DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

import collections
import itertools
import json
import math
import os
import re
import sys
import shared_telemetry_utils as utils

from shared_telemetry_utils import ParserError
from collections import OrderedDict

# Constants.
MAX_LABEL_LENGTH = 20
MAX_LABEL_COUNT = 100
MIN_CATEGORICAL_BUCKET_COUNT = 50

BASE_DOC_URL = ("https://gecko.readthedocs.io/en/latest/toolkit/components/"
                "telemetry/telemetry/")
HISTOGRAMS_DOC_URL = (BASE_DOC_URL + "collection/histograms.html")
SCALARS_DOC_URL = (BASE_DOC_URL + "collection/scalars.html")

# histogram_tools.py is used by scripts from a mozilla-central build tree
# and also by outside consumers, such as the telemetry server.  We need
# to ensure that importing things works in both contexts.  Therefore,
# unconditionally importing things that are local to the build tree, such
# as buildconfig, is a no-no.
try:
    import buildconfig

    # Need to update sys.path to be able to find usecounters.
    sys.path.append(os.path.join(buildconfig.topsrcdir, 'dom/base/'))
except ImportError:
    # Must be in an out-of-tree usage scenario.  Trust that whoever is
    # running this script knows we need the usecounters module and has
    # ensured it's in our sys.path.
    pass


def linear_buckets(dmin, dmax, n_buckets):
    ret_array = [0] * n_buckets
    dmin = float(dmin)
    dmax = float(dmax)
    for i in range(1, n_buckets):
        linear_range = (dmin * (n_buckets - 1 - i) + dmax * (i - 1)) / (n_buckets - 2)
        ret_array[i] = int(linear_range + 0.5)
    return ret_array


def exponential_buckets(dmin, dmax, n_buckets):
    log_max = math.log(dmax)
    bucket_index = 2
    ret_array = [0] * n_buckets
    current = dmin
    ret_array[1] = current
    for bucket_index in range(2, n_buckets):
        log_current = math.log(current)
        log_ratio = (log_max - log_current) / (n_buckets - bucket_index)
        log_next = log_current + log_ratio
        next_value = int(math.floor(math.exp(log_next) + 0.5))
        if next_value > current:
            current = next_value
        else:
            current = current + 1
        ret_array[bucket_index] = current
    return ret_array

always_allowed_keys = ['kind', 'description', 'cpp_guard', 'expires_in_version',
                       'alert_emails', 'keyed', 'releaseChannelCollection',
                       'bug_numbers', 'record_in_processes']

whitelists = None
try:
    whitelist_path = os.path.join(os.path.abspath(os.path.realpath(os.path.dirname(__file__))),
                                  'histogram-whitelists.json')
    with open(whitelist_path, 'r') as f:
        try:
            whitelists = json.load(f)
            for name, whitelist in whitelists.iteritems():
                whitelists[name] = set(whitelist)
        except ValueError, e:
            raise ParserError('Error parsing whitelist: %s' % whitelist_path)
except IOError:
    whitelists = None
    print('Unable to parse whitelist: %s.\nAssuming all histograms are acceptable.' %
          whitelist_path)


class Histogram:
    """A class for representing a histogram definition."""

    def __init__(self, name, definition, strict_type_checks=False):
        """Initialize a histogram named name with the given definition.
definition is a dict-like object that must contain at least the keys:

 - 'kind': The kind of histogram.  Must be one of 'boolean', 'flag',
   'count', 'enumerated', 'linear', or 'exponential'.
 - 'description': A textual description of the histogram.
 - 'strict_type_checks': A boolean indicating whether to use the new, stricter type checks.
                         The server-side still has to deal with old, oddly typed submissions,
                         so we have to skip them there by default.

The key 'cpp_guard' is optional; if present, it denotes a preprocessor
symbol that should guard C/C++ definitions associated with the histogram."""
        self._strict_type_checks = strict_type_checks
        self._is_use_counter = name.startswith("USE_COUNTER2_")
        if self._is_use_counter:
            definition.setdefault('record_in_processes', ['main', 'content'])
        self.verify_attributes(name, definition)
        self._name = name
        self._description = definition['description']
        self._kind = definition['kind']
        self._cpp_guard = definition.get('cpp_guard')
        self._keyed = definition.get('keyed', False)
        self._expiration = definition.get('expires_in_version')
        self._labels = definition.get('labels', [])

        self.compute_bucket_parameters(definition)
        self.set_nsITelemetry_kind()
        self.set_dataset(definition)

    def name(self):
        """Return the name of the histogram."""
        return self._name

    def description(self):
        """Return the description of the histogram."""
        return self._description

    def kind(self):
        """Return the kind of the histogram.
Will be one of 'boolean', 'flag', 'count', 'enumerated', 'categorical', 'linear',
or 'exponential'."""
        return self._kind

    def expiration(self):
        """Return the expiration version of the histogram."""
        return self._expiration

    def nsITelemetry_kind(self):
        """Return the nsITelemetry constant corresponding to the kind of
the histogram."""
        return self._nsITelemetry_kind

    def low(self):
        """Return the lower bound of the histogram."""
        return self._low

    def high(self):
        """Return the high bound of the histogram."""
        return self._high

    def n_buckets(self):
        """Return the number of buckets in the histogram."""
        return self._n_buckets

    def cpp_guard(self):
        """Return the preprocessor symbol that should guard C/C++ definitions
associated with the histogram.  Returns None if no guarding is necessary."""
        return self._cpp_guard

    def keyed(self):
        """Returns True if this a keyed histogram, false otherwise."""
        return self._keyed

    def dataset(self):
        """Returns the dataset this histogram belongs into."""
        return self._dataset

    def labels(self):
        """Returns a list of labels for a categorical histogram, [] for others."""
        return self._labels

    def record_in_processes(self):
        """Returns a list of processes this histogram is permitted to record in."""
        return self.definition['record_in_processes']

    def record_in_processes_enum(self):
        """Get the non-empty list of flags representing the processes to record data in"""
        return [utils.process_name_to_enum(p) for p in self.record_in_processes]

    def ranges(self):
        """Return an array of lower bounds for each bucket in the histogram."""
        bucket_fns = {
            'boolean': linear_buckets,
            'flag': linear_buckets,
            'count': linear_buckets,
            'enumerated': linear_buckets,
            'categorical': linear_buckets,
            'linear': linear_buckets,
            'exponential': exponential_buckets,
        }

        if self._kind not in bucket_fns:
            raise ParserError('Unknown kind "%s" for histogram "%s".' % (self._kind, self._name))

        fn = bucket_fns[self._kind]
        return fn(self.low(), self.high(), self.n_buckets())

    def compute_bucket_parameters(self, definition):
        bucket_fns = {
            'boolean': Histogram.boolean_flag_bucket_parameters,
            'flag': Histogram.boolean_flag_bucket_parameters,
            'count': Histogram.boolean_flag_bucket_parameters,
            'enumerated': Histogram.enumerated_bucket_parameters,
            'categorical': Histogram.categorical_bucket_parameters,
            'linear': Histogram.linear_bucket_parameters,
            'exponential': Histogram.exponential_bucket_parameters,
        }

        if self._kind not in bucket_fns:
            raise ParserError('Unknown kind "%s" for histogram "%s".' % (self._kind, self._name))

        fn = bucket_fns[self._kind]
        self.set_bucket_parameters(*fn(definition))

    def verify_attributes(self, name, definition):
        global always_allowed_keys
        general_keys = always_allowed_keys + ['low', 'high', 'n_buckets']

        table = {
            'boolean': always_allowed_keys,
            'flag': always_allowed_keys,
            'count': always_allowed_keys,
            'enumerated': always_allowed_keys + ['n_values'],
            'categorical': always_allowed_keys + ['labels', 'n_values'],
            'linear': general_keys,
            'exponential': general_keys,
        }
        # We removed extended_statistics_ok on the client, but the server-side,
        # where _strict_type_checks==False, has to deal with historical data.
        if not self._strict_type_checks:
            table['exponential'].append('extended_statistics_ok')

        kind = definition['kind']
        if kind not in table:
            raise ParserError('Unknown kind "%s" for histogram "%s".' % (kind, name))
        allowed_keys = table[kind]

        self.check_name(name)
        self.check_keys(name, definition, allowed_keys)
        self.check_field_types(name, definition)
        self.check_whitelisted_kind(name, definition)
        self.check_whitelistable_fields(name, definition)
        self.check_expiration(name, definition)
        self.check_label_values(name, definition)
        self.check_record_in_processes(name, definition)

    def check_name(self, name):
        if '#' in name:
            raise ParserError('Error for histogram name "%s": "#" is not allowed.' % (name))

        # Avoid C++ identifier conflicts between histogram enums and label enum names.
        if name.startswith("LABELS_"):
            raise ParserError('Error for histogram name "%s":  can not start with "LABELS_".' %
                              (name))

        # To make it easier to generate C++ identifiers from this etc., we restrict
        # the histogram names to a strict pattern.
        # We skip this on the server to avoid failures with old Histogram.json revisions.
        if self._strict_type_checks:
            pattern = '^[a-z][a-z0-9_]+[a-z0-9]$'
            if not re.match(pattern, name, re.IGNORECASE):
                raise ParserError('Error for histogram name "%s": name does not conform to "%s"' %
                                  (name, pattern))

    def check_expiration(self, name, definition):
        field = 'expires_in_version'
        expiration = definition.get(field)

        if not expiration:
            return

        # We forbid new probes from using "expires_in_version" : "default" field/value pair.
        # Old ones that use this are added to the whitelist.
        if expiration == "default" and \
           whitelists is not None and \
           name not in whitelists['expiry_default']:
            raise ParserError('New histogram "%s" cannot have "default" %s value.' % (name, field))

        if re.match(r'^[1-9][0-9]*$', expiration):
            expiration = expiration + ".0a1"
        elif re.match(r'^[1-9][0-9]*\.0$', expiration):
            expiration = expiration + "a1"

        definition[field] = expiration

    def check_label_values(self, name, definition):
        labels = definition.get('labels')
        if not labels:
            return

        invalid = filter(lambda l: len(l) > MAX_LABEL_LENGTH, labels)
        if len(invalid) > 0:
            raise ParserError('Label values for "%s" exceed length limit of %d: %s' %
                              (name, MAX_LABEL_LENGTH, ', '.join(invalid)))

        if len(labels) > MAX_LABEL_COUNT:
            raise ParserError('Label count for "%s" exceeds limit of %d' %
                              (name, MAX_LABEL_COUNT))

        # To make it easier to generate C++ identifiers from this etc., we restrict
        # the label values to a strict pattern.
        pattern = '^[a-z][a-z0-9_]+[a-z0-9]$'
        invalid = filter(lambda l: not re.match(pattern, l, re.IGNORECASE), labels)
        if len(invalid) > 0:
            raise ParserError('Label values for %s are not matching pattern "%s": %s' %
                              (name, pattern, ', '.join(invalid)))

    def check_record_in_processes(self, name, definition):
        if not self._strict_type_checks:
            return

        field = 'record_in_processes'
        rip = definition.get(field)

        DOC_URL = HISTOGRAMS_DOC_URL + "#record-in-processes"

        if not rip:
            raise ParserError('Histogram "%s" must have a "%s" field:\n%s'
                              % (name, field, DOC_URL))

        for process in rip:
            if not utils.is_valid_process_name(process):
                raise ParserError('Histogram "%s" has unknown process "%s" in %s.\n%s' %
                                  (name, process, field, DOC_URL))

    def check_whitelisted_kind(self, name, definition):
        # We don't need to run any of these checks on the server.
        if not self._strict_type_checks or whitelists is None:
            return

        # Disallow "flag" and "count" histograms on desktop, suggest to use
        # scalars instead. Allow using these histograms on Android, as we
        # don't support scalars there yet.
        hist_kind = definition.get("kind")
        android_cpp_guard =\
            definition.get("cpp_guard") in ["ANDROID", "MOZ_WIDGET_ANDROID"]

        if not android_cpp_guard and \
           hist_kind in ["flag", "count"] and \
           name not in whitelists["kind"]:
            raise ParserError(('Unsupported kind "%s" for histogram "%s":\n'
                               'New "%s" histograms are not supported on Desktop, you should'
                               ' use scalars instead:\n'
                               '%s\n'
                               'Are you trying to add a histogram on Android?'
                               ' Add "cpp_guard": "ANDROID" to your histogram definition.')
                              % (hist_kind, name, hist_kind, SCALARS_DOC_URL))

    # Check for the presence of fields that old histograms are whitelisted for.
    def check_whitelistable_fields(self, name, definition):
        # Use counters don't have any mechanism to add the fields checked here,
        # so skip the check for them.
        # We also don't need to run any of these checks on the server.
        if self._is_use_counter or not self._strict_type_checks:
            return

        # In the pipeline we don't have whitelists available.
        if whitelists is None:
            return

        for field in ['alert_emails', 'bug_numbers']:
            if field not in definition and name not in whitelists[field]:
                raise ParserError('New histogram "%s" must have a "%s" field.' % (name, field))
            if field in definition and name in whitelists[field]:
                msg = 'Histogram "%s" should be removed from the whitelist for "%s" in ' \
                      'histogram-whitelists.json.'
                raise ParserError(msg % (name, field))

    def check_field_types(self, name, definition):
        # Define expected types for the histogram properties.
        type_checked_fields = {
            "n_buckets": int,
            "n_values": int,
            "low": int,
            "high": int,
            "keyed": bool,
            "expires_in_version": basestring,
            "kind": basestring,
            "description": basestring,
            "cpp_guard": basestring,
            "releaseChannelCollection": basestring,
        }

        # For list fields we check the items types.
        type_checked_list_fields = {
            "bug_numbers": int,
            "alert_emails": basestring,
            "labels": basestring,
            "record_in_processes": basestring,
        }

        # For the server-side, where _strict_type_checks==False, we want to
        # skip the stricter type checks for these fields for dealing with
        # historical data.
        coerce_fields = ["low", "high", "n_values", "n_buckets"]
        if not self._strict_type_checks:
            # This handles some old non-numeric expressions.
            EXPRESSIONS = {
                "JS::gcreason::NUM_TELEMETRY_REASONS": 101,
                "mozilla::StartupTimeline::MAX_EVENT_ID": 12,
            }

            def try_to_coerce_to_number(v):
                if v in EXPRESSIONS:
                    return EXPRESSIONS[v]
                try:
                    return eval(v, {})
                except:
                    return v
            for key in [k for k in coerce_fields if k in definition]:
                definition[key] = try_to_coerce_to_number(definition[key])
            # This handles old "keyed":"true" definitions (bug 1271986).
            if definition.get("keyed", None) == "true":
                definition["keyed"] = True

        def nice_type_name(t):
            if t is basestring:
                return "string"
            return t.__name__

        for key, key_type in type_checked_fields.iteritems():
            if key not in definition:
                continue
            if not isinstance(definition[key], key_type):
                raise ParserError('Value for key "{0}" in histogram "{1}" should be {2}.'
                                  .format(key, name, nice_type_name(key_type)))

        for key, key_type in type_checked_list_fields.iteritems():
            if key not in definition:
                continue
            if not all(isinstance(x, key_type) for x in definition[key]):
                raise ParserError('All values for list "{0}" in histogram "{1}" should be of type'
                                  ' {2}.'.format(key, name, nice_type_name(key_type)))

    def check_keys(self, name, definition, allowed_keys):
        for key in definition.iterkeys():
            if key not in allowed_keys:
                raise ParserError('Key "%s" is not allowed for histogram "%s".' % (key, name))

    def set_bucket_parameters(self, low, high, n_buckets):
        self._low = low
        self._high = high
        self._n_buckets = n_buckets
        if whitelists is not None and self._n_buckets > 100 and type(self._n_buckets) is int:
            if self._name not in whitelists['n_buckets']:
                raise ParserError(
                    'New histogram "%s" is not permitted to have more than 100 buckets.\n'
                    'Histograms with large numbers of buckets use disproportionately high'
                    ' amounts of resources. Contact a Telemetry peer (e.g. in #telemetry)'
                    ' if you think an exception ought to be made:\n'
                    'https://wiki.mozilla.org/Modules/Toolkit#Telemetry'
                    % self._name
                    )

    @staticmethod
    def boolean_flag_bucket_parameters(definition):
        return (1, 2, 3)

    @staticmethod
    def linear_bucket_parameters(definition):
        return (definition.get('low', 1),
                definition['high'],
                definition['n_buckets'])

    @staticmethod
    def enumerated_bucket_parameters(definition):
        n_values = definition['n_values']
        return (1, n_values, n_values + 1)

    @staticmethod
    def categorical_bucket_parameters(definition):
        # Categorical histograms default to 50 buckets to make working with them easier.
        # Otherwise when adding labels later we run into problems with the pipeline not
        # supporting bucket changes.
        # This can be overridden using the n_values field.
        n_values = max(len(definition['labels']),
                       definition.get('n_values', 0),
                       MIN_CATEGORICAL_BUCKET_COUNT)
        return (1, n_values, n_values + 1)

    @staticmethod
    def exponential_bucket_parameters(definition):
        return (definition.get('low', 1),
                definition['high'],
                definition['n_buckets'])

    def set_nsITelemetry_kind(self):
        # Pick a Telemetry implementation type.
        types = {
            'boolean': 'BOOLEAN',
            'flag': 'FLAG',
            'count': 'COUNT',
            'enumerated': 'LINEAR',
            'categorical': 'CATEGORICAL',
            'linear': 'LINEAR',
            'exponential': 'EXPONENTIAL',
        }

        if self._kind not in types:
            raise ParserError('Unknown kind "%s" for histogram "%s".' % (self._kind, self._name))

        self._nsITelemetry_kind = "nsITelemetry::HISTOGRAM_%s" % types[self._kind]

    def set_dataset(self, definition):
        datasets = {
            'opt-in': 'DATASET_RELEASE_CHANNEL_OPTIN',
            'opt-out': 'DATASET_RELEASE_CHANNEL_OPTOUT'
        }

        value = definition.get('releaseChannelCollection', 'opt-in')
        if value not in datasets:
            raise ParserError('Unknown value for releaseChannelCollection'
                              ' policy for histogram "%s".' % self._name)

        self._dataset = "nsITelemetry::" + datasets[value]


# This hook function loads the histograms into an OrderedDict.
# It will raise a ParserError if duplicate keys are found.
def load_histograms_into_dict(ordered_pairs, strict_type_checks):
    d = collections.OrderedDict()
    for key, value in ordered_pairs:
        if strict_type_checks and key in d:
            raise ParserError("Found duplicate key in Histograms file: %s" % key)
        d[key] = value
    return d


# We support generating histograms from multiple different input files, not
# just Histograms.json.  For each file's basename, we have a specific
# routine to parse that file, and return a dictionary mapping histogram
# names to histogram parameters.
def from_Histograms_json(filename, strict_type_checks):
    with open(filename, 'r') as f:
        try:
            def hook(ps):
                return load_histograms_into_dict(ps, strict_type_checks)
            histograms = json.load(f, object_pairs_hook=hook)
        except ValueError, e:
            raise ParserError("error parsing histograms in %s: %s" % (filename, e.message))
    return histograms


def from_UseCounters_conf(filename, strict_type_checks):
    return usecounters.generate_histograms(filename)


def from_nsDeprecatedOperationList(filename, strict_type_checks):
    operation_regex = re.compile('^DEPRECATED_OPERATION\\(([^)]+)\\)')
    histograms = collections.OrderedDict()

    with open(filename, 'r') as f:
        for line in f:
            match = operation_regex.search(line)
            if not match:
                continue

            op = match.group(1)

            def add_counter(context):
                name = 'USE_COUNTER2_DEPRECATED_%s_%s' % (op, context.upper())
                histograms[name] = {
                    'expires_in_version': 'never',
                    'kind': 'boolean',
                    'description': 'Whether a %s used %s' % (context, op)
                }
            add_counter('document')
            add_counter('page')

    return histograms

FILENAME_PARSERS = {
    'Histograms.json': from_Histograms_json,
    'nsDeprecatedOperationList.h': from_nsDeprecatedOperationList,
}

# Similarly to the dance above with buildconfig, usecounters may not be
# available, so handle that gracefully.
try:
    import usecounters

    FILENAME_PARSERS['UseCounters.conf'] = from_UseCounters_conf
except ImportError:
    pass


def from_files(filenames, strict_type_checks=True):
    """Return an iterator that provides a sequence of Histograms for
the histograms defined in filenames.
    """
    all_histograms = OrderedDict()
    for filename in filenames:
        parser = FILENAME_PARSERS[os.path.basename(filename)]
        histograms = parser(filename, strict_type_checks)

        # OrderedDicts are important, because then the iteration order over
        # the parsed histograms is stable, which makes the insertion into
        # all_histograms stable, which makes ordering in generated files
        # stable, which makes builds more deterministic.
        if not isinstance(histograms, OrderedDict):
            raise ParserError("Histogram parser did not provide an OrderedDict.")

        for (name, definition) in histograms.iteritems():
            if name in all_histograms:
                raise ParserError('Duplicate histogram name "%s".' % name)
            all_histograms[name] = definition

    # We require that all USE_COUNTER2_* histograms be defined in a contiguous
    # block.
    use_counter_indices = filter(lambda x: x[1].startswith("USE_COUNTER2_"),
                                 enumerate(all_histograms.iterkeys()))
    if use_counter_indices:
        lower_bound = use_counter_indices[0][0]
        upper_bound = use_counter_indices[-1][0]
        n_counters = upper_bound - lower_bound + 1
        if n_counters != len(use_counter_indices):
            raise ParserError("Use counter histograms must be defined in a contiguous block.")

    # Check that histograms that were removed from Histograms.json etc.
    # are also removed from the whitelists.
    if whitelists is not None:
        all_whitelist_entries = itertools.chain.from_iterable(whitelists.itervalues())
        orphaned = set(all_whitelist_entries) - set(all_histograms.keys())
        if len(orphaned) > 0:
            msg = 'The following entries are orphaned and should be removed from ' \
                  'histogram-whitelists.json:\n%s'
            raise ParserError(msg % (', '.join(sorted(orphaned))))

    for (name, definition) in all_histograms.iteritems():
        yield Histogram(name, definition, strict_type_checks=strict_type_checks)