DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#define MOZ_MEMORY_IMPL
#include "mozmemory_wrap.h"

#ifdef _WIN32
#include <windows.h>
#include <io.h>
typedef int ssize_t;
#else
#include <sys/mman.h>
#include <unistd.h>
#endif
#include <algorithm>
#include <cstdio>
#include <cstring>

#include "mozilla/Assertions.h"
#include "FdPrintf.h"

static void
die(const char* message)
{
  /* Here, it doesn't matter that fprintf may allocate memory. */
  fprintf(stderr, "%s\n", message);
  exit(1);
}

/* We don't want to be using malloc() to allocate our internal tracking
 * data, because that would change the parameters of what is being measured,
 * so we want to use data types that directly use mmap/VirtualAlloc. */
template <typename T, size_t Len>
class MappedArray
{
public:
  MappedArray(): mPtr(nullptr) {}

  ~MappedArray()
  {
    if (mPtr) {
#ifdef _WIN32
      VirtualFree(mPtr, sizeof(T) * Len, MEM_RELEASE);
#else
      munmap(mPtr, sizeof(T) * Len);
#endif
    }
  }

  T& operator[] (size_t aIndex) const
  {
    if (mPtr) {
      return mPtr[aIndex];
    }

#ifdef _WIN32
    mPtr = reinterpret_cast<T*>(VirtualAlloc(nullptr, sizeof(T) * Len,
             MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE));
    if (mPtr == nullptr) {
      die("VirtualAlloc error");
    }
#else
    mPtr = reinterpret_cast<T*>(mmap(nullptr, sizeof(T) * Len,
             PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0));
    if (mPtr == MAP_FAILED) {
      die("Mmap error");
    }
#endif
    return mPtr[aIndex];
  }

private:
  mutable T* mPtr;
};

/* Type for records of allocations. */
struct MemSlot
{
  void* mPtr;
  size_t mSize;
};

/* An almost infinite list of slots.
 * In essence, this is a linked list of arrays of groups of slots.
 * Each group is 1MB. On 64-bits, one group allows to store 64k allocations.
 * Each MemSlotList instance can store 1023 such groups, which means more
 * than 65M allocations. In case more would be needed, we chain to another
 * MemSlotList, and so on.
 * Using 1023 groups makes the MemSlotList itself page sized on 32-bits
 * and 2 pages-sized on 64-bits.
 */
class MemSlotList
{
  static const size_t kGroups = 1024 - 1;
  static const size_t kGroupSize = (1024 * 1024) / sizeof(MemSlot);

  MappedArray<MemSlot, kGroupSize> mSlots[kGroups];
  MappedArray<MemSlotList, 1> mNext;

public:
  MemSlot& operator[] (size_t aIndex) const
  {
    if (aIndex < kGroupSize * kGroups) {
      return mSlots[aIndex / kGroupSize][aIndex % kGroupSize];
    }
    aIndex -= kGroupSize * kGroups;
    return mNext[0][aIndex];
  }
};

/* Helper class for memory buffers */
class Buffer
{
public:
  Buffer() : mBuf(nullptr), mLength(0) {}

  Buffer(const void* aBuf, size_t aLength)
    : mBuf(reinterpret_cast<const char*>(aBuf)), mLength(aLength)
  {}

  /* Constructor for string literals. */
  template <size_t Size>
  explicit Buffer(const char (&aStr)[Size])
    : mBuf(aStr), mLength(Size - 1)
  {}

  /* Returns a sub-buffer up-to but not including the given aNeedle character.
   * The "parent" buffer itself is altered to begin after the aNeedle
   * character.
   * If the aNeedle character is not found, return the entire buffer, and empty
   * the "parent" buffer. */
  Buffer SplitChar(char aNeedle)
  {
    char* buf = const_cast<char*>(mBuf);
    char* c = reinterpret_cast<char*>(memchr(buf, aNeedle, mLength));
    if (!c) {
      return Split(mLength);
    }

    Buffer result = Split(c - buf);
    // Remove the aNeedle character itself.
    Split(1);
    return result;
  }

  /* Returns a sub-buffer of at most aLength characters. The "parent" buffer is
   * amputated of those aLength characters. If the "parent" buffer is smaller
   * than aLength, then its length is used instead. */
  Buffer Split(size_t aLength)
  {
    Buffer result(mBuf, std::min(aLength, mLength));
    mLength -= result.mLength;
    mBuf += result.mLength;
    return result;
  }

  /* Move the buffer (including its content) to the memory address of the aOther
   * buffer. */
  void Slide(Buffer aOther)
  {
    memmove(const_cast<char*>(aOther.mBuf), mBuf, mLength);
    mBuf = aOther.mBuf;
  }

  /* Returns whether the two involved buffers have the same content. */
  bool operator ==(Buffer aOther)
  {
    return mLength == aOther.mLength && (mBuf == aOther.mBuf ||
                                         !strncmp(mBuf, aOther.mBuf, mLength));
  }

  /* Returns whether the buffer is empty. */
  explicit operator bool() { return mLength; }

  /* Returns the memory location of the buffer. */
  const char* get() { return mBuf; }

  /* Returns the memory location of the end of the buffer (technically, the
   * first byte after the buffer). */
  const char* GetEnd() { return mBuf + mLength; }

  /* Extend the buffer over the content of the other buffer, assuming it is
   * adjacent. */
  void Extend(Buffer aOther)
  {
    MOZ_ASSERT(aOther.mBuf == GetEnd());
    mLength += aOther.mLength;
  }

private:
  const char* mBuf;
  size_t mLength;
};

/* Helper class to read from a file descriptor line by line. */
class FdReader {
public:
  explicit FdReader(int aFd)
    : mFd(aFd)
    , mData(&mRawBuf, 0)
    , mBuf(&mRawBuf, sizeof(mRawBuf))
  {}

  /* Read a line from the file descriptor and returns it as a Buffer instance */
  Buffer ReadLine()
  {
    while (true) {
      Buffer result = mData.SplitChar('\n');

      /* There are essentially three different cases here:
       * - '\n' was found "early". In this case, the end of the result buffer
       *   is before the beginning of the mData buffer (since SplitChar
       *   amputated it).
       * - '\n' was found as the last character of mData. In this case, mData
       *   is empty, but still points at the end of mBuf. result points to what
       *   used to be in mData, without the last character.
       * - '\n' was not found. In this case too, mData is empty and points at
       *   the end of mBuf. But result points to the entire buffer that used to
       *   be pointed by mData.
       * Only in the latter case do both result and mData's end match, and it's
       * the only case where we need to refill the buffer.
       */
      if (result.GetEnd() != mData.GetEnd()) {
        return result;
      }

      /* Since SplitChar emptied mData, make it point to what it had before. */
      mData = result;

      /* And move it to the beginning of the read buffer. */
      mData.Slide(mBuf);

      FillBuffer();

      if (!mData) {
        return Buffer();
      }
    }
  }

private:
  /* Fill the read buffer. */
  void FillBuffer()
  {
    size_t size = mBuf.GetEnd() - mData.GetEnd();
    Buffer remainder(mData.GetEnd(), size);

    ssize_t len = 1;
    while (remainder && len > 0) {
      len = ::read(mFd, const_cast<char*>(remainder.get()), size);
      if (len < 0) {
        die("Read error");
      }
      size -= len;
      mData.Extend(remainder.Split(len));
    }
  }

  /* File descriptor to read from. */
  int mFd;
  /* Part of data that was read from the file descriptor but not returned with
   * ReadLine yet. */
  Buffer mData;
  /* Buffer representation of mRawBuf */
  Buffer mBuf;
  /* read() buffer */
  char mRawBuf[4096];
};

MOZ_BEGIN_EXTERN_C

/* Function declarations for all the replace_malloc _impl functions.
 * See memory/build/replace_malloc.c */
#define MALLOC_DECL(name, return_type, ...) \
  return_type name ## _impl(__VA_ARGS__);
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC
#include "malloc_decls.h"

#define MALLOC_DECL(name, return_type, ...) \
  return_type name ## _impl(__VA_ARGS__);
#define MALLOC_FUNCS MALLOC_FUNCS_JEMALLOC
#include "malloc_decls.h"

/* mozjemalloc relies on DllMain to initialize, but DllMain is not invoked
 * for executables, so manually invoke mozjemalloc initialization. */
#if defined(_WIN32) && !defined(MOZ_JEMALLOC4)
void malloc_init_hard(void);
#endif

#ifdef ANDROID
/* mozjemalloc uses MozTagAnonymousMemory, which doesn't have an inline
 * implementation on Android */
void
MozTagAnonymousMemory(const void* aPtr, size_t aLength, const char* aTag) {}

/* mozjemalloc and jemalloc use pthread_atfork, which Android doesn't have.
 * While gecko has one in libmozglue, the replay program can't use that.
 * Since we're not going to fork anyways, make it a dummy function. */
int
pthread_atfork(void (*aPrepare)(void), void (*aParent)(void),
               void (*aChild)(void))
{
  return 0;
}
#endif

MOZ_END_EXTERN_C

size_t parseNumber(Buffer aBuf)
{
  if (!aBuf) {
    die("Malformed input");
  }

  size_t result = 0;
  for (const char* c = aBuf.get(), *end = aBuf.GetEnd(); c < end; c++) {
    if (*c < '0' || *c > '9') {
      die("Malformed input");
    }
    result *= 10;
    result += *c - '0';
  }
  return result;
}

/* Class to handle dispatching the replay function calls to replace-malloc. */
class Replay
{
public:
  Replay(): mOps(0) {
#ifdef _WIN32
    // See comment in FdPrintf.h as to why native win32 handles are used.
    mStdErr = reinterpret_cast<intptr_t>(GetStdHandle(STD_ERROR_HANDLE));
#else
    mStdErr = fileno(stderr);
#endif
  }

  MemSlot& operator[] (size_t index) const
  {
    return mSlots[index];
  }

  void malloc(MemSlot& aSlot, Buffer& aArgs)
  {
    mOps++;
    size_t size = parseNumber(aArgs);
    aSlot.mPtr = ::malloc_impl(size);
    aSlot.mSize = size;
    Commit(aSlot);
  }

  void posix_memalign(MemSlot& aSlot, Buffer& aArgs)
  {
    mOps++;
    size_t alignment = parseNumber(aArgs.SplitChar(','));
    size_t size = parseNumber(aArgs);
    void* ptr;
    if (::posix_memalign_impl(&ptr, alignment, size) == 0) {
      aSlot.mPtr = ptr;
      aSlot.mSize = size;
    } else {
      aSlot.mPtr = nullptr;
      aSlot.mSize = 0;
    }
    Commit(aSlot);
  }

  void aligned_alloc(MemSlot& aSlot, Buffer& aArgs)
  {
    mOps++;
    size_t alignment = parseNumber(aArgs.SplitChar(','));
    size_t size = parseNumber(aArgs);
    aSlot.mPtr = ::aligned_alloc_impl(alignment, size);
    aSlot.mSize = size;
    Commit(aSlot);
  }

  void calloc(MemSlot& aSlot, Buffer& aArgs)
  {
    mOps++;
    size_t num = parseNumber(aArgs.SplitChar(','));
    size_t size = parseNumber(aArgs);
    aSlot.mPtr = ::calloc_impl(num, size);
    aSlot.mSize = size * num;
    Commit(aSlot);
  }

  void realloc(MemSlot& aSlot, Buffer& aArgs)
  {
    mOps++;
    Buffer dummy = aArgs.SplitChar('#');
    if (dummy) {
      die("Malformed input");
    }
    size_t slot_id = parseNumber(aArgs.SplitChar(','));
    size_t size = parseNumber(aArgs);
    MemSlot& old_slot = (*this)[slot_id];
    void* old_ptr = old_slot.mPtr;
    old_slot.mPtr = nullptr;
    old_slot.mSize = 0;
    aSlot.mPtr = ::realloc_impl(old_ptr, size);
    aSlot.mSize = size;
    Commit(aSlot);
  }

  void free(Buffer& aArgs)
  {
    mOps++;
    Buffer dummy = aArgs.SplitChar('#');
    if (dummy) {
      die("Malformed input");
    }
    size_t slot_id = parseNumber(aArgs);
    MemSlot& slot = (*this)[slot_id];
    ::free_impl(slot.mPtr);
    slot.mPtr = nullptr;
    slot.mSize = 0;
  }

  void memalign(MemSlot& aSlot, Buffer& aArgs)
  {
    mOps++;
    size_t alignment = parseNumber(aArgs.SplitChar(','));
    size_t size = parseNumber(aArgs);
    aSlot.mPtr = ::memalign_impl(alignment, size);
    aSlot.mSize = size;
    Commit(aSlot);
  }

  void valloc(MemSlot& aSlot, Buffer& aArgs)
  {
    mOps++;
    size_t size = parseNumber(aArgs);
    aSlot.mPtr = ::valloc_impl(size);
    aSlot.mSize = size;
    Commit(aSlot);
  }

  void jemalloc_stats(Buffer& aArgs)
  {
    if (aArgs) {
      die("Malformed input");
    }
    jemalloc_stats_t stats;
    ::jemalloc_stats_impl(&stats);
    FdPrintf(mStdErr,
             "#%zu mapped: %zu; allocated: %zu; waste: %zu; dirty: %zu; "
             "bookkeep: %zu; binunused: %zu\n", mOps, stats.mapped,
             stats.allocated, stats.waste, stats.page_cache,
             stats.bookkeeping, stats.bin_unused);
    /* TODO: Add more data, like actual RSS as measured by OS, but compensated
     * for the replay internal data. */
  }

private:
  void Commit(MemSlot& aSlot)
  {
    memset(aSlot.mPtr, 0x5a, aSlot.mSize);
  }

  intptr_t mStdErr;
  size_t mOps;
  MemSlotList mSlots;
};


int
main()
{
  size_t first_pid = 0;
  FdReader reader(0);
  Replay replay;

#if defined(_WIN32) && !defined(MOZ_JEMALLOC4)
  malloc_init_hard();
#endif

  /* Read log from stdin and dispatch function calls to the Replay instance.
   * The log format is essentially:
   *   <pid> <function>([<args>])[=<result>]
   * <args> is a comma separated list of arguments.
   *
   * The logs are expected to be preprocessed so that allocations are
   * attributed a tracking slot. The input is trusted not to have crazy
   * values for these slot numbers.
   *
   * <result>, as well as some of the args to some of the function calls are
   * such slot numbers.
   */
  while (true) {
    Buffer line = reader.ReadLine();

    if (!line) {
      break;
    }

    size_t pid = parseNumber(line.SplitChar(' '));
    if (!first_pid) {
      first_pid = pid;
    }

    /* The log may contain data for several processes, only entries for the
     * very first that appears are treated. */
    if (first_pid != pid) {
      continue;
    }

    /* The log contains thread ids for manual analysis, but we just ignore them
     * for now. */
    parseNumber(line.SplitChar(' '));

    Buffer func = line.SplitChar('(');
    Buffer args = line.SplitChar(')');

    /* jemalloc_stats and free are functions with no result. */
    if (func == Buffer("jemalloc_stats")) {
      replay.jemalloc_stats(args);
      continue;
    }
    if (func == Buffer("free")) {
      replay.free(args);
      continue;
    }

    /* Parse result value and get the corresponding slot. */
    Buffer dummy = line.SplitChar('=');
    Buffer dummy2 = line.SplitChar('#');
    if (dummy || dummy2) {
      die("Malformed input");
    }

    size_t slot_id = parseNumber(line);
    MemSlot& slot = replay[slot_id];

    if (func == Buffer("malloc")) {
      replay.malloc(slot, args);
    } else if (func == Buffer("posix_memalign")) {
      replay.posix_memalign(slot, args);
    } else if (func == Buffer("aligned_alloc")) {
      replay.aligned_alloc(slot, args);
    } else if (func == Buffer("calloc")) {
      replay.calloc(slot, args);
    } else if (func == Buffer("realloc")) {
      replay.realloc(slot, args);
    } else if (func == Buffer("memalign")) {
      replay.memalign(slot, args);
    } else if (func == Buffer("valloc")) {
      replay.valloc(slot, args);
    } else {
      die("Malformed input");
    }
  }

  return 0;
}