DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ComputedTimingFunction.h"
#include "nsAlgorithm.h" // For clamped()
#include "nsStyleUtil.h"

namespace mozilla {

void
ComputedTimingFunction::Init(const nsTimingFunction &aFunction)
{
  mType = aFunction.mType;
  if (nsTimingFunction::IsSplineType(mType)) {
    mTimingFunction.Init(aFunction.mFunc.mX1, aFunction.mFunc.mY1,
                         aFunction.mFunc.mX2, aFunction.mFunc.mY2);
  } else {
    mSteps = aFunction.mSteps;
    mStepSyntax = aFunction.mStepSyntax;
  }
}

static inline double
StepEnd(uint32_t aSteps, double aPortion)
{
  MOZ_ASSERT(0.0 <= aPortion && aPortion <= 1.0, "out of range");
  uint32_t step = uint32_t(aPortion * aSteps); // floor
  return double(step) / double(aSteps);
}

double
ComputedTimingFunction::GetValue(double aPortion) const
{
  if (HasSpline()) {
    // Check for a linear curve.
    // (GetSplineValue(), below, also checks this but doesn't work when
    // aPortion is outside the range [0.0, 1.0]).
    if (mTimingFunction.X1() == mTimingFunction.Y1() &&
        mTimingFunction.X2() == mTimingFunction.Y2()) {
      return aPortion;
    }

    // For negative values, try to extrapolate with tangent (p1 - p0) or,
    // if p1 is coincident with p0, with (p2 - p0).
    if (aPortion < 0.0) {
      if (mTimingFunction.X1() > 0.0) {
        return aPortion * mTimingFunction.Y1() / mTimingFunction.X1();
      } else if (mTimingFunction.Y1() == 0 && mTimingFunction.X2() > 0.0) {
        return aPortion * mTimingFunction.Y2() / mTimingFunction.X2();
      }
      // If we can't calculate a sensible tangent, don't extrapolate at all.
      return 0.0;
    }

    // For values greater than 1, try to extrapolate with tangent (p2 - p3) or,
    // if p2 is coincident with p3, with (p1 - p3).
    if (aPortion > 1.0) {
      if (mTimingFunction.X2() < 1.0) {
        return 1.0 + (aPortion - 1.0) *
          (mTimingFunction.Y2() - 1) / (mTimingFunction.X2() - 1);
      } else if (mTimingFunction.Y2() == 1 && mTimingFunction.X1() < 1.0) {
        return 1.0 + (aPortion - 1.0) *
          (mTimingFunction.Y1() - 1) / (mTimingFunction.X1() - 1);
      }
      // If we can't calculate a sensible tangent, don't extrapolate at all.
      return 1.0;
    }

    return mTimingFunction.GetSplineValue(aPortion);
  }

  // Since we use endpoint-exclusive timing, the output of a steps(start) timing
  // function when aPortion = 0.0 is the top of the first step. When aPortion is
  // negative, however, we should use the bottom of the first step. We handle
  // negative values of aPortion specially here since once we clamp aPortion
  // to [0,1] below we will no longer be able to distinguish to the two cases.
  if (aPortion < 0.0) {
    return 0.0;
  }

  // Clamp in case of steps(end) and steps(start) for values greater than 1.
  aPortion = clamped(aPortion, 0.0, 1.0);

  if (mType == nsTimingFunction::Type::StepStart) {
    // There are diagrams in the spec that seem to suggest this check
    // and the bounds point should not be symmetric with StepEnd, but
    // should actually step up at rather than immediately after the
    // fraction points.  However, we rely on rounding negative values
    // up to zero, so we can't do that.  And it's not clear the spec
    // really meant it.
    return 1.0 - StepEnd(mSteps, 1.0 - aPortion);
  }
  MOZ_ASSERT(mType == nsTimingFunction::Type::StepEnd, "bad type");
  return StepEnd(mSteps, aPortion);
}

int32_t
ComputedTimingFunction::Compare(const ComputedTimingFunction& aRhs) const
{
  if (mType != aRhs.mType) {
    return int32_t(mType) - int32_t(aRhs.mType);
  }

  if (mType == nsTimingFunction::Type::CubicBezier) {
    int32_t order = mTimingFunction.Compare(aRhs.mTimingFunction);
    if (order != 0) {
      return order;
    }
  } else if (mType == nsTimingFunction::Type::StepStart ||
             mType == nsTimingFunction::Type::StepEnd) {
    if (mSteps != aRhs.mSteps) {
      return int32_t(mSteps) - int32_t(aRhs.mSteps);
    }
    if (mStepSyntax != aRhs.mStepSyntax) {
      return int32_t(mStepSyntax) - int32_t(aRhs.mStepSyntax);
    }
  }

  return 0;
}

void
ComputedTimingFunction::AppendToString(nsAString& aResult) const
{
  switch (mType) {
    case nsTimingFunction::Type::CubicBezier:
      nsStyleUtil::AppendCubicBezierTimingFunction(mTimingFunction.X1(),
                                                   mTimingFunction.Y1(),
                                                   mTimingFunction.X2(),
                                                   mTimingFunction.Y2(),
                                                   aResult);
      break;
    case nsTimingFunction::Type::StepStart:
    case nsTimingFunction::Type::StepEnd:
      nsStyleUtil::AppendStepsTimingFunction(mType, mSteps, mStepSyntax,
                                             aResult);
      break;
    default:
      nsStyleUtil::AppendCubicBezierKeywordTimingFunction(mType, aResult);
      break;
  }
}

/* static */ int32_t
ComputedTimingFunction::Compare(const Maybe<ComputedTimingFunction>& aLhs,
                                const Maybe<ComputedTimingFunction>& aRhs)
{
  // We can't use |operator<| for const Maybe<>& here because
  // 'ease' is prior to 'linear' which is represented by Nothing().
  // So we have to convert Nothing() as 'linear' and check it first.
  nsTimingFunction::Type lhsType = aLhs.isNothing() ?
    nsTimingFunction::Type::Linear : aLhs->GetType();
  nsTimingFunction::Type rhsType = aRhs.isNothing() ?
    nsTimingFunction::Type::Linear : aRhs->GetType();

  if (lhsType != rhsType) {
    return int32_t(lhsType) - int32_t(rhsType);
  }

  // Both of them are Nothing().
  if (lhsType == nsTimingFunction::Type::Linear) {
    return 0;
  }

  // Other types.
  return aLhs->Compare(aRhs.value());
}

} // namespace mozilla