DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_arm_MacroAssembler_arm_h
#define jit_arm_MacroAssembler_arm_h

#include "mozilla/DebugOnly.h"

#include "jit/arm/Assembler-arm.h"
#include "jit/JitFrames.h"
#include "jit/MoveResolver.h"
#include "vm/BigIntType.h"
#include "vm/BytecodeUtil.h"

namespace js {
namespace jit {

static Register CallReg = ip;
static const int defaultShift = 3;
static_assert(1 << defaultShift == sizeof(JS::Value));

// See documentation for ScratchTagScope and ScratchTagScopeRelease in
// MacroAssembler-x64.h.

class ScratchTagScope {
  const ValueOperand& v_;

 public:
  ScratchTagScope(MacroAssembler&, const ValueOperand& v) : v_(v) {}
  operator Register() { return v_.typeReg(); }
  void release() {}
  void reacquire() {}
};

class ScratchTagScopeRelease {
 public:
  explicit ScratchTagScopeRelease(ScratchTagScope*) {}
};

// MacroAssemblerARM is inheriting form Assembler defined in
// Assembler-arm.{h,cpp}
class MacroAssemblerARM : public Assembler {
 private:
  // Perform a downcast. Should be removed by Bug 996602.
  MacroAssembler& asMasm();
  const MacroAssembler& asMasm() const;

 protected:
  // On ARM, some instructions require a second scratch register. This
  // register defaults to lr, since it's non-allocatable (as it can be
  // clobbered by some instructions). Allow the baseline compiler to override
  // this though, since baseline IC stubs rely on lr holding the return
  // address.
  Register secondScratchReg_;

 public:
  Register getSecondScratchReg() const { return secondScratchReg_; }

 public:
  // Higher level tag testing code.
  // TODO: Can probably remove the Operand versions.
  Operand ToPayload(Operand base) const {
    return Operand(Register::FromCode(base.base()), base.disp());
  }
  Address ToPayload(const Address& base) const { return base; }

 protected:
  Operand ToType(Operand base) const {
    return Operand(Register::FromCode(base.base()),
                   base.disp() + sizeof(void*));
  }
  Address ToType(const Address& base) const {
    return ToType(Operand(base)).toAddress();
  }

  Address ToPayloadAfterStackPush(const Address& base) const {
    // If we are based on StackPointer, pass over the type tag just pushed.
    if (base.base == StackPointer) {
      return Address(base.base, base.offset + sizeof(void*));
    }
    return ToPayload(base);
  }

 public:
  MacroAssemblerARM() : secondScratchReg_(lr) {}

  void setSecondScratchReg(Register reg) {
    MOZ_ASSERT(reg != ScratchRegister);
    secondScratchReg_ = reg;
  }

  void convertBoolToInt32(Register source, Register dest);
  void convertInt32ToDouble(Register src, FloatRegister dest);
  void convertInt32ToDouble(const Address& src, FloatRegister dest);
  void convertInt32ToDouble(const BaseIndex& src, FloatRegister dest);
  void convertUInt32ToFloat32(Register src, FloatRegister dest);
  void convertUInt32ToDouble(Register src, FloatRegister dest);
  void convertDoubleToFloat32(FloatRegister src, FloatRegister dest,
                              Condition c = Always);
  void convertDoubleToInt32(FloatRegister src, Register dest, Label* fail,
                            bool negativeZeroCheck = true);
  void convertFloat32ToInt32(FloatRegister src, Register dest, Label* fail,
                             bool negativeZeroCheck = true);

  void convertFloat32ToDouble(FloatRegister src, FloatRegister dest);
  void convertInt32ToFloat32(Register src, FloatRegister dest);
  void convertInt32ToFloat32(const Address& src, FloatRegister dest);

  void wasmTruncateToInt32(FloatRegister input, Register output,
                           MIRType fromType, bool isUnsigned, bool isSaturating,
                           Label* oolEntry);
  void outOfLineWasmTruncateToIntCheck(FloatRegister input, MIRType fromType,
                                       MIRType toType, TruncFlags flags,
                                       Label* rejoin,
                                       wasm::BytecodeOffset trapOffset);

  // Somewhat direct wrappers for the low-level assembler funcitons
  // bitops. Attempt to encode a virtual alu instruction using two real
  // instructions.
 private:
  bool alu_dbl(Register src1, Imm32 imm, Register dest, ALUOp op, SBit s,
               Condition c);

 public:
  void ma_alu(Register src1, Imm32 imm, Register dest,
              AutoRegisterScope& scratch, ALUOp op, SBit s = LeaveCC,
              Condition c = Always);
  void ma_alu(Register src1, Operand2 op2, Register dest, ALUOp op,
              SBit s = LeaveCC, Condition c = Always);
  void ma_alu(Register src1, Operand op2, Register dest, ALUOp op,
              SBit s = LeaveCC, Condition c = Always);
  void ma_nop();

  BufferOffset ma_movPatchable(Imm32 imm, Register dest,
                               Assembler::Condition c);
  BufferOffset ma_movPatchable(ImmPtr imm, Register dest,
                               Assembler::Condition c);

  // To be used with Iter := InstructionIterator or BufferInstructionIterator.
  template <class Iter>
  static void ma_mov_patch(Imm32 imm, Register dest, Assembler::Condition c,
                           RelocStyle rs, Iter iter);

  // ALU based ops
  // mov
  void ma_mov(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_mov(Imm32 imm, Register dest, Condition c = Always);
  void ma_mov(ImmWord imm, Register dest, Condition c = Always);

  void ma_mov(ImmGCPtr ptr, Register dest);

  // Shifts (just a move with a shifting op2)
  void ma_lsl(Imm32 shift, Register src, Register dst);
  void ma_lsr(Imm32 shift, Register src, Register dst);
  void ma_asr(Imm32 shift, Register src, Register dst);
  void ma_ror(Imm32 shift, Register src, Register dst);
  void ma_rol(Imm32 shift, Register src, Register dst);

  void ma_lsl(Register shift, Register src, Register dst);
  void ma_lsr(Register shift, Register src, Register dst);
  void ma_asr(Register shift, Register src, Register dst);
  void ma_ror(Register shift, Register src, Register dst);
  void ma_rol(Register shift, Register src, Register dst,
              AutoRegisterScope& scratch);

  // Move not (dest <- ~src)
  void ma_mvn(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  // Negate (dest <- -src) implemented as rsb dest, src, 0
  void ma_neg(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  // And
  void ma_and(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_and(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_and(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);

  void ma_and(Imm32 imm, Register src1, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Bit clear (dest <- dest & ~imm) or (dest <- src1 & ~src2)
  void ma_bic(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);

  // Exclusive or
  void ma_eor(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_eor(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_eor(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);

  void ma_eor(Imm32 imm, Register src1, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Or
  void ma_orr(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_orr(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  void ma_orr(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);

  void ma_orr(Imm32 imm, Register src1, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Arithmetic based ops.
  // Add with carry:
  void ma_adc(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_adc(Register src, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_adc(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  // Add:
  void ma_add(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_add(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_add(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_add(Register src1, Operand op, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_add(Register src1, Imm32 op, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Subtract with carry:
  void ma_sbc(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_sbc(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_sbc(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  // Subtract:
  void ma_sub(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_sub(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_sub(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_sub(Register src1, Operand op, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_sub(Register src1, Imm32 op, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Reverse subtract:
  void ma_rsb(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_rsb(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_rsb(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_rsb(Register src1, Imm32 op2, Register dest,
              AutoRegisterScope& scratch, SBit s = LeaveCC,
              Condition c = Always);

  // Reverse subtract with carry:
  void ma_rsc(Imm32 imm, Register dest, AutoRegisterScope& scratch,
              SBit s = LeaveCC, Condition c = Always);
  void ma_rsc(Register src1, Register dest, SBit s = LeaveCC,
              Condition c = Always);
  void ma_rsc(Register src1, Register src2, Register dest, SBit s = LeaveCC,
              Condition c = Always);

  // Compares/tests.
  // Compare negative (sets condition codes as src1 + src2 would):
  void ma_cmn(Register src1, Imm32 imm, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_cmn(Register src1, Register src2, Condition c = Always);
  void ma_cmn(Register src1, Operand op, Condition c = Always);

  // Compare (src - src2):
  void ma_cmp(Register src1, Imm32 imm, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_cmp(Register src1, ImmTag tag, Condition c = Always);
  void ma_cmp(Register src1, ImmWord ptr, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_cmp(Register src1, ImmGCPtr ptr, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_cmp(Register src1, Operand op, AutoRegisterScope& scratch,
              AutoRegisterScope& scratch2, Condition c = Always);
  void ma_cmp(Register src1, Register src2, Condition c = Always);

  // Test for equality, (src1 ^ src2):
  void ma_teq(Register src1, Imm32 imm, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_teq(Register src1, Register src2, Condition c = Always);
  void ma_teq(Register src1, Operand op, Condition c = Always);

  // Test (src1 & src2):
  void ma_tst(Register src1, Imm32 imm, AutoRegisterScope& scratch,
              Condition c = Always);
  void ma_tst(Register src1, Register src2, Condition c = Always);
  void ma_tst(Register src1, Operand op, Condition c = Always);

  // Multiplies. For now, there are only two that we care about.
  void ma_mul(Register src1, Register src2, Register dest);
  void ma_mul(Register src1, Imm32 imm, Register dest,
              AutoRegisterScope& scratch);
  Condition ma_check_mul(Register src1, Register src2, Register dest,
                         AutoRegisterScope& scratch, Condition cond);
  Condition ma_check_mul(Register src1, Imm32 imm, Register dest,
                         AutoRegisterScope& scratch, Condition cond);

  void ma_umull(Register src1, Imm32 imm, Register destHigh, Register destLow,
                AutoRegisterScope& scratch);
  void ma_umull(Register src1, Register src2, Register destHigh,
                Register destLow);

  // Fast mod, uses scratch registers, and thus needs to be in the assembler
  // implicitly assumes that we can overwrite dest at the beginning of the
  // sequence.
  void ma_mod_mask(Register src, Register dest, Register hold, Register tmp,
                   AutoRegisterScope& scratch, AutoRegisterScope& scratch2,
                   int32_t shift);

  // Mod - depends on integer divide instructions being supported.
  void ma_smod(Register num, Register div, Register dest,
               AutoRegisterScope& scratch);
  void ma_umod(Register num, Register div, Register dest,
               AutoRegisterScope& scratch);

  // Division - depends on integer divide instructions being supported.
  void ma_sdiv(Register num, Register div, Register dest,
               Condition cond = Always);
  void ma_udiv(Register num, Register div, Register dest,
               Condition cond = Always);
  // Misc operations
  void ma_clz(Register src, Register dest, Condition cond = Always);
  void ma_ctz(Register src, Register dest, AutoRegisterScope& scratch);
  // Memory:
  // Shortcut for when we know we're transferring 32 bits of data.
  void ma_dtr(LoadStore ls, Register rn, Imm32 offset, Register rt,
              AutoRegisterScope& scratch, Index mode = Offset,
              Condition cc = Always);
  void ma_dtr(LoadStore ls, Register rt, const Address& addr,
              AutoRegisterScope& scratch, Index mode, Condition cc);

  void ma_str(Register rt, DTRAddr addr, Index mode = Offset,
              Condition cc = Always);
  void ma_str(Register rt, const Address& addr, AutoRegisterScope& scratch,
              Index mode = Offset, Condition cc = Always);

  void ma_ldr(DTRAddr addr, Register rt, Index mode = Offset,
              Condition cc = Always);
  void ma_ldr(const Address& addr, Register rt, AutoRegisterScope& scratch,
              Index mode = Offset, Condition cc = Always);

  void ma_ldrb(DTRAddr addr, Register rt, Index mode = Offset,
               Condition cc = Always);
  void ma_ldrh(EDtrAddr addr, Register rt, Index mode = Offset,
               Condition cc = Always);
  void ma_ldrsh(EDtrAddr addr, Register rt, Index mode = Offset,
                Condition cc = Always);
  void ma_ldrsb(EDtrAddr addr, Register rt, Index mode = Offset,
                Condition cc = Always);
  void ma_ldrd(EDtrAddr addr, Register rt, mozilla::DebugOnly<Register> rt2,
               Index mode = Offset, Condition cc = Always);
  void ma_strb(Register rt, DTRAddr addr, Index mode = Offset,
               Condition cc = Always);
  void ma_strh(Register rt, EDtrAddr addr, Index mode = Offset,
               Condition cc = Always);
  void ma_strd(Register rt, mozilla::DebugOnly<Register> rt2, EDtrAddr addr,
               Index mode = Offset, Condition cc = Always);

  // Specialty for moving N bits of data, where n == 8,16,32,64.
  BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
                                Register rn, Register rm, Register rt,
                                AutoRegisterScope& scratch, Index mode = Offset,
                                Condition cc = Always, Scale scale = TimesOne);

  BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
                                Register rn, Register rm, Register rt,
                                Index mode = Offset, Condition cc = Always);

  BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned,
                                Register rn, Imm32 offset, Register rt,
                                AutoRegisterScope& scratch, Index mode = Offset,
                                Condition cc = Always);

  void ma_pop(Register r);
  void ma_popn_pc(Imm32 n, AutoRegisterScope& scratch,
                  AutoRegisterScope& scratch2);
  void ma_push(Register r);
  void ma_push_sp(Register r, AutoRegisterScope& scratch);

  void ma_vpop(VFPRegister r);
  void ma_vpush(VFPRegister r);

  // Barriers.
  void ma_dmb(BarrierOption option = BarrierSY);
  void ma_dsb(BarrierOption option = BarrierSY);

  // Branches when done from within arm-specific code.
  BufferOffset ma_b(Label* dest, Condition c = Always);
  void ma_b(void* target, Condition c = Always);
  void ma_bx(Register dest, Condition c = Always);

  // This is almost NEVER necessary, we'll basically never be calling a label
  // except, possibly in the crazy bailout-table case.
  void ma_bl(Label* dest, Condition c = Always);

  void ma_blx(Register dest, Condition c = Always);

  // VFP/ALU:
  void ma_vadd(FloatRegister src1, FloatRegister src2, FloatRegister dst);
  void ma_vsub(FloatRegister src1, FloatRegister src2, FloatRegister dst);

  void ma_vmul(FloatRegister src1, FloatRegister src2, FloatRegister dst);
  void ma_vdiv(FloatRegister src1, FloatRegister src2, FloatRegister dst);

  void ma_vneg(FloatRegister src, FloatRegister dest, Condition cc = Always);
  void ma_vmov(FloatRegister src, FloatRegister dest, Condition cc = Always);
  void ma_vmov_f32(FloatRegister src, FloatRegister dest,
                   Condition cc = Always);
  void ma_vabs(FloatRegister src, FloatRegister dest, Condition cc = Always);
  void ma_vabs_f32(FloatRegister src, FloatRegister dest,
                   Condition cc = Always);

  void ma_vsqrt(FloatRegister src, FloatRegister dest, Condition cc = Always);
  void ma_vsqrt_f32(FloatRegister src, FloatRegister dest,
                    Condition cc = Always);

  void ma_vimm(double value, FloatRegister dest, Condition cc = Always);
  void ma_vimm_f32(float value, FloatRegister dest, Condition cc = Always);

  void ma_vcmp(FloatRegister src1, FloatRegister src2, Condition cc = Always);
  void ma_vcmp_f32(FloatRegister src1, FloatRegister src2,
                   Condition cc = Always);
  void ma_vcmpz(FloatRegister src1, Condition cc = Always);
  void ma_vcmpz_f32(FloatRegister src1, Condition cc = Always);

  void ma_vadd_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
  void ma_vsub_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);

  void ma_vmul_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);
  void ma_vdiv_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst);

  void ma_vneg_f32(FloatRegister src, FloatRegister dest,
                   Condition cc = Always);

  // Source is F64, dest is I32:
  void ma_vcvt_F64_I32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);
  void ma_vcvt_F64_U32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);

  // Source is I32, dest is F64:
  void ma_vcvt_I32_F64(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);
  void ma_vcvt_U32_F64(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);

  // Source is F32, dest is I32:
  void ma_vcvt_F32_I32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);
  void ma_vcvt_F32_U32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);

  // Source is I32, dest is F32:
  void ma_vcvt_I32_F32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);
  void ma_vcvt_U32_F32(FloatRegister src, FloatRegister dest,
                       Condition cc = Always);

  // Transfer (do not coerce) a float into a gpr.
  void ma_vxfer(VFPRegister src, Register dest, Condition cc = Always);
  // Transfer (do not coerce) a double into a couple of gpr.
  void ma_vxfer(VFPRegister src, Register dest1, Register dest2,
                Condition cc = Always);

  // Transfer (do not coerce) a gpr into a float
  void ma_vxfer(Register src, FloatRegister dest, Condition cc = Always);
  // Transfer (do not coerce) a couple of gpr into a double
  void ma_vxfer(Register src1, Register src2, FloatRegister dest,
                Condition cc = Always);

  BufferOffset ma_vdtr(LoadStore ls, const Address& addr, VFPRegister dest,
                       AutoRegisterScope& scratch, Condition cc = Always);

  BufferOffset ma_vldr(VFPAddr addr, VFPRegister dest, Condition cc = Always);
  BufferOffset ma_vldr(const Address& addr, VFPRegister dest,
                       AutoRegisterScope& scratch, Condition cc = Always);
  BufferOffset ma_vldr(VFPRegister src, Register base, Register index,
                       AutoRegisterScope& scratch, int32_t shift = defaultShift,
                       Condition cc = Always);

  BufferOffset ma_vstr(VFPRegister src, VFPAddr addr, Condition cc = Always);
  BufferOffset ma_vstr(VFPRegister src, const Address& addr,
                       AutoRegisterScope& scratch, Condition cc = Always);
  BufferOffset ma_vstr(VFPRegister src, Register base, Register index,
                       AutoRegisterScope& scratch, AutoRegisterScope& scratch2,
                       int32_t shift, int32_t offset, Condition cc = Always);
  BufferOffset ma_vstr(VFPRegister src, Register base, Register index,
                       AutoRegisterScope& scratch, int32_t shift,
                       Condition cc = Always);

  void ma_call(ImmPtr dest);

  // Float registers can only be loaded/stored in continuous runs when using
  // vstm/vldm. This function breaks set into continuous runs and loads/stores
  // them at [rm]. rm will be modified and left in a state logically suitable
  // for the next load/store. Returns the offset from [dm] for the logical
  // next load/store.
  int32_t transferMultipleByRuns(FloatRegisterSet set, LoadStore ls,
                                 Register rm, DTMMode mode) {
    if (mode == IA) {
      return transferMultipleByRunsImpl<FloatRegisterForwardIterator>(
          set, ls, rm, mode, 1);
    }
    if (mode == DB) {
      return transferMultipleByRunsImpl<FloatRegisterBackwardIterator>(
          set, ls, rm, mode, -1);
    }
    MOZ_CRASH("Invalid data transfer addressing mode");
  }

  // `outAny` is valid if and only if `out64` == Register64::Invalid().
  void wasmLoadImpl(const wasm::MemoryAccessDesc& access, Register memoryBase,
                    Register ptr, Register ptrScratch, AnyRegister outAny,
                    Register64 out64);

  // `valAny` is valid if and only if `val64` == Register64::Invalid().
  void wasmStoreImpl(const wasm::MemoryAccessDesc& access, AnyRegister valAny,
                     Register64 val64, Register memoryBase, Register ptr,
                     Register ptrScratch);

 protected:
  // `outAny` is valid if and only if `out64` == Register64::Invalid().
  void wasmUnalignedLoadImpl(const wasm::MemoryAccessDesc& access,
                             Register memoryBase, Register ptr,
                             Register ptrScratch, AnyRegister outAny,
                             Register64 out64, Register tmp1, Register tmp2,
                             Register tmp3);

  // The value to be stored is in `floatValue` (if not invalid), `val64` (if not
  // invalid), or in `valOrTmp` (if `floatValue` and `val64` are both invalid).
  // Note `valOrTmp` must always be valid.
  void wasmUnalignedStoreImpl(const wasm::MemoryAccessDesc& access,
                              FloatRegister floatValue, Register64 val64,
                              Register memoryBase, Register ptr,
                              Register ptrScratch, Register valOrTmp);

 private:
  // Loads `byteSize` bytes, byte by byte, by reading from ptr[offset],
  // applying the indicated signedness (defined by isSigned).
  // - all three registers must be different.
  // - tmp and dest will get clobbered, ptr will remain intact.
  // - byteSize can be up to 4 bytes and no more (GPR are 32 bits on ARM).
  // - offset can be 0 or 4
  // If `access` is not null then emit the appropriate access metadata.
  void emitUnalignedLoad(const wasm::MemoryAccessDesc* access, bool isSigned,
                         unsigned byteSize, Register ptr, Register tmp,
                         Register dest, unsigned offset = 0);

  // Ditto, for a store. Note stores don't care about signedness.
  // - the two registers must be different.
  // - val will get clobbered, ptr will remain intact.
  // - byteSize can be up to 4 bytes and no more (GPR are 32 bits on ARM).
  // - offset can be 0 or 4
  // If `access` is not null then emit the appropriate access metadata.
  void emitUnalignedStore(const wasm::MemoryAccessDesc* access,
                          unsigned byteSize, Register ptr, Register val,
                          unsigned offset = 0);

  // Implementation for transferMultipleByRuns so we can use different
  // iterators for forward/backward traversals. The sign argument should be 1
  // if we traverse forwards, -1 if we traverse backwards.
  template <typename RegisterIterator>
  int32_t transferMultipleByRunsImpl(FloatRegisterSet set, LoadStore ls,
                                     Register rm, DTMMode mode, int32_t sign) {
    MOZ_ASSERT(sign == 1 || sign == -1);

    int32_t delta = sign * sizeof(float);
    int32_t offset = 0;
    // Build up a new set, which is the sum of all of the single and double
    // registers. This set can have up to 48 registers in it total
    // s0-s31 and d16-d31
    FloatRegisterSet mod = set.reduceSetForPush();

    RegisterIterator iter(mod);
    while (iter.more()) {
      startFloatTransferM(ls, rm, mode, WriteBack);
      int32_t reg = (*iter).code();
      do {
        offset += delta;
        if ((*iter).isDouble()) {
          offset += delta;
        }
        transferFloatReg(*iter);
      } while ((++iter).more() && int32_t((*iter).code()) == (reg += sign));
      finishFloatTransfer();
    }
    return offset;
  }
};

class MacroAssembler;

class MacroAssemblerARMCompat : public MacroAssemblerARM {
 private:
  // Perform a downcast. Should be removed by Bug 996602.
  MacroAssembler& asMasm();
  const MacroAssembler& asMasm() const;

 public:
  MacroAssemblerARMCompat() {}

 public:
  // Jumps + other functions that should be called from non-arm specific
  // code. Basically, an x86 front end on top of the ARM code.
  void j(Condition code, Label* dest) { as_b(dest, code); }
  void j(Label* dest) { as_b(dest, Always); }

  void mov(Register src, Register dest) { ma_mov(src, dest); }
  void mov(ImmWord imm, Register dest) { ma_mov(Imm32(imm.value), dest); }
  void mov(ImmPtr imm, Register dest) {
    mov(ImmWord(uintptr_t(imm.value)), dest);
  }

  void branch(JitCode* c) {
    BufferOffset bo = m_buffer.nextOffset();
    addPendingJump(bo, ImmPtr(c->raw()), RelocationKind::JITCODE);
    ScratchRegisterScope scratch(asMasm());
    ma_movPatchable(ImmPtr(c->raw()), scratch, Always);
    ma_bx(scratch);
  }
  void branch(const Register reg) { ma_bx(reg); }
  void nop() { ma_nop(); }
  void shortJumpSizedNop() { ma_nop(); }
  void ret() { ma_pop(pc); }
  void retn(Imm32 n) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    ma_popn_pc(n, scratch, scratch2);
  }
  void push(Imm32 imm) {
    ScratchRegisterScope scratch(asMasm());
    ma_mov(imm, scratch);
    ma_push(scratch);
  }
  void push(ImmWord imm) { push(Imm32(imm.value)); }
  void push(ImmGCPtr imm) {
    ScratchRegisterScope scratch(asMasm());
    ma_mov(imm, scratch);
    ma_push(scratch);
  }
  void push(const Address& addr) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    ma_ldr(addr, scratch, scratch2);
    ma_push(scratch);
  }
  void push(Register reg) {
    if (reg == sp) {
      ScratchRegisterScope scratch(asMasm());
      ma_push_sp(reg, scratch);
    } else {
      ma_push(reg);
    }
  }
  void push(FloatRegister reg) { ma_vpush(VFPRegister(reg)); }
  void pushWithPadding(Register reg, const Imm32 extraSpace) {
    ScratchRegisterScope scratch(asMasm());
    Imm32 totSpace = Imm32(extraSpace.value + 4);
    ma_dtr(IsStore, sp, totSpace, reg, scratch, PreIndex);
  }
  void pushWithPadding(Imm32 imm, const Imm32 extraSpace) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    Imm32 totSpace = Imm32(extraSpace.value + 4);
    ma_mov(imm, scratch);
    ma_dtr(IsStore, sp, totSpace, scratch, scratch2, PreIndex);
  }

  void pop(Register reg) { ma_pop(reg); }
  void pop(FloatRegister reg) { ma_vpop(VFPRegister(reg)); }

  void popN(Register reg, Imm32 extraSpace) {
    ScratchRegisterScope scratch(asMasm());
    Imm32 totSpace = Imm32(extraSpace.value + 4);
    ma_dtr(IsLoad, sp, totSpace, reg, scratch, PostIndex);
  }

  CodeOffset toggledJump(Label* label);

  // Emit a BLX or NOP instruction. ToggleCall can be used to patch this
  // instruction.
  CodeOffset toggledCall(JitCode* target, bool enabled);

  CodeOffset pushWithPatch(ImmWord imm) {
    ScratchRegisterScope scratch(asMasm());
    CodeOffset label = movWithPatch(imm, scratch);
    ma_push(scratch);
    return label;
  }

  CodeOffset movWithPatch(ImmWord imm, Register dest) {
    CodeOffset label = CodeOffset(currentOffset());
    ma_movPatchable(Imm32(imm.value), dest, Always);
    return label;
  }
  CodeOffset movWithPatch(ImmPtr imm, Register dest) {
    return movWithPatch(ImmWord(uintptr_t(imm.value)), dest);
  }

  void jump(Label* label) { as_b(label); }
  void jump(JitCode* code) { branch(code); }
  void jump(ImmPtr ptr) {
    ScratchRegisterScope scratch(asMasm());
    movePtr(ptr, scratch);
    ma_bx(scratch);
  }
  void jump(TrampolinePtr code) { jump(ImmPtr(code.value)); }
  void jump(Register reg) { ma_bx(reg); }
  void jump(const Address& addr) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    ma_ldr(addr, scratch, scratch2);
    ma_bx(scratch);
  }

  void negl(Register reg) { ma_neg(reg, reg, SetCC); }
  void test32(Register lhs, Register rhs) { ma_tst(lhs, rhs); }
  void test32(Register lhs, Imm32 imm) {
    ScratchRegisterScope scratch(asMasm());
    ma_tst(lhs, imm, scratch);
  }
  void test32(const Address& addr, Imm32 imm) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    ma_ldr(addr, scratch, scratch2);
    ma_tst(scratch, imm, scratch2);
  }
  void testPtr(Register lhs, Register rhs) { test32(lhs, rhs); }

  void splitTagForTest(const ValueOperand& value, ScratchTagScope& tag) {
    MOZ_ASSERT(value.typeReg() == tag);
  }

  // Higher level tag testing code.
  Condition testInt32(Condition cond, const ValueOperand& value);
  Condition testBoolean(Condition cond, const ValueOperand& value);
  Condition testDouble(Condition cond, const ValueOperand& value);
  Condition testNull(Condition cond, const ValueOperand& value);
  Condition testUndefined(Condition cond, const ValueOperand& value);
  Condition testString(Condition cond, const ValueOperand& value);
  Condition testSymbol(Condition cond, const ValueOperand& value);
  Condition testBigInt(Condition cond, const ValueOperand& value);
  Condition testObject(Condition cond, const ValueOperand& value);
  Condition testNumber(Condition cond, const ValueOperand& value);
  Condition testMagic(Condition cond, const ValueOperand& value);

  Condition testPrimitive(Condition cond, const ValueOperand& value);
  Condition testGCThing(Condition cond, const ValueOperand& value);

  // Register-based tests.
  Condition testInt32(Condition cond, Register tag);
  Condition testBoolean(Condition cond, Register tag);
  Condition testNull(Condition cond, Register tag);
  Condition testUndefined(Condition cond, Register tag);
  Condition testString(Condition cond, Register tag);
  Condition testSymbol(Condition cond, Register tag);
  Condition testBigInt(Condition cond, Register tag);
  Condition testObject(Condition cond, Register tag);
  Condition testDouble(Condition cond, Register tag);
  Condition testNumber(Condition cond, Register tag);
  Condition testMagic(Condition cond, Register tag);
  Condition testPrimitive(Condition cond, Register tag);
  Condition testGCThing(Condition cond, Register tag);

  Condition testGCThing(Condition cond, const Address& address);
  Condition testMagic(Condition cond, const Address& address);
  Condition testInt32(Condition cond, const Address& address);
  Condition testDouble(Condition cond, const Address& address);
  Condition testBoolean(Condition cond, const Address& address);
  Condition testNull(Condition cond, const Address& address);
  Condition testUndefined(Condition cond, const Address& address);
  Condition testString(Condition cond, const Address& address);
  Condition testSymbol(Condition cond, const Address& address);
  Condition testBigInt(Condition cond, const Address& address);
  Condition testObject(Condition cond, const Address& address);
  Condition testNumber(Condition cond, const Address& address);

  Condition testUndefined(Condition cond, const BaseIndex& src);
  Condition testNull(Condition cond, const BaseIndex& src);
  Condition testBoolean(Condition cond, const BaseIndex& src);
  Condition testString(Condition cond, const BaseIndex& src);
  Condition testSymbol(Condition cond, const BaseIndex& src);
  Condition testBigInt(Condition cond, const BaseIndex& src);
  Condition testInt32(Condition cond, const BaseIndex& src);
  Condition testObject(Condition cond, const BaseIndex& src);
  Condition testDouble(Condition cond, const BaseIndex& src);
  Condition testMagic(Condition cond, const BaseIndex& src);
  Condition testGCThing(Condition cond, const BaseIndex& src);

  // Unboxing code.
  void unboxNonDouble(const ValueOperand& operand, Register dest,
                      JSValueType type);
  void unboxNonDouble(const Address& src, Register dest, JSValueType type);
  void unboxNonDouble(const BaseIndex& src, Register dest, JSValueType type);
  void unboxInt32(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_INT32);
  }
  void unboxInt32(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_INT32);
  }
  void unboxInt32(const BaseIndex& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_INT32);
  }
  void unboxBoolean(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN);
  }
  void unboxBoolean(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN);
  }
  void unboxBoolean(const BaseIndex& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN);
  }
  void unboxString(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_STRING);
  }
  void unboxString(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_STRING);
  }
  void unboxSymbol(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL);
  }
  void unboxSymbol(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL);
  }
  void unboxBigInt(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT);
  }
  void unboxBigInt(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT);
  }
  void unboxObject(const ValueOperand& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxObject(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxObject(const BaseIndex& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxObjectOrNull(const ValueOperand& src, Register dest) {
    // Due to Spectre mitigation logic (see Value.h), if the value is an Object
    // then this yields the object; otherwise it yields zero (null), as desired.
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxObjectOrNull(const Address& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxObjectOrNull(const BaseIndex& src, Register dest) {
    unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
  }
  void unboxDouble(const ValueOperand& src, FloatRegister dest);
  void unboxDouble(const Address& src, FloatRegister dest);
  void unboxDouble(const BaseIndex& src, FloatRegister dest);

  void unboxValue(const ValueOperand& src, AnyRegister dest, JSValueType type);

  // See comment in MacroAssembler-x64.h.
  void unboxGCThingForGCBarrier(const Address& src, Register dest) {
    load32(ToPayload(src), dest);
  }

  void notBoolean(const ValueOperand& val) {
    as_eor(val.payloadReg(), val.payloadReg(), Imm8(1));
  }

  template <typename T>
  void fallibleUnboxPtrImpl(const T& src, Register dest, JSValueType type,
                            Label* fail);

  // Boxing code.
  void boxDouble(FloatRegister src, const ValueOperand& dest, FloatRegister);
  void boxNonDouble(JSValueType type, Register src, const ValueOperand& dest);

  // Extended unboxing API. If the payload is already in a register, returns
  // that register. Otherwise, provides a move to the given scratch register,
  // and returns that.
  MOZ_MUST_USE Register extractObject(const Address& address, Register scratch);
  MOZ_MUST_USE Register extractObject(const ValueOperand& value,
                                      Register scratch) {
    unboxNonDouble(value, value.payloadReg(), JSVAL_TYPE_OBJECT);
    return value.payloadReg();
  }
  MOZ_MUST_USE Register extractSymbol(const ValueOperand& value,
                                      Register scratch) {
    unboxNonDouble(value, value.payloadReg(), JSVAL_TYPE_SYMBOL);
    return value.payloadReg();
  }
  MOZ_MUST_USE Register extractInt32(const ValueOperand& value,
                                     Register scratch) {
    return value.payloadReg();
  }
  MOZ_MUST_USE Register extractBoolean(const ValueOperand& value,
                                       Register scratch) {
    return value.payloadReg();
  }
  MOZ_MUST_USE Register extractTag(const Address& address, Register scratch);
  MOZ_MUST_USE Register extractTag(const BaseIndex& address, Register scratch);
  MOZ_MUST_USE Register extractTag(const ValueOperand& value,
                                   Register scratch) {
    return value.typeReg();
  }

  void boolValueToDouble(const ValueOperand& operand, FloatRegister dest);
  void int32ValueToDouble(const ValueOperand& operand, FloatRegister dest);
  void loadInt32OrDouble(const Address& src, FloatRegister dest);
  void loadInt32OrDouble(Register base, Register index, FloatRegister dest,
                         int32_t shift = defaultShift);
  void loadConstantDouble(double dp, FloatRegister dest);

  // Treat the value as a boolean, and set condition codes accordingly.
  Condition testInt32Truthy(bool truthy, const ValueOperand& operand);
  Condition testBooleanTruthy(bool truthy, const ValueOperand& operand);
  Condition testDoubleTruthy(bool truthy, FloatRegister reg);
  Condition testStringTruthy(bool truthy, const ValueOperand& value);
  Condition testBigIntTruthy(bool truthy, const ValueOperand& value);

  void boolValueToFloat32(const ValueOperand& operand, FloatRegister dest);
  void int32ValueToFloat32(const ValueOperand& operand, FloatRegister dest);
  void loadConstantFloat32(float f, FloatRegister dest);

  void loadUnboxedValue(Address address, MIRType type, AnyRegister dest) {
    if (dest.isFloat()) {
      loadInt32OrDouble(address, dest.fpu());
    } else {
      ScratchRegisterScope scratch(asMasm());
      ma_ldr(address, dest.gpr(), scratch);
    }
  }

  void loadUnboxedValue(BaseIndex address, MIRType type, AnyRegister dest) {
    if (dest.isFloat()) {
      loadInt32OrDouble(address.base, address.index, dest.fpu(), address.scale);
    } else {
      load32(address, dest.gpr());
    }
  }

  template <typename T>
  void storeUnboxedPayload(ValueOperand value, T address, size_t nbytes,
                           JSValueType) {
    switch (nbytes) {
      case 4:
        storePtr(value.payloadReg(), address);
        return;
      case 1:
        store8(value.payloadReg(), address);
        return;
      default:
        MOZ_CRASH("Bad payload width");
    }
  }

  void storeValue(ValueOperand val, const Address& dst);
  void storeValue(ValueOperand val, const BaseIndex& dest);
  void storeValue(JSValueType type, Register reg, BaseIndex dest) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());

    int32_t payloadoffset = dest.offset + NUNBOX32_PAYLOAD_OFFSET;
    int32_t typeoffset = dest.offset + NUNBOX32_TYPE_OFFSET;

    ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);

    // Store the payload.
    if (payloadoffset < 4096 && payloadoffset > -4096) {
      ma_str(reg, DTRAddr(scratch, DtrOffImm(payloadoffset)));
    } else {
      ma_str(reg, Address(scratch, payloadoffset), scratch2);
    }

    // Store the type.
    if (typeoffset < 4096 && typeoffset > -4096) {
      // Encodable as DTRAddr, so only two instructions needed.
      ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch2);
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(typeoffset)));
    } else {
      // Since there are only two scratch registers, the offset must be
      // applied early using a third instruction to be safe.
      ma_add(Imm32(typeoffset), scratch, scratch2);
      ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch2);
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0)));
    }
  }
  void storeValue(JSValueType type, Register reg, Address dest) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());

    ma_str(reg, dest, scratch2);
    ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch);
    ma_str(scratch, Address(dest.base, dest.offset + NUNBOX32_TYPE_OFFSET),
           scratch2);
  }
  void storeValue(const Value& val, const Address& dest) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());

    ma_mov(Imm32(val.toNunboxTag()), scratch);
    ma_str(scratch, ToType(dest), scratch2);
    if (val.isGCThing()) {
      ma_mov(ImmGCPtr(val.toGCThing()), scratch);
    } else {
      ma_mov(Imm32(val.toNunboxPayload()), scratch);
    }
    ma_str(scratch, ToPayload(dest), scratch2);
  }
  void storeValue(const Value& val, BaseIndex dest) {
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());

    int32_t typeoffset = dest.offset + NUNBOX32_TYPE_OFFSET;
    int32_t payloadoffset = dest.offset + NUNBOX32_PAYLOAD_OFFSET;

    ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);

    // Store the type.
    if (typeoffset < 4096 && typeoffset > -4096) {
      ma_mov(Imm32(val.toNunboxTag()), scratch2);
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(typeoffset)));
    } else {
      ma_add(Imm32(typeoffset), scratch, scratch2);
      ma_mov(Imm32(val.toNunboxTag()), scratch2);
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0)));
      // Restore scratch for the payload store.
      ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
    }

    // Store the payload, marking if necessary.
    if (payloadoffset < 4096 && payloadoffset > -4096) {
      if (val.isGCThing()) {
        ma_mov(ImmGCPtr(val.toGCThing()), scratch2);
      } else {
        ma_mov(Imm32(val.toNunboxPayload()), scratch2);
      }
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(payloadoffset)));
    } else {
      ma_add(Imm32(payloadoffset), scratch, scratch2);
      if (val.isGCThing()) {
        ma_mov(ImmGCPtr(val.toGCThing()), scratch2);
      } else {
        ma_mov(Imm32(val.toNunboxPayload()), scratch2);
      }
      ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0)));
    }
  }
  void storeValue(const Address& src, const Address& dest, Register temp) {
    load32(ToType(src), temp);
    store32(temp, ToType(dest));

    load32(ToPayload(src), temp);
    store32(temp, ToPayload(dest));
  }

  void loadValue(Address src, ValueOperand val);
  void loadValue(Operand dest, ValueOperand val) {
    loadValue(dest.toAddress(), val);
  }
  void loadValue(const BaseIndex& addr, ValueOperand val);

  // Like loadValue but guaranteed to not use LDRD or LDM instructions (these
  // don't support unaligned accesses).
  void loadUnalignedValue(const Address& src, ValueOperand dest);

  void tagValue(JSValueType type, Register payload, ValueOperand dest);

  void pushValue(ValueOperand val);
  void popValue(ValueOperand val);
  void pushValue(const Value& val) {
    push(Imm32(val.toNunboxTag()));
    if (val.isGCThing()) {
      push(ImmGCPtr(val.toGCThing()));
    } else {
      push(Imm32(val.toNunboxPayload()));
    }
  }
  void pushValue(JSValueType type, Register reg) {
    push(ImmTag(JSVAL_TYPE_TO_TAG(type)));
    ma_push(reg);
  }
  void pushValue(const Address& addr);

  void storePayload(const Value& val, const Address& dest);
  void storePayload(Register src, const Address& dest);
  void storePayload(const Value& val, const BaseIndex& dest);
  void storePayload(Register src, const BaseIndex& dest);
  void storeTypeTag(ImmTag tag, const Address& dest);
  void storeTypeTag(ImmTag tag, const BaseIndex& dest);

  void handleFailureWithHandlerTail(void* handler, Label* profilerExitTail);

  /////////////////////////////////////////////////////////////////
  // Common interface.
  /////////////////////////////////////////////////////////////////
 public:
  void not32(Register reg);

  void move32(Imm32 imm, Register dest);
  void move32(Register src, Register dest);

  void movePtr(Register src, Register dest);
  void movePtr(ImmWord imm, Register dest);
  void movePtr(ImmPtr imm, Register dest);
  void movePtr(wasm::SymbolicAddress imm, Register dest);
  void movePtr(ImmGCPtr imm, Register dest);

  void load8SignExtend(const Address& address, Register dest);
  void load8SignExtend(const BaseIndex& src, Register dest);

  void load8ZeroExtend(const Address& address, Register dest);
  void load8ZeroExtend(const BaseIndex& src, Register dest);

  void load16SignExtend(const Address& address, Register dest);
  void load16SignExtend(const BaseIndex& src, Register dest);

  template <typename S>
  void load16UnalignedSignExtend(const S& src, Register dest) {
    // load16SignExtend uses |ldrsh|, which supports unaligned access.
    load16SignExtend(src, dest);
  }

  void load16ZeroExtend(const Address& address, Register dest);
  void load16ZeroExtend(const BaseIndex& src, Register dest);

  template <typename S>
  void load16UnalignedZeroExtend(const S& src, Register dest) {
    // load16ZeroExtend uses |ldrh|, which supports unaligned access.
    load16ZeroExtend(src, dest);
  }

  void load32(const Address& address, Register dest);
  void load32(const BaseIndex& address, Register dest);
  void load32(AbsoluteAddress address, Register dest);

  template <typename S>
  void load32Unaligned(const S& src, Register dest) {
    // load32 uses |ldr|, which supports unaligned access.
    load32(src, dest);
  }

  void load64(const Address& address, Register64 dest) {
    load32(LowWord(address), dest.low);
    load32(HighWord(address), dest.high);
  }
  void load64(const BaseIndex& address, Register64 dest) {
    load32(LowWord(address), dest.low);
    load32(HighWord(address), dest.high);
  }

  template <typename S>
  void load64Unaligned(const S& src, Register64 dest) {
    // load64 calls load32, which supports unaligned accesses.
    load64(src, dest);
  }

  void loadPtr(const Address& address, Register dest);
  void loadPtr(const BaseIndex& src, Register dest);
  void loadPtr(AbsoluteAddress address, Register dest);
  void loadPtr(wasm::SymbolicAddress address, Register dest);

  void loadPrivate(const Address& address, Register dest);

  void loadDouble(const Address& addr, FloatRegister dest);
  void loadDouble(const BaseIndex& src, FloatRegister dest);

  // Load a float value into a register, then expand it to a double.
  void loadFloatAsDouble(const Address& addr, FloatRegister dest);
  void loadFloatAsDouble(const BaseIndex& src, FloatRegister dest);

  void loadFloat32(const Address& addr, FloatRegister dest);
  void loadFloat32(const BaseIndex& src, FloatRegister dest);

  void store8(Register src, const Address& address);
  void store8(Imm32 imm, const Address& address);
  void store8(Register src, const BaseIndex& address);
  void store8(Imm32 imm, const BaseIndex& address);

  void store16(Register src, const Address& address);
  void store16(Imm32 imm, const Address& address);
  void store16(Register src, const BaseIndex& address);
  void store16(Imm32 imm, const BaseIndex& address);

  template <typename S, typename T>
  void store16Unaligned(const S& src, const T& dest) {
    // store16 uses |strh|, which supports unaligned access.
    store16(src, dest);
  }

  void store32(Register src, AbsoluteAddress address);
  void store32(Register src, const Address& address);
  void store32(Register src, const BaseIndex& address);
  void store32(Imm32 src, const Address& address);
  void store32(Imm32 src, const BaseIndex& address);

  template <typename S, typename T>
  void store32Unaligned(const S& src, const T& dest) {
    // store32 uses |str|, which supports unaligned access.
    store32(src, dest);
  }

  void store64(Register64 src, Address address) {
    store32(src.low, LowWord(address));
    store32(src.high, HighWord(address));
  }

  void store64(Register64 src, const BaseIndex& address) {
    store32(src.low, LowWord(address));
    store32(src.high, HighWord(address));
  }

  void store64(Imm64 imm, Address address) {
    store32(imm.low(), LowWord(address));
    store32(imm.hi(), HighWord(address));
  }

  void store64(Imm64 imm, const BaseIndex& address) {
    store32(imm.low(), LowWord(address));
    store32(imm.hi(), HighWord(address));
  }

  template <typename S, typename T>
  void store64Unaligned(const S& src, const T& dest) {
    // store64 calls store32, which supports unaligned access.
    store64(src, dest);
  }

  void storePtr(ImmWord imm, const Address& address);
  void storePtr(ImmWord imm, const BaseIndex& address);
  void storePtr(ImmPtr imm, const Address& address);
  void storePtr(ImmPtr imm, const BaseIndex& address);
  void storePtr(ImmGCPtr imm, const Address& address);
  void storePtr(ImmGCPtr imm, const BaseIndex& address);
  void storePtr(Register src, const Address& address);
  void storePtr(Register src, const BaseIndex& address);
  void storePtr(Register src, AbsoluteAddress dest);

  void moveDouble(FloatRegister src, FloatRegister dest,
                  Condition cc = Always) {
    ma_vmov(src, dest, cc);
  }

  inline void incrementInt32Value(const Address& addr);

  void cmp32(Register lhs, Imm32 rhs);
  void cmp32(Register lhs, Register rhs);
  void cmp32(const Address& lhs, Imm32 rhs);
  void cmp32(const Address& lhs, Register rhs);

  void cmpPtr(Register lhs, Register rhs);
  void cmpPtr(Register lhs, ImmWord rhs);
  void cmpPtr(Register lhs, ImmPtr rhs);
  void cmpPtr(Register lhs, ImmGCPtr rhs);
  void cmpPtr(Register lhs, Imm32 rhs);
  void cmpPtr(const Address& lhs, Register rhs);
  void cmpPtr(const Address& lhs, ImmWord rhs);
  void cmpPtr(const Address& lhs, ImmPtr rhs);
  void cmpPtr(const Address& lhs, ImmGCPtr rhs);
  void cmpPtr(const Address& lhs, Imm32 rhs);

  void setStackArg(Register reg, uint32_t arg);

  void breakpoint();
  // Conditional breakpoint.
  void breakpoint(Condition cc);

  // Trigger the simulator's interactive read-eval-print loop.
  // The message will be printed at the stopping point.
  // (On non-simulator builds, does nothing.)
  void simulatorStop(const char* msg);

  // Evaluate srcDest = minmax<isMax>{Float32,Double}(srcDest, other).
  // Checks for NaN if canBeNaN is true.
  void minMaxDouble(FloatRegister srcDest, FloatRegister other, bool canBeNaN,
                    bool isMax);
  void minMaxFloat32(FloatRegister srcDest, FloatRegister other, bool canBeNaN,
                     bool isMax);

  void compareDouble(FloatRegister lhs, FloatRegister rhs);

  void compareFloat(FloatRegister lhs, FloatRegister rhs);

  void checkStackAlignment();

  // If source is a double, load it into dest. If source is int32, convert it
  // to double. Else, branch to failure.
  void ensureDouble(const ValueOperand& source, FloatRegister dest,
                    Label* failure);

  void emitSet(Assembler::Condition cond, Register dest) {
    ma_mov(Imm32(0), dest);
    ma_mov(Imm32(1), dest, cond);
  }

  void testNullSet(Condition cond, const ValueOperand& value, Register dest) {
    cond = testNull(cond, value);
    emitSet(cond, dest);
  }

  void testObjectSet(Condition cond, const ValueOperand& value, Register dest) {
    cond = testObject(cond, value);
    emitSet(cond, dest);
  }

  void testUndefinedSet(Condition cond, const ValueOperand& value,
                        Register dest) {
    cond = testUndefined(cond, value);
    emitSet(cond, dest);
  }

 protected:
  bool buildOOLFakeExitFrame(void* fakeReturnAddr);

 public:
  void computeEffectiveAddress(const Address& address, Register dest) {
    ScratchRegisterScope scratch(asMasm());
    ma_add(address.base, Imm32(address.offset), dest, scratch, LeaveCC);
  }
  void computeEffectiveAddress(const BaseIndex& address, Register dest) {
    ScratchRegisterScope scratch(asMasm());
    ma_alu(address.base, lsl(address.index, address.scale), dest, OpAdd,
           LeaveCC);
    if (address.offset) {
      ma_add(dest, Imm32(address.offset), dest, scratch, LeaveCC);
    }
  }
  void floor(FloatRegister input, Register output, Label* handleNotAnInt);
  void floorf(FloatRegister input, Register output, Label* handleNotAnInt);
  void ceil(FloatRegister input, Register output, Label* handleNotAnInt);
  void ceilf(FloatRegister input, Register output, Label* handleNotAnInt);
  void round(FloatRegister input, Register output, Label* handleNotAnInt,
             FloatRegister tmp);
  void roundf(FloatRegister input, Register output, Label* handleNotAnInt,
              FloatRegister tmp);
  void trunc(FloatRegister input, Register output, Label* handleNotAnInt);
  void truncf(FloatRegister input, Register output, Label* handleNotAnInt);

  void clampCheck(Register r, Label* handleNotAnInt) {
    // Check explicitly for r == INT_MIN || r == INT_MAX
    // This is the instruction sequence that gcc generated for this
    // operation.
    ScratchRegisterScope scratch(asMasm());
    SecondScratchRegisterScope scratch2(asMasm());
    ma_sub(r, Imm32(0x80000001), scratch, scratch2);
    as_cmn(scratch, Imm8(3));
    ma_b(handleNotAnInt, Above);
  }

  void lea(Operand addr, Register dest) {
    ScratchRegisterScope scratch(asMasm());
    ma_add(addr.baseReg(), Imm32(addr.disp()), dest, scratch);
  }

  void abiret() { as_bx(lr); }

  void moveFloat32(FloatRegister src, FloatRegister dest,
                   Condition cc = Always) {
    as_vmov(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(),
            cc);
  }

  void loadWasmGlobalPtr(uint32_t globalDataOffset, Register dest) {
    loadPtr(Address(WasmTlsReg,
                    offsetof(wasm::TlsData, globalArea) + globalDataOffset),
            dest);
  }
  void loadWasmPinnedRegsFromTls() {
    ScratchRegisterScope scratch(asMasm());
    ma_ldr(Address(WasmTlsReg, offsetof(wasm::TlsData, memoryBase)), HeapReg,
           scratch);
  }

  // Instrumentation for entering and leaving the profiler.
  void profilerEnterFrame(Register framePtr, Register scratch);
  void profilerExitFrame();
};

typedef MacroAssemblerARMCompat MacroAssemblerSpecific;

}  // namespace jit
}  // namespace js

#endif /* jit_arm_MacroAssembler_arm_h */