DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Histogram is an object that aggregates statistics, and can summarize them in
// various forms, including ASCII graphical, HTML, and numerically (as a
// vector of numbers corresponding to each of the aggregating buckets).
// See header file for details and examples.

#include "base/histogram.h"

#include <math.h>

#include <algorithm>
#include <string>

#include "base/logging.h"
#include "base/pickle.h"
#include "base/string_util.h"
#include "base/logging.h"

namespace base {

#define DVLOG(x) CHROMIUM_LOG(ERROR)
#define CHECK_GT DCHECK_GT
#define CHECK_LT DCHECK_LT
typedef ::Lock Lock;
typedef ::AutoLock AutoLock;

// Static table of checksums for all possible 8 bit bytes.
const uint32_t Histogram::kCrcTable[256] = {0x0, 0x77073096L, 0xee0e612cL,
0x990951baL, 0x76dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0xedb8832L,
0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x9b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL,
0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL,
0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L,
0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL,
0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L,
0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL,
0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL,
0xb6662d3dL, 0x76dc4190L, 0x1db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L,
0x6b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0xf00f934L, 0x9609a88eL,
0xe10e9818L, 0x7f6a0dbbL, 0x86d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L,
0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L,
0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL,
0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L,
0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL,
0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L,
0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L,
0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L,
0x9abfb3b6L, 0x3b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x4db2615L,
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0xd6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL,
0x9309ff9dL, 0xa00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L,
0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L,
0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L,
0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L,
0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL,
0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L,
0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L,
0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
0x26d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x5005713L, 0x95bf4a82L,
0xe2b87a14L, 0x7bb12baeL, 0xcb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L,
0xbdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL,
0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL,
0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL,
0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L,
0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L,
0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL,
0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
0x2d02ef8dL,
};

typedef Histogram::Count Count;

// static
const size_t Histogram::kBucketCount_MAX = 16384u;

Histogram* Histogram::FactoryGet(const std::string& name,
                                 Sample minimum,
                                 Sample maximum,
                                 size_t bucket_count,
                                 Flags flags) {
  Histogram* histogram(NULL);

  // Defensive code.
  if (minimum < 1)
    minimum = 1;
  if (maximum > kSampleType_MAX - 1)
    maximum = kSampleType_MAX - 1;

  if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
    // Extra variable is not needed... but this keeps this section basically
    // identical to other derived classes in this file (and compiler will
    // optimize away the extra variable.
    Histogram* tentative_histogram =
        new Histogram(name, minimum, maximum, bucket_count);
    tentative_histogram->InitializeBucketRange();
    tentative_histogram->SetFlags(flags);
    histogram =
        StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
  }

  DCHECK_EQ(HISTOGRAM, histogram->histogram_type());
  DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
  return histogram;
}

Histogram* Histogram::FactoryTimeGet(const std::string& name,
                                     TimeDelta minimum,
                                     TimeDelta maximum,
                                     size_t bucket_count,
                                     Flags flags) {
  return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(),
                    bucket_count, flags);
}

void Histogram::Add(int value) {
  if (value > kSampleType_MAX - 1)
    value = kSampleType_MAX - 1;
  if (value < 0)
    value = 0;
  size_t index = BucketIndex(value);
  DCHECK_GE(value, ranges(index));
  DCHECK_LT(value, ranges(index + 1));
  Accumulate(value, 1, index);
}

void Histogram::Subtract(int value) {
  if (value > kSampleType_MAX - 1)
    value = kSampleType_MAX - 1;
  if (value < 0)
    value = 0;
  size_t index = BucketIndex(value);
  DCHECK_GE(value, ranges(index));
  DCHECK_LT(value, ranges(index + 1));
  Accumulate(value, -1, index);
}

void Histogram::AddBoolean(bool value) {
  DCHECK(false);
}

void Histogram::AddSampleSet(const SampleSet& sample) {
  sample_.Add(sample);
}

void Histogram::Clear() {
  SampleSet ss;
  ss.Resize(*this);
  sample_ = ss;
}

void Histogram::SetRangeDescriptions(const DescriptionPair descriptions[]) {
  DCHECK(false);
}

// The following methods provide a graphical histogram display.
void Histogram::WriteHTMLGraph(std::string* output) const {
  // TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc.
  output->append("<PRE>");
  WriteAscii(true, "<br>", output);
  output->append("</PRE>");
}

void Histogram::WriteAscii(bool graph_it, const std::string& newline,
                           std::string* output) const {
  // Get local (stack) copies of all effectively volatile class data so that we
  // are consistent across our output activities.
  SampleSet snapshot;
  SnapshotSample(&snapshot);
  Count sample_count = snapshot.TotalCount();

  WriteAsciiHeader(snapshot, sample_count, output);
  output->append(newline);

  // Prepare to normalize graphical rendering of bucket contents.
  double max_size = 0;
  if (graph_it)
    max_size = GetPeakBucketSize(snapshot);

  // Calculate space needed to print bucket range numbers.  Leave room to print
  // nearly the largest bucket range without sliding over the histogram.
  size_t largest_non_empty_bucket = bucket_count() - 1;
  while (0 == snapshot.counts(largest_non_empty_bucket)) {
    if (0 == largest_non_empty_bucket)
      break;  // All buckets are empty.
    --largest_non_empty_bucket;
  }

  // Calculate largest print width needed for any of our bucket range displays.
  size_t print_width = 1;
  for (size_t i = 0; i < bucket_count(); ++i) {
    if (snapshot.counts(i)) {
      size_t width = GetAsciiBucketRange(i).size() + 1;
      if (width > print_width)
        print_width = width;
    }
  }

  int64_t remaining = sample_count;
  int64_t past = 0;
  // Output the actual histogram graph.
  for (size_t i = 0; i < bucket_count(); ++i) {
    Count current = snapshot.counts(i);
    if (!current && !PrintEmptyBucket(i))
      continue;
    remaining -= current;
    std::string range = GetAsciiBucketRange(i);
    output->append(range);
    for (size_t j = 0; range.size() + j < print_width + 1; ++j)
      output->push_back(' ');
    if (0 == current && i < bucket_count() - 1 && 0 == snapshot.counts(i + 1)) {
      while (i < bucket_count() - 1 && 0 == snapshot.counts(i + 1))
        ++i;
      output->append("... ");
      output->append(newline);
      continue;  // No reason to plot emptiness.
    }
    double current_size = GetBucketSize(current, i);
    if (graph_it)
      WriteAsciiBucketGraph(current_size, max_size, output);
    WriteAsciiBucketContext(past, current, remaining, i, output);
    output->append(newline);
    past += current;
  }
  DCHECK_EQ(sample_count, past);
}

// static
std::string Histogram::SerializeHistogramInfo(const Histogram& histogram,
                                              const SampleSet& snapshot) {
  DCHECK_NE(NOT_VALID_IN_RENDERER, histogram.histogram_type());

  Pickle pickle;
  pickle.WriteString(histogram.histogram_name());
  pickle.WriteInt(histogram.declared_min());
  pickle.WriteInt(histogram.declared_max());
  pickle.WriteSize(histogram.bucket_count());
  pickle.WriteUInt32(histogram.range_checksum());
  pickle.WriteInt(histogram.histogram_type());
  pickle.WriteInt(histogram.flags());

  snapshot.Serialize(&pickle);
  return std::string(static_cast<const char*>(pickle.data()), pickle.size());
}

// static
bool Histogram::DeserializeHistogramInfo(const std::string& histogram_info) {
  if (histogram_info.empty()) {
      return false;
  }

  Pickle pickle(histogram_info.data(),
                static_cast<int>(histogram_info.size()));
  std::string histogram_name;
  int declared_min;
  int declared_max;
  size_t bucket_count;
  uint32_t range_checksum;
  int histogram_type;
  int pickle_flags;
  SampleSet sample;

  void* iter = NULL;
  if (!pickle.ReadString(&iter, &histogram_name) ||
      !pickle.ReadInt(&iter, &declared_min) ||
      !pickle.ReadInt(&iter, &declared_max) ||
      !pickle.ReadSize(&iter, &bucket_count) ||
      !pickle.ReadUInt32(&iter, &range_checksum) ||
      !pickle.ReadInt(&iter, &histogram_type) ||
      !pickle.ReadInt(&iter, &pickle_flags) ||
      !sample.Histogram::SampleSet::Deserialize(&iter, pickle)) {
    CHROMIUM_LOG(ERROR) << "Pickle error decoding Histogram: " << histogram_name;
    return false;
  }
  DCHECK(pickle_flags & kIPCSerializationSourceFlag);
  // Since these fields may have come from an untrusted renderer, do additional
  // checks above and beyond those in Histogram::Initialize()
  if (declared_max <= 0 || declared_min <= 0 || declared_max < declared_min ||
      INT_MAX / sizeof(Count) <= bucket_count || bucket_count < 2) {
    CHROMIUM_LOG(ERROR) << "Values error decoding Histogram: " << histogram_name;
    return false;
  }

  Flags flags = static_cast<Flags>(pickle_flags & ~kIPCSerializationSourceFlag);

  DCHECK_NE(NOT_VALID_IN_RENDERER, histogram_type);

  Histogram* render_histogram(NULL);

  if (histogram_type == HISTOGRAM) {
    render_histogram = Histogram::FactoryGet(
        histogram_name, declared_min, declared_max, bucket_count, flags);
  } else if (histogram_type == LINEAR_HISTOGRAM) {
    render_histogram = LinearHistogram::FactoryGet(
        histogram_name, declared_min, declared_max, bucket_count, flags);
  } else if (histogram_type == BOOLEAN_HISTOGRAM) {
    render_histogram = BooleanHistogram::FactoryGet(histogram_name, flags);
  } else {
    CHROMIUM_LOG(ERROR) << "Error Deserializing Histogram Unknown histogram_type: "
                        << histogram_type;
    return false;
  }

  DCHECK_EQ(render_histogram->declared_min(), declared_min);
  DCHECK_EQ(render_histogram->declared_max(), declared_max);
  DCHECK_EQ(render_histogram->bucket_count(), bucket_count);
  DCHECK_EQ(render_histogram->range_checksum(), range_checksum);
  DCHECK_EQ(render_histogram->histogram_type(), histogram_type);

  if (render_histogram->flags() & kIPCSerializationSourceFlag) {
    DVLOG(1) << "Single process mode, histogram observed and not copied: "
             << histogram_name;
  } else {
    DCHECK_EQ(flags & render_histogram->flags(), flags);
    render_histogram->AddSampleSet(sample);
  }

  return true;
}

//------------------------------------------------------------------------------
// Methods for the validating a sample and a related histogram.
//------------------------------------------------------------------------------

Histogram::Inconsistencies Histogram::FindCorruption(
    const SampleSet& snapshot) const {
  int inconsistencies = NO_INCONSISTENCIES;
  Sample previous_range = -1;  // Bottom range is always 0.
  int64_t count = 0;
  for (size_t index = 0; index < bucket_count(); ++index) {
    count += snapshot.counts(index);
    int new_range = ranges(index);
    if (previous_range >= new_range)
      inconsistencies |= BUCKET_ORDER_ERROR;
    previous_range = new_range;
  }

  if (!HasValidRangeChecksum())
    inconsistencies |= RANGE_CHECKSUM_ERROR;

  int64_t delta64 = snapshot.redundant_count() - count;
  if (delta64 != 0) {
    int delta = static_cast<int>(delta64);
    if (delta != delta64)
      delta = INT_MAX;  // Flag all giant errors as INT_MAX.
    // Since snapshots of histograms are taken asynchronously relative to
    // sampling (and snapped from different threads), it is pretty likely that
    // we'll catch a redundant count that doesn't match the sample count.  We
    // allow for a certain amount of slop before flagging this as an
    // inconsistency.  Even with an inconsistency, we'll snapshot it again (for
    // UMA in about a half hour, so we'll eventually get the data, if it was
    // not the result of a corruption.  If histograms show that 1 is "too tight"
    // then we may try to use 2 or 3 for this slop value.
    const int kCommonRaceBasedCountMismatch = 1;
    if (delta > 0) {
      UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountHigh", delta);
      if (delta > kCommonRaceBasedCountMismatch)
        inconsistencies |= COUNT_HIGH_ERROR;
    } else {
      DCHECK_GT(0, delta);
      UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountLow", -delta);
      if (-delta > kCommonRaceBasedCountMismatch)
        inconsistencies |= COUNT_LOW_ERROR;
    }
  }
  return static_cast<Inconsistencies>(inconsistencies);
}

Histogram::ClassType Histogram::histogram_type() const {
  return HISTOGRAM;
}

Histogram::Sample Histogram::ranges(size_t i) const {
  return ranges_[i];
}

size_t Histogram::bucket_count() const {
  return bucket_count_;
}

// Do a safe atomic snapshot of sample data.
// This implementation assumes we are on a safe single thread.
void Histogram::SnapshotSample(SampleSet* sample) const {
  // Note locking not done in this version!!!
  *sample = sample_;
}

bool Histogram::HasConstructorArguments(Sample minimum,
                                        Sample maximum,
                                        size_t bucket_count) {
  return ((minimum == declared_min_) && (maximum == declared_max_) &&
          (bucket_count == bucket_count_));
}

bool Histogram::HasConstructorTimeDeltaArguments(TimeDelta minimum,
                                                 TimeDelta maximum,
                                                 size_t bucket_count) {
  return ((minimum.InMilliseconds() == declared_min_) &&
          (maximum.InMilliseconds() == declared_max_) &&
          (bucket_count == bucket_count_));
}

bool Histogram::HasValidRangeChecksum() const {
  return CalculateRangeChecksum() == range_checksum_;
}

size_t Histogram::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf)
{
  size_t n = 0;
  n += aMallocSizeOf(this);
  // We're not allowed to do deep dives into STL data structures.  This
  // is as close as we can get to measuring this array.
  n += aMallocSizeOf(&ranges_[0]);
  n += sample_.SizeOfExcludingThis(aMallocSizeOf);
  return n;
}

size_t Histogram::SampleSet::SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf)
{
  // We're not allowed to do deep dives into STL data structures.  This
  // is as close as we can get to measuring this array.
  return aMallocSizeOf(&counts_[0]);
}

Histogram::Histogram(const std::string& name, Sample minimum,
                     Sample maximum, size_t bucket_count)
  : sample_(),
    histogram_name_(name),
    declared_min_(minimum),
    declared_max_(maximum),
    bucket_count_(bucket_count),
    flags_(kNoFlags),
    ranges_(bucket_count + 1, 0),
    range_checksum_(0) {
  Initialize();
}

Histogram::Histogram(const std::string& name, TimeDelta minimum,
                     TimeDelta maximum, size_t bucket_count)
  : sample_(),
    histogram_name_(name),
    declared_min_(static_cast<int> (minimum.InMilliseconds())),
    declared_max_(static_cast<int> (maximum.InMilliseconds())),
    bucket_count_(bucket_count),
    flags_(kNoFlags),
    ranges_(bucket_count + 1, 0),
    range_checksum_(0) {
  Initialize();
}

Histogram::~Histogram() {
  if (StatisticsRecorder::dump_on_exit()) {
    std::string output;
    WriteAscii(true, "\n", &output);
    CHROMIUM_LOG(INFO) << output;
  }

  // Just to make sure most derived class did this properly...
  DCHECK(ValidateBucketRanges());
}

// Calculate what range of values are held in each bucket.
// We have to be careful that we don't pick a ratio between starting points in
// consecutive buckets that is sooo small, that the integer bounds are the same
// (effectively making one bucket get no values).  We need to avoid:
//   ranges_[i] == ranges_[i + 1]
// To avoid that, we just do a fine-grained bucket width as far as we need to
// until we get a ratio that moves us along at least 2 units at a time.  From
// that bucket onward we do use the exponential growth of buckets.
void Histogram::InitializeBucketRange() {
  double log_max = log(static_cast<double>(declared_max()));
  double log_ratio;
  double log_next;
  size_t bucket_index = 1;
  Sample current = declared_min();
  SetBucketRange(bucket_index, current);
  while (bucket_count() > ++bucket_index) {
    double log_current;
    log_current = log(static_cast<double>(current));
    // Calculate the count'th root of the range.
    log_ratio = (log_max - log_current) / (bucket_count() - bucket_index);
    // See where the next bucket would start.
    log_next = log_current + log_ratio;
    int next;
    next = static_cast<int>(floor(exp(log_next) + 0.5));
    if (next > current)
      current = next;
    else
      ++current;  // Just do a narrow bucket, and keep trying.
    SetBucketRange(bucket_index, current);
  }
  ResetRangeChecksum();

  DCHECK_EQ(bucket_count(), bucket_index);
}

bool Histogram::PrintEmptyBucket(size_t index) const {
  return true;
}

size_t Histogram::BucketIndex(Sample value) const {
  // Use simple binary search.  This is very general, but there are better
  // approaches if we knew that the buckets were linearly distributed.
  DCHECK_LE(ranges(0), value);
  DCHECK_GT(ranges(bucket_count()), value);
  size_t under = 0;
  size_t over = bucket_count();
  size_t mid;

  do {
    DCHECK_GE(over, under);
    mid = under + (over - under)/2;
    if (mid == under)
      break;
    if (ranges(mid) <= value)
      under = mid;
    else
      over = mid;
  } while (true);

  DCHECK_LE(ranges(mid), value);
  CHECK_GT(ranges(mid+1), value);
  return mid;
}

// Use the actual bucket widths (like a linear histogram) until the widths get
// over some transition value, and then use that transition width.  Exponentials
// get so big so fast (and we don't expect to see a lot of entries in the large
// buckets), so we need this to make it possible to see what is going on and
// not have 0-graphical-height buckets.
double Histogram::GetBucketSize(Count current, size_t i) const {
  DCHECK_GT(ranges(i + 1), ranges(i));
  static const double kTransitionWidth = 5;
  double denominator = ranges(i + 1) - ranges(i);
  if (denominator > kTransitionWidth)
    denominator = kTransitionWidth;  // Stop trying to normalize.
  return current/denominator;
}

void Histogram::ResetRangeChecksum() {
  range_checksum_ = CalculateRangeChecksum();
}

const std::string Histogram::GetAsciiBucketRange(size_t i) const {
  std::string result;
  if (kHexRangePrintingFlag & flags_)
    StringAppendF(&result, "%#x", ranges(i));
  else
    StringAppendF(&result, "%d", ranges(i));
  return result;
}

// Update histogram data with new sample.
void Histogram::Accumulate(Sample value, Count count, size_t index) {
  // Note locking not done in this version!!!
  sample_.AccumulateWithExponentialStats(value, count, index,
					 flags_ & kExtendedStatisticsFlag);
}

void Histogram::SetBucketRange(size_t i, Sample value) {
  DCHECK_GT(bucket_count_, i);
  ranges_[i] = value;
}

bool Histogram::ValidateBucketRanges() const {
  // Standard assertions that all bucket ranges should satisfy.
  DCHECK_EQ(bucket_count_ + 1, ranges_.size());
  DCHECK_EQ(0, ranges_[0]);
  DCHECK_EQ(declared_min(), ranges_[1]);
  DCHECK_EQ(declared_max(), ranges_[bucket_count_ - 1]);
  DCHECK_EQ(kSampleType_MAX, ranges_[bucket_count_]);
  return true;
}

uint32_t Histogram::CalculateRangeChecksum() const {
  DCHECK_EQ(ranges_.size(), bucket_count() + 1);
  uint32_t checksum = static_cast<uint32_t>(ranges_.size());  // Seed checksum.
  for (size_t index = 0; index < bucket_count(); ++index)
    checksum = Crc32(checksum, ranges(index));
  return checksum;
}

void Histogram::Initialize() {
  sample_.Resize(*this);
  if (declared_min_ < 1)
    declared_min_ = 1;
  if (declared_max_ > kSampleType_MAX - 1)
    declared_max_ = kSampleType_MAX - 1;
  DCHECK_LE(declared_min_, declared_max_);
  DCHECK_GT(bucket_count_, 1u);
  CHECK_LT(bucket_count_, kBucketCount_MAX);
  size_t maximal_bucket_count = declared_max_ - declared_min_ + 2;
  DCHECK_LE(bucket_count_, maximal_bucket_count);
  DCHECK_EQ(0, ranges_[0]);
  ranges_[bucket_count_] = kSampleType_MAX;
}

// We generate the CRC-32 using the low order bits to select whether to XOR in
// the reversed polynomial 0xedb88320L.  This is nice and simple, and allows us
// to keep the quotient in a uint32_t.  Since we're not concerned about the nature
// of corruptions (i.e., we don't care about bit sequencing, since we are
// handling memory changes, which are more grotesque) so we don't bother to
// get the CRC correct for big-endian vs little-ending calculations.  All we
// need is a nice hash, that tends to depend on all the bits of the sample, with
// very little chance of changes in one place impacting changes in another
// place.
uint32_t Histogram::Crc32(uint32_t sum, Histogram::Sample range) {
  const bool kUseRealCrc = true;  // TODO(jar): Switch to false and watch stats.
  if (kUseRealCrc) {
    union {
      Histogram::Sample range;
      unsigned char bytes[sizeof(Histogram::Sample)];
    } converter;
    converter.range = range;
    for (size_t i = 0; i < sizeof(converter); ++i)
      sum = kCrcTable[(sum & 0xff) ^ converter.bytes[i]] ^ (sum >> 8);
  } else {
    // Use hash techniques provided in ReallyFastHash, except we don't care
    // about "avalanching" (which would worsten the hash, and add collisions),
    // and we don't care about edge cases since we have an even number of bytes.
    union {
      Histogram::Sample range;
      uint16_t ints[sizeof(Histogram::Sample) / 2];
    } converter;
    DCHECK_EQ(sizeof(Histogram::Sample), sizeof(converter));
    converter.range = range;
    sum += converter.ints[0];
    sum = (sum << 16) ^ sum ^ (static_cast<uint32_t>(converter.ints[1]) << 11);
    sum += sum >> 11;
  }
  return sum;
}

//------------------------------------------------------------------------------
// Private methods

double Histogram::GetPeakBucketSize(const SampleSet& snapshot) const {
  double max = 0;
  for (size_t i = 0; i < bucket_count() ; ++i) {
    double current_size = GetBucketSize(snapshot.counts(i), i);
    if (current_size > max)
      max = current_size;
  }
  return max;
}

void Histogram::WriteAsciiHeader(const SampleSet& snapshot,
                                 Count sample_count,
                                 std::string* output) const {
  StringAppendF(output,
                "Histogram: %s recorded %d samples",
                histogram_name().c_str(),
                sample_count);
  if (0 == sample_count) {
    DCHECK_EQ(snapshot.sum(), 0);
  } else {
    double average = static_cast<float>(snapshot.sum()) / sample_count;

    StringAppendF(output, ", average = %.1f", average);
  }
  if (flags_ & ~kHexRangePrintingFlag)
    StringAppendF(output, " (flags = 0x%x)", flags_ & ~kHexRangePrintingFlag);
}

void Histogram::WriteAsciiBucketContext(const int64_t past,
                                        const Count current,
                                        const int64_t remaining,
                                        const size_t i,
                                        std::string* output) const {
  double scaled_sum = (past + current + remaining) / 100.0;
  WriteAsciiBucketValue(current, scaled_sum, output);
  if (0 < i) {
    double percentage = past / scaled_sum;
    StringAppendF(output, " {%3.1f%%}", percentage);
  }
}

void Histogram::WriteAsciiBucketValue(Count current, double scaled_sum,
                                      std::string* output) const {
  StringAppendF(output, " (%d = %3.1f%%)", current, current/scaled_sum);
}

void Histogram::WriteAsciiBucketGraph(double current_size, double max_size,
                                      std::string* output) const {
  const int k_line_length = 72;  // Maximal horizontal width of graph.
  int x_count = static_cast<int>(k_line_length * (current_size / max_size)
                                 + 0.5);
  int x_remainder = k_line_length - x_count;

  while (0 < x_count--)
    output->append("-");
  output->append("O");
  while (0 < x_remainder--)
    output->append(" ");
}

//------------------------------------------------------------------------------
// Methods for the Histogram::SampleSet class
//------------------------------------------------------------------------------

Histogram::SampleSet::SampleSet()
    : counts_(),
      sum_(0),
      sum_squares_(0),
      log_sum_(0),
      log_sum_squares_(0),
      redundant_count_(0) {
}

Histogram::SampleSet::~SampleSet() {
}

void Histogram::SampleSet::Resize(const Histogram& histogram) {
  counts_.resize(histogram.bucket_count(), 0);
}

void Histogram::SampleSet::CheckSize(const Histogram& histogram) const {
  DCHECK_EQ(histogram.bucket_count(), counts_.size());
}

void Histogram::SampleSet::Accumulate(Sample value, Count count,
				      size_t index) {
  DCHECK(count == 1 || count == -1);
  counts_[index] += count;
  redundant_count_ += count;
  sum_ += static_cast<int64_t>(count) * value;
  DCHECK_GE(counts_[index], 0);
  DCHECK_GE(sum_, 0);
  DCHECK_GE(redundant_count_, 0);
}

void Histogram::SampleSet::AccumulateWithLinearStats(Sample value,
                                                     Count count,
                                                     size_t index) {
  Accumulate(value, count, index);
  sum_squares_ += static_cast<int64_t>(count) * value * value;
}

void Histogram::SampleSet::AccumulateWithExponentialStats(Sample value,
                                                          Count count,
                                                          size_t index,
							  bool computeExtendedStatistics) {
  Accumulate(value, count, index);
  if (computeExtendedStatistics) {
    DCHECK_GE(value, 0);
    float value_log = logf(static_cast<float>(value) + 1.0f);
    log_sum_ += count * value_log;
    log_sum_squares_ += count * value_log * value_log;
  }
}

Count Histogram::SampleSet::TotalCount() const {
  Count total = 0;
  for (Counts::const_iterator it = counts_.begin();
       it != counts_.end();
       ++it) {
    total += *it;
  }
  return total;
}

void Histogram::SampleSet::Add(const SampleSet& other) {
  DCHECK_EQ(counts_.size(), other.counts_.size());
  sum_ += other.sum_;
  sum_squares_ += other.sum_squares_;
  log_sum_ += other.log_sum_;
  log_sum_squares_ += other.log_sum_squares_;
  redundant_count_ += other.redundant_count_;
  for (size_t index = 0; index < counts_.size(); ++index)
    counts_[index] += other.counts_[index];
}

void Histogram::SampleSet::Subtract(const SampleSet& other) {
  DCHECK_EQ(counts_.size(), other.counts_.size());
  // Note: Race conditions in snapshotting a sum may lead to (temporary)
  // negative values when snapshots are later combined (and deltas calculated).
  // As a result, we don't currently CHCEK() for positive values.
  sum_ -= other.sum_;
  sum_squares_ -= other.sum_squares_;
  log_sum_ -= other.log_sum_;
  log_sum_squares_ -= other.log_sum_squares_;
  redundant_count_ -= other.redundant_count_;
  for (size_t index = 0; index < counts_.size(); ++index) {
    counts_[index] -= other.counts_[index];
    DCHECK_GE(counts_[index], 0);
  }
}

bool Histogram::SampleSet::Serialize(Pickle* pickle) const {
  pickle->WriteInt64(sum_);
  pickle->WriteInt64(redundant_count_);
  pickle->WriteSize(counts_.size());

  for (size_t index = 0; index < counts_.size(); ++index) {
    pickle->WriteInt(counts_[index]);
  }

  return true;
}

bool Histogram::SampleSet::Deserialize(void** iter, const Pickle& pickle) {
  DCHECK_EQ(counts_.size(), 0u);
  DCHECK_EQ(sum_, 0);
  DCHECK_EQ(redundant_count_, 0);

  size_t counts_size;

  if (!pickle.ReadInt64(iter, &sum_) ||
      !pickle.ReadInt64(iter, &redundant_count_) ||
      !pickle.ReadSize(iter, &counts_size)) {
    return false;
  }

  if (counts_size == 0)
    return false;

  int count = 0;
  for (size_t index = 0; index < counts_size; ++index) {
    int i;
    if (!pickle.ReadInt(iter, &i))
      return false;
    counts_.push_back(i);
    count += i;
  }

  return true;
}

//------------------------------------------------------------------------------
// LinearHistogram: This histogram uses a traditional set of evenly spaced
// buckets.
//------------------------------------------------------------------------------

LinearHistogram::~LinearHistogram() {
}

Histogram* LinearHistogram::FactoryGet(const std::string& name,
                                       Sample minimum,
                                       Sample maximum,
                                       size_t bucket_count,
                                       Flags flags) {
  Histogram* histogram(NULL);

  if (minimum < 1)
    minimum = 1;
  if (maximum > kSampleType_MAX - 1)
    maximum = kSampleType_MAX - 1;

  if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
    LinearHistogram* tentative_histogram =
        new LinearHistogram(name, minimum, maximum, bucket_count);
    tentative_histogram->InitializeBucketRange();
    tentative_histogram->SetFlags(flags);
    histogram =
        StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
  }

  DCHECK_EQ(LINEAR_HISTOGRAM, histogram->histogram_type());
  DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
  return histogram;
}

Histogram* LinearHistogram::FactoryTimeGet(const std::string& name,
                                           TimeDelta minimum,
                                           TimeDelta maximum,
                                           size_t bucket_count,
                                           Flags flags) {
  return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(),
                    bucket_count, flags);
}

Histogram::ClassType LinearHistogram::histogram_type() const {
  return LINEAR_HISTOGRAM;
}

void LinearHistogram::Accumulate(Sample value, Count count, size_t index) {
  sample_.AccumulateWithLinearStats(value, count, index);
}

void LinearHistogram::SetRangeDescriptions(
    const DescriptionPair descriptions[]) {
  for (int i =0; descriptions[i].description; ++i) {
    bucket_description_[descriptions[i].sample] = descriptions[i].description;
  }
}

LinearHistogram::LinearHistogram(const std::string& name,
                                 Sample minimum,
                                 Sample maximum,
                                 size_t bucket_count)
    : Histogram(name, minimum >= 1 ? minimum : 1, maximum, bucket_count) {
}

LinearHistogram::LinearHistogram(const std::string& name,
                                 TimeDelta minimum,
                                 TimeDelta maximum,
                                 size_t bucket_count)
    : Histogram(name, minimum >= TimeDelta::FromMilliseconds(1) ?
                                 minimum : TimeDelta::FromMilliseconds(1),
                maximum, bucket_count) {
}

void LinearHistogram::InitializeBucketRange() {
  DCHECK_GT(declared_min(), 0);  // 0 is the underflow bucket here.
  double min = declared_min();
  double max = declared_max();
  size_t i;
  for (i = 1; i < bucket_count(); ++i) {
    double linear_range = (min * (bucket_count() -1 - i) + max * (i - 1)) /
                          (bucket_count() - 2);
    SetBucketRange(i, static_cast<int> (linear_range + 0.5));
  }
  ResetRangeChecksum();
}

double LinearHistogram::GetBucketSize(Count current, size_t i) const {
  DCHECK_GT(ranges(i + 1), ranges(i));
  // Adjacent buckets with different widths would have "surprisingly" many (few)
  // samples in a histogram if we didn't normalize this way.
  double denominator = ranges(i + 1) - ranges(i);
  return current/denominator;
}

const std::string LinearHistogram::GetAsciiBucketRange(size_t i) const {
  int range = ranges(i);
  BucketDescriptionMap::const_iterator it = bucket_description_.find(range);
  if (it == bucket_description_.end())
    return Histogram::GetAsciiBucketRange(i);
  return it->second;
}

bool LinearHistogram::PrintEmptyBucket(size_t index) const {
  return bucket_description_.find(ranges(index)) == bucket_description_.end();
}


//------------------------------------------------------------------------------
// This section provides implementation for BooleanHistogram.
//------------------------------------------------------------------------------

Histogram* BooleanHistogram::FactoryGet(const std::string& name, Flags flags) {
  Histogram* histogram(NULL);

  if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
    BooleanHistogram* tentative_histogram = new BooleanHistogram(name);
    tentative_histogram->InitializeBucketRange();
    tentative_histogram->SetFlags(flags);
    histogram =
        StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
  }

  DCHECK_EQ(BOOLEAN_HISTOGRAM, histogram->histogram_type());
  return histogram;
}

Histogram::ClassType BooleanHistogram::histogram_type() const {
  return BOOLEAN_HISTOGRAM;
}

void BooleanHistogram::AddBoolean(bool value) {
  Add(value ? 1 : 0);
}

BooleanHistogram::BooleanHistogram(const std::string& name)
    : LinearHistogram(name, 1, 2, 3) {
}

void
BooleanHistogram::Accumulate(Sample value, Count count, size_t index)
{
  // Callers will have computed index based on the non-booleanified value.
  // So we need to adjust the index manually.
  LinearHistogram::Accumulate(!!value, count, value ? 1 : 0);
}

//------------------------------------------------------------------------------
// FlagHistogram:
//------------------------------------------------------------------------------

Histogram *
FlagHistogram::FactoryGet(const std::string &name, Flags flags)
{
  Histogram *h(nullptr);

  if (!StatisticsRecorder::FindHistogram(name, &h)) {
    FlagHistogram *fh = new FlagHistogram(name);
    fh->InitializeBucketRange();
    fh->SetFlags(flags);
    size_t zero_index = fh->BucketIndex(0);
    fh->LinearHistogram::Accumulate(0, 1, zero_index);
    h = StatisticsRecorder::RegisterOrDeleteDuplicate(fh);
  }

  return h;
}

FlagHistogram::FlagHistogram(const std::string &name)
  : BooleanHistogram(name), mSwitched(false) {
}

Histogram::ClassType
FlagHistogram::histogram_type() const
{
  return FLAG_HISTOGRAM;
}

void
FlagHistogram::Accumulate(Sample value, Count count, size_t index)
{
  if (mSwitched) {
    return;
  }

  mSwitched = true;
  DCHECK_EQ(value, 1);
  LinearHistogram::Accumulate(value, 1, index);
  size_t zero_index = BucketIndex(0);
  LinearHistogram::Accumulate(0, -1, zero_index);
}

void
FlagHistogram::AddSampleSet(const SampleSet& sample) {
  DCHECK_EQ(bucket_count(), sample.size());
  // We can't be sure the SampleSet provided came from another FlagHistogram,
  // so we take the following steps:
  //  - If our flag has already been set do nothing.
  //  - Set our flag if the following hold:
  //      - The sum of the counts in the provided SampleSet is 1.
  //      - The bucket index for that single value is the same as the index where we
  //        would place our set flag.
  //  - Otherwise, take no action.

  if (mSwitched) {
    return;
  }

  if (sample.sum() != 1) {
    return;
  }

  size_t one_index = BucketIndex(1);
  if (sample.counts(one_index) == 1) {
    Accumulate(1, 1, one_index);
  }
}

void
FlagHistogram::Clear() {
  Histogram::Clear();

  mSwitched = false;
  size_t zero_index = BucketIndex(0);
  LinearHistogram::Accumulate(0, 1, zero_index);
}

//------------------------------------------------------------------------------
// CountHistogram:
//------------------------------------------------------------------------------

Histogram *
CountHistogram::FactoryGet(const std::string &name, Flags flags)
{
  Histogram *h(nullptr);

  if (!StatisticsRecorder::FindHistogram(name, &h)) {
    CountHistogram *fh = new CountHistogram(name);
    fh->InitializeBucketRange();
    fh->SetFlags(flags);
    h = StatisticsRecorder::RegisterOrDeleteDuplicate(fh);
  }

  return h;
}

CountHistogram::CountHistogram(const std::string &name)
  : LinearHistogram(name, 1, 2, 3) {
}

Histogram::ClassType
CountHistogram::histogram_type() const
{
  return COUNT_HISTOGRAM;
}

void
CountHistogram::Accumulate(Sample value, Count count, size_t index)
{
  size_t zero_index = BucketIndex(0);
  LinearHistogram::Accumulate(1, 1, zero_index);
}

void
CountHistogram::AddSampleSet(const SampleSet& sample) {
  DCHECK_EQ(bucket_count(), sample.size());
  // We can't be sure the SampleSet provided came from another CountHistogram,
  // so we at least check that the unused buckets are empty.

  const size_t indices[] = { BucketIndex(0), BucketIndex(1), BucketIndex(2) };

  if (sample.counts(indices[1]) != 0 || sample.counts(indices[2]) != 0) {
    return;
  }

  if (sample.counts(indices[0]) != 0) {
    Accumulate(1, sample.counts(indices[0]), indices[0]);
  }
}


//------------------------------------------------------------------------------
// CustomHistogram:
//------------------------------------------------------------------------------

Histogram* CustomHistogram::FactoryGet(const std::string& name,
                                       const std::vector<Sample>& custom_ranges,
                                       Flags flags) {
  Histogram* histogram(NULL);

  // Remove the duplicates in the custom ranges array.
  std::vector<int> ranges = custom_ranges;
  ranges.push_back(0);  // Ensure we have a zero value.
  std::sort(ranges.begin(), ranges.end());
  ranges.erase(std::unique(ranges.begin(), ranges.end()), ranges.end());
  if (ranges.size() <= 1) {
    DCHECK(false);
    // Note that we pushed a 0 in above, so for defensive code....
    ranges.push_back(1);  // Put in some data so we can index to [1].
  }

  DCHECK_LT(ranges.back(), kSampleType_MAX);

  if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
    CustomHistogram* tentative_histogram = new CustomHistogram(name, ranges);
    tentative_histogram->InitializedCustomBucketRange(ranges);
    tentative_histogram->SetFlags(flags);
    histogram =
        StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
  }

  DCHECK_EQ(histogram->histogram_type(), CUSTOM_HISTOGRAM);
  DCHECK(histogram->HasConstructorArguments(ranges[1], ranges.back(),
                                            ranges.size()));
  return histogram;
}

Histogram::ClassType CustomHistogram::histogram_type() const {
  return CUSTOM_HISTOGRAM;
}

CustomHistogram::CustomHistogram(const std::string& name,
                                 const std::vector<Sample>& custom_ranges)
    : Histogram(name, custom_ranges[1], custom_ranges.back(),
                custom_ranges.size()) {
  DCHECK_GT(custom_ranges.size(), 1u);
  DCHECK_EQ(custom_ranges[0], 0);
}

void CustomHistogram::InitializedCustomBucketRange(
    const std::vector<Sample>& custom_ranges) {
  DCHECK_GT(custom_ranges.size(), 1u);
  DCHECK_EQ(custom_ranges[0], 0);
  DCHECK_LE(custom_ranges.size(), bucket_count());
  for (size_t index = 0; index < custom_ranges.size(); ++index)
    SetBucketRange(index, custom_ranges[index]);
  ResetRangeChecksum();
}

double CustomHistogram::GetBucketSize(Count current, size_t i) const {
  return 1;
}

//------------------------------------------------------------------------------
// The next section handles global (central) support for all histograms, as well
// as startup/teardown of this service.
//------------------------------------------------------------------------------

// This singleton instance should be started during the single threaded portion
// of main(), and hence it is not thread safe.  It initializes globals to
// provide support for all future calls.
StatisticsRecorder::StatisticsRecorder() {
  DCHECK(!histograms_);
  if (lock_ == NULL) {
    // This will leak on purpose. It's the only way to make sure we won't race
    // against the static uninitialization of the module while one of our
    // static methods relying on the lock get called at an inappropriate time
    // during the termination phase. Since it's a static data member, we will
    // leak one per process, which would be similar to the instance allocated
    // during static initialization and released only on  process termination.
    lock_ = new base::Lock;
  }
  base::AutoLock auto_lock(*lock_);
  histograms_ = new HistogramMap;
}

StatisticsRecorder::~StatisticsRecorder() {
  DCHECK(histograms_ && lock_);

  if (dump_on_exit_) {
    std::string output;
    WriteGraph("", &output);
    CHROMIUM_LOG(INFO) << output;
  }
  // Clean up.
  HistogramMap* histograms = NULL;
  {
    base::AutoLock auto_lock(*lock_);
    histograms = histograms_;
    histograms_ = NULL;
    for (HistogramMap::iterator it = histograms->begin();
         histograms->end() != it;
         ++it) {
      // No other clients permanently hold Histogram references, so we
      // have the only one and it is safe to delete it.
      delete it->second;
    }
  }
  delete histograms;
  // We don't delete lock_ on purpose to avoid having to properly protect
  // against it going away after we checked for NULL in the static methods.
}

// static
bool StatisticsRecorder::IsActive() {
  if (lock_ == NULL)
    return false;
  base::AutoLock auto_lock(*lock_);
  return NULL != histograms_;
}

Histogram* StatisticsRecorder::RegisterOrDeleteDuplicate(Histogram* histogram) {
  DCHECK(histogram->HasValidRangeChecksum());
  if (lock_ == NULL)
    return histogram;
  base::AutoLock auto_lock(*lock_);
  if (!histograms_)
    return histogram;
  const std::string name = histogram->histogram_name();
  HistogramMap::iterator it = histograms_->find(name);
  // Avoid overwriting a previous registration.
  if (histograms_->end() == it) {
    (*histograms_)[name] = histogram;
  } else {
    delete histogram;  // We already have one by this name.
    histogram = it->second;
  }
  return histogram;
}

// static
void StatisticsRecorder::WriteHTMLGraph(const std::string& query,
                                        std::string* output) {
  if (!IsActive())
    return;
  output->append("<html><head><title>About Histograms");
  if (!query.empty())
    output->append(" - " + query);
  output->append("</title>"
                 // We'd like the following no-cache... but it doesn't work.
                 // "<META HTTP-EQUIV=\"Pragma\" CONTENT=\"no-cache\">"
                 "</head><body>");

  Histograms snapshot;
  GetSnapshot(query, &snapshot);
  for (Histograms::iterator it = snapshot.begin();
       it != snapshot.end();
       ++it) {
    (*it)->WriteHTMLGraph(output);
    output->append("<br><hr><br>");
  }
  output->append("</body></html>");
}

// static
void StatisticsRecorder::WriteGraph(const std::string& query,
                                    std::string* output) {
  if (!IsActive())
    return;
  if (query.length())
    StringAppendF(output, "Collections of histograms for %s\n", query.c_str());
  else
    output->append("Collections of all histograms\n");

  Histograms snapshot;
  GetSnapshot(query, &snapshot);
  for (Histograms::iterator it = snapshot.begin();
       it != snapshot.end();
       ++it) {
    (*it)->WriteAscii(true, "\n", output);
    output->append("\n");
  }
}

// static
void StatisticsRecorder::GetHistograms(Histograms* output) {
  if (lock_ == NULL)
    return;
  base::AutoLock auto_lock(*lock_);
  if (!histograms_)
    return;
  for (HistogramMap::iterator it = histograms_->begin();
       histograms_->end() != it;
       ++it) {
    DCHECK_EQ(it->first, it->second->histogram_name());
    output->push_back(it->second);
  }
}

bool StatisticsRecorder::FindHistogram(const std::string& name,
                                       Histogram** histogram) {
  if (lock_ == NULL)
    return false;
  base::AutoLock auto_lock(*lock_);
  if (!histograms_)
    return false;
  HistogramMap::iterator it = histograms_->find(name);
  if (histograms_->end() == it)
    return false;
  *histogram = it->second;
  return true;
}

// private static
void StatisticsRecorder::GetSnapshot(const std::string& query,
                                     Histograms* snapshot) {
  if (lock_ == NULL)
    return;
  base::AutoLock auto_lock(*lock_);
  if (!histograms_)
    return;
  for (HistogramMap::iterator it = histograms_->begin();
       histograms_->end() != it;
       ++it) {
    if (it->first.find(query) != std::string::npos)
      snapshot->push_back(it->second);
  }
}

// static
StatisticsRecorder::HistogramMap* StatisticsRecorder::histograms_ = NULL;
// static
base::Lock* StatisticsRecorder::lock_ = NULL;
// static
bool StatisticsRecorder::dump_on_exit_ = false;

}  // namespace base