
//---------------------------------------------------------------------------

#elif defined(__linux__)

#include <linux/perf_event.h>
#include <sys/syscall.h>

// There is no glibc wrapper for this system call so we provide our own.
static int
perf_event_open(struct perf_event_attr* aAttr, pid_t aPid, int aCpu,
                int aGroupFd, unsigned long aFlags)
{
  return syscall(__NR_perf_event_open, aAttr, aPid, aCpu, aGroupFd, aFlags);
}

// Returns false if the file cannot be opened.
template <typename T>
static bool
ReadValueFromPowerFile(const char* aStr1, const char* aStr2, const char* aStr3,
                       const char* aScanfString, T* aOut)
{
  // The filenames going into this buffer are under our control and the longest
  // one is "/sys/bus/event_source/devices/power/events/energy-cores.scale".
  // So 256 chars is plenty.
  char filename[256];

  sprintf(filename, "/sys/bus/event_source/devices/power/%s%s%s",
          aStr1, aStr2, aStr3);
  FILE* fp = fopen(filename, "r");
  if (!fp) {
    return false;
  }
  if (fscanf(fp, aScanfString, aOut) != 1) {
    Abort("fscanf() failed");
  }
  fclose(fp);

  return true;
}

// This class encapsulates the reading of a single RAPL domain.
class Domain
{
  bool mIsSupported;      // Is the domain supported by the processor?

  // These three are only set if |mIsSupported| is true.
  double mJoulesPerTick;  // How many Joules each tick of the MSR represents.
  int mFd;                // The fd through which the MSR is read.
  double mPrevTicks;      // The previous sample's MSR value.

public:
  enum IsOptional { Optional, NonOptional };

  Domain(const char* aName, uint32_t aType, IsOptional aOptional = NonOptional)
  {
    uint64_t config;
    if (!ReadValueFromPowerFile("events/energy-", aName, "", "event=%llx",
         &config)) {
      // Failure is allowed for optional domains.
      if (aOptional == NonOptional) {
        Abort("failed to open file for non-optional domain '%s'\n"
              "- Is your kernel version 3.14 or later, as required? "
              "Run |uname -r| to see.", aName);
      }
      mIsSupported = false;
      return;
    }

    mIsSupported = true;

    ReadValueFromPowerFile("events/energy-", aName, ".scale", "%lf",
                           &mJoulesPerTick);

    // The unit should be "Joules", so 128 chars should be plenty.
    char unit[128];
    ReadValueFromPowerFile("events/energy-", aName, ".unit", "%127s", unit);
    if (strcmp(unit, "Joules") != 0) {
      Abort("unexpected unit '%s' in .unit file", unit);
    }

    struct perf_event_attr attr;
    memset(&attr, 0, sizeof(attr));
    attr.type = aType;
    attr.size = uint32_t(sizeof(attr));
    attr.config = config;

    // Measure all processes/threads. The specified CPU doesn't matter.
    mFd = perf_event_open(&attr, /* pid = */ -1, /* cpu = */ 0,
                          /* group_fd = */ -1, /* flags = */ 0);
    if (mFd < 0) {
      Abort("perf_event_open() failed\n"
            "- Did you run as root (e.g. with |sudo|) or set\n"
            "  /proc/sys/kernel/perf_event_paranoid to 0, as required?");
    }

    mPrevTicks = 0;
  }

  ~Domain()
  {
    if (mIsSupported) {
      close(mFd);
    }
  }

  double EnergyEstimate()
  {
    if (!mIsSupported) {
      return kUnsupported_j;
    }

    uint64_t thisTicks;
    if (read(mFd, &thisTicks, sizeof(uint64_t)) != sizeof(uint64_t)) {
      Abort("read() failed");
    }

    uint64_t ticks = thisTicks - mPrevTicks;
    mPrevTicks = thisTicks;
    double joules = ticks * mJoulesPerTick;
    return joules;
  }
};

class RAPL
{
  Domain* mPkg;
  Domain* mCores;
  Domain* mGpu;
  Domain* mRam;

public:
  RAPL()
  {
    uint32_t type;
    ReadValueFromPowerFile("type", "", "", "%u", &type);

    mPkg   = new Domain("pkg",   type);
    mCores = new Domain("cores", type);
    mGpu   = new Domain("gpu",   type, Domain::Optional);
    mRam   = new Domain("ram",   type, Domain::Optional);
    if (!mPkg || !mCores || !mGpu || !mRam) {
      Abort("new Domain() failed");
    }
  }

  ~RAPL()
  {
    delete mPkg;
    delete mCores;
    delete mGpu;
    delete mRam;
  }

  void EnergyEstimates(double& aPkg_J, double& aCores_J, double& aGpu_J,
                       double& aRam_J)
  {
    aPkg_J   = mPkg->EnergyEstimate();
    aCores_J = mCores->EnergyEstimate();
    aGpu_J   = mGpu->EnergyEstimate();
    aRam_J   = mRam->EnergyEstimate();
  }
};

#else

//---------------------------------------------------------------------------
// Unsupported platforms
//---------------------------------------------------------------------------

#error Sorry, this platform is not supported

#endif // platform

//---------------------------------------------------------------------------
// The main loop
//---------------------------------------------------------------------------

// The sample interval, measured in seconds.
static double gSampleInterval_sec;

// The platform-specific RAPL-reading machinery.
static RAPL* gRapl;

// All the sampled "total" values, in Watts.
static std::vector<double> gTotals_W;

// Power = Energy / Time, where power is measured in Watts, Energy is measured
// in Joules, and Time is measured in seconds.
static double
JoulesToWatts(double aJoules)
{
  return aJoules / gSampleInterval_sec;
}

// "Normalize" here means convert kUnsupported_j to zero so it can be used in
// additive expressions. All printed values are 5 or maybe 6 chars (though 6
// chars would require a value > 100 W, which is unlikely).
static void
NormalizeAndPrintAsWatts(char* aBuf, double& aValue_J)
{
  if (aValue_J == kUnsupported_j) {
    aValue_J = 0;
    sprintf(aBuf, "%s", " n/a ");
  } else {
    sprintf(aBuf, "%5.2f", JoulesToWatts(aValue_J));
  }
}

static void
SigAlrmHandler(int aSigNum, siginfo_t* aInfo, void* aContext)
{
  static int sampleNumber = 1;

  double pkg_J, cores_J, gpu_J, ram_J;
  gRapl->EnergyEstimates(pkg_J, cores_J, gpu_J, ram_J);

  // We should have pkg and cores estimates, but might not have gpu and ram
  // estimates.
  assert(pkg_J   != kUnsupported_j);
  assert(cores_J != kUnsupported_j);

  // This needs to be big enough to print watt values to two decimal places. 16
  // should be plenty.
  static const size_t kNumStrLen = 16;

  static char pkgStr[kNumStrLen], coresStr[kNumStrLen], gpuStr[kNumStrLen],
              ramStr[kNumStrLen];
  NormalizeAndPrintAsWatts(pkgStr,   pkg_J);
  NormalizeAndPrintAsWatts(coresStr, cores_J);
  NormalizeAndPrintAsWatts(gpuStr,   gpu_J);
  NormalizeAndPrintAsWatts(ramStr,   ram_J);

  // Core and GPU power are a subset of the package power.
  assert(pkg_J >= cores_J + gpu_J);

  // Compute "other" (i.e. rest of the package) and "total" only after the
  // other values have been normalized.

  char otherStr[kNumStrLen];
  double other_J = pkg_J - cores_J - gpu_J;
  NormalizeAndPrintAsWatts(otherStr, other_J);

  char totalStr[kNumStrLen];
  double total_J = pkg_J + ram_J;
  NormalizeAndPrintAsWatts(totalStr, total_J);

  gTotals_W.push_back(JoulesToWatts(total_J));

  // Print and flush so that the output appears immediately even if being
  // redirected through |tee| or anything like that.
  PrintAndFlush("#%02d %s W = %s (%s + %s + %s) + %s W\n",
                sampleNumber++, totalStr, pkgStr, coresStr, gpuStr, otherStr,
                ramStr);
}

static void
Finish()
{
  size_t n = gTotals_W.size();

  // This time calculation assumes that the timers are perfectly accurate which
  // is not true but the inaccuracy should be small in practice.
  double time = n * gSampleInterval_sec;

  printf("\n");
  printf("%d sample%s taken over a period of %.3f second%s\n",
    int(n), n == 1 ? "" : "s",
    n * gSampleInterval_sec, time == 1.0 ? "" : "s");

  if (n == 0 || n == 1) {
    exit(0);
  }

  // Compute the mean.
  double sum = std::accumulate(gTotals_W.begin(), gTotals_W.end(), 0.0);
  double mean = sum / n;

  // Compute the *population* standard deviation:
  //
  //   popStdDev = sqrt(Sigma(x - m)^2 / n)
  //
  // where |x| is the sum variable, |m| is the mean, and |n| is the
  // population size.
  //
  // This is different from the *sample* standard deviation, which divides by
  // |n - 1|, and would be appropriate if we were using a random sample of a
  // larger population.
  double sumOfSquaredDeviations = 0;
  for (auto iter = gTotals_W.begin(); iter != gTotals_W.end(); ++iter) {
    double deviation = (*iter - mean);
    sumOfSquaredDeviations += deviation * deviation;
  }
  double popStdDev = sqrt(sumOfSquaredDeviations / n);

  // Sort so that percentiles can be determined. We use the "Nearest Rank"
  // method of determining percentiles, which is simplest to compute and which
  // chooses values from those that appear in the input set.
  std::sort(gTotals_W.begin(), gTotals_W.end());

  printf("\n");
  printf("Distribution of 'total' values:\n");
  printf("            mean = %5.2f W\n", mean);
  printf("         std dev = %5.2f W\n", popStdDev);
  printf("  0th percentile = %5.2f W (min)\n", gTotals_W[0]);
  printf("  5th percentile = %5.2f W\n", gTotals_W[ceil(0.05 * n) - 1]);
  printf(" 25th percentile = %5.2f W\n", gTotals_W[ceil(0.25 * n) - 1]);
  printf(" 50th percentile = %5.2f W\n", gTotals_W[ceil(0.50 * n) - 1]);
  printf(" 75th percentile = %5.2f W\n", gTotals_W[ceil(0.75 * n) - 1]);
  printf(" 95th percentile = %5.2f W\n", gTotals_W[ceil(0.95 * n) - 1]);
  printf("100th percentile = %5.2f W (max)\n", gTotals_W[n - 1]);

  exit(0);
}

static void
SigIntHandler(int aSigNum, siginfo_t* aInfo, void *aContext)
{
  Finish();
}

static void
PrintUsage()
{
  printf(
"usage: rapl [options]\n"
"\n"
"Options:\n"
"\n"
"  -h --help                 show this message\n"
"  -i --sample-interval <N>  sample every N ms [default=1000]\n"
"  -n --sample-count <N>     get N samples (0 means unlimited) [default=0]\n"
"\n"
#if defined(__APPLE__)
"On Mac this program can be run by any user.\n"
#elif defined(__linux__)
"On Linux this program can only be run by the super-user unless the contents\n"
"of /proc/sys/kernel/perf_event_paranoid is set to 0 or lower.\n"
#else
#error Sorry, this platform is not supported
#endif
"\n"
  );
}

int
main(int argc, char** argv)
{
  // Process command line options.

  gArgv0 = argv[0];

  // Default values.
  int sampleInterval_msec = 1000;
  int sampleCount = 0;

  struct option longOptions[] = {
    { "help",            no_argument,       NULL, 'h' },
    { "sample-interval", required_argument, NULL, 'i' },
    { "sample-count",    required_argument, NULL, 'n' },
    { NULL,              0,                 NULL, 0   }
  };
  const char* shortOptions = "hi:n:";

  int c;
  char* endPtr;
  while ((c = getopt_long(argc, argv, shortOptions, longOptions, NULL)) != -1) {
    switch (c) {
      case 'h':
        PrintUsage();
        exit(0);

      case 'i':
        sampleInterval_msec = strtol(optarg, &endPtr, /* base = */ 10);
        if (*endPtr) {
          CmdLineAbort("sample interval is not an integer");
        }
        if (sampleInterval_msec < 1 || sampleInterval_msec > 3600000) {
          CmdLineAbort("sample interval must be in the range 1..3600000 ms");
        }
        break;

      case 'n':
        sampleCount = strtol(optarg, &endPtr, /* base = */ 10);
        if (*endPtr) {
          CmdLineAbort("sample count is not an integer");
        }
        if (sampleCount < 0 || sampleCount > 1000000) {
          CmdLineAbort("sample count must be in the range 0..1000000");
        }
        break;

      default:
        CmdLineAbort(NULL);
    }
  }

  // The RAPL MSRs update every ~1 ms, but the measurement period isn't exactly
  // 1 ms, which means the sample periods are not exact. "Power Measurement
  // Techniques on Standard Compute Nodes: A Quantitative Comparison" by
  // Hackenberg et al. suggests the following.
  //
  //   "RAPL provides energy (and not power) consumption data without
  //   timestamps associated to each counter update. This makes sampling rates
  //   above 20 Samples/s unfeasible if the systematic error should be below
  //   5%... Constantly polling the RAPL registers will both occupy a processor
  //   core and distort the measurement itself."
  //
  // So warn about this case.
  if (sampleInterval_msec < 50) {
    fprintf(stderr,
            "\nWARNING: sample intervals < 50 ms are likely to produce "
            "inaccurate estimates\n\n");
  }
  gSampleInterval_sec = double(sampleInterval_msec) / 1000;

  // Initialize the platform-specific RAPL reading machinery.
  gRapl = new RAPL();
  if (!gRapl) {
    Abort("new RAPL() failed");
  }

  // Install the signal handlers.

  struct sigaction sa;
  memset(&sa, 0, sizeof(sa));
  sa.sa_flags = SA_RESTART | SA_SIGINFO;
  // The extra parens around (0) suppress a -Wunreachable-code warning on OS X
  // where sigemptyset() is a macro that can never fail and always returns 0.
  if (sigemptyset(&sa.sa_mask) < (0)) {
    Abort("sigemptyset() failed");
  }
  sa.sa_sigaction = SigAlrmHandler;
  if (sigaction(SIGALRM, &sa, NULL) < 0) {
    Abort("sigaction(SIGALRM) failed");
  }
  sa.sa_sigaction = SigIntHandler;
  if (sigaction(SIGINT, &sa, NULL) < 0) {
    Abort("sigaction(SIGINT) failed");
  }

  // Set up the timer.
  struct itimerval timer;
  timer.it_interval.tv_sec = sampleInterval_msec / 1000;
  timer.it_interval.tv_usec = (sampleInterval_msec % 1000) * 1000;
  timer.it_value = timer.it_interval;
  if (setitimer(ITIMER_REAL, &timer, NULL) < 0) {
    Abort("setitimer() failed");
  }

  // Print header.
  PrintAndFlush("    total W = _pkg_ (cores + _gpu_ + other) + _ram_ W\n");

  // Take samples.
  if (sampleCount == 0) {
    while (true) {
      pause();
    }
  } else {
    for (int i = 0; i < sampleCount; i++) {
      pause();
    }
  }

  Finish();

  return 0;
}