DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "OpusTrackEncoder.h"
#include "nsString.h"
#include "GeckoProfiler.h"

#include <opus/opus.h>

#undef LOG
#ifdef MOZ_WIDGET_GONK
#include <android/log.h>
#define LOG(args...) __android_log_print(ANDROID_LOG_INFO, "MediaEncoder", ## args);
#else
#define LOG(args, ...)
#endif

namespace mozilla {

// The Opus format supports up to 8 channels, and supports multitrack audio up
// to 255 channels, but the current implementation supports only mono and
// stereo, and downmixes any more than that.
static const int MAX_SUPPORTED_AUDIO_CHANNELS = 8;

// http://www.opus-codec.org/docs/html_api-1.0.2/group__opus__encoder.html
// In section "opus_encoder_init", channels must be 1 or 2 of input signal.
static const int MAX_CHANNELS = 2;

// A maximum data bytes for Opus to encode.
static const int MAX_DATA_BYTES = 4096;

// http://tools.ietf.org/html/draft-ietf-codec-oggopus-00#section-4
// Second paragraph, " The granule position of an audio data page is in units
// of PCM audio samples at a fixed rate of 48 kHz."
static const int kOpusSamplingRate = 48000;

// The duration of an Opus frame, and it must be 2.5, 5, 10, 20, 40 or 60 ms.
static const int kFrameDurationMs  = 20;

// The supported sampling rate of input signal (Hz),
// must be one of the following. Will resampled to 48kHz otherwise.
static const int kOpusSupportedInputSamplingRates[] =
                   {8000, 12000, 16000, 24000, 48000};

namespace {

// An endian-neutral serialization of integers. Serializing T in little endian
// format to aOutput, where T is a 16 bits or 32 bits integer.
template<typename T>
static void
SerializeToBuffer(T aValue, nsTArray<uint8_t>* aOutput)
{
  for (uint32_t i = 0; i < sizeof(T); i++) {
    aOutput->AppendElement((uint8_t)(0x000000ff & (aValue >> (i * 8))));
  }
}

static inline void
SerializeToBuffer(const nsCString& aComment, nsTArray<uint8_t>* aOutput)
{
  // Format of serializing a string to buffer is, the length of string (32 bits,
  // little endian), and the string.
  SerializeToBuffer((uint32_t)(aComment.Length()), aOutput);
  aOutput->AppendElements(aComment.get(), aComment.Length());
}


static void
SerializeOpusIdHeader(uint8_t aChannelCount, uint16_t aPreskip,
                      uint32_t aInputSampleRate, nsTArray<uint8_t>* aOutput)
{
  // The magic signature, null terminator has to be stripped off from strings.
  static const uint8_t magic[] = "OpusHead";
  aOutput->AppendElements(magic, sizeof(magic) - 1);

  // The version must always be 1 (8 bits, unsigned).
  aOutput->AppendElement(1);

  // Number of output channels (8 bits, unsigned).
  aOutput->AppendElement(aChannelCount);

  // Number of samples (at 48 kHz) to discard from the decoder output when
  // starting playback (16 bits, unsigned, little endian).
  SerializeToBuffer(aPreskip, aOutput);

  // The sampling rate of input source (32 bits, unsigned, little endian).
  SerializeToBuffer(aInputSampleRate, aOutput);

  // Output gain, an encoder should set this field to zero (16 bits, signed,
  // little endian).
  SerializeToBuffer((int16_t)0, aOutput);

  // Channel mapping family. Family 0 allows only 1 or 2 channels (8 bits,
  // unsigned).
  aOutput->AppendElement(0);
}

static void
SerializeOpusCommentHeader(const nsCString& aVendor,
                           const nsTArray<nsCString>& aComments,
                           nsTArray<uint8_t>* aOutput)
{
  // The magic signature, null terminator has to be stripped off.
  static const uint8_t magic[] = "OpusTags";
  aOutput->AppendElements(magic, sizeof(magic) - 1);

  // The vendor; Should append in the following order:
  // vendor string length (32 bits, unsigned, little endian)
  // vendor string.
  SerializeToBuffer(aVendor, aOutput);

  // Add comments; Should append in the following order:
  // comment list length (32 bits, unsigned, little endian)
  // comment #0 string length (32 bits, unsigned, little endian)
  // comment #0 string
  // comment #1 string length (32 bits, unsigned, little endian)
  // comment #1 string ...
  SerializeToBuffer((uint32_t)aComments.Length(), aOutput);
  for (uint32_t i = 0; i < aComments.Length(); ++i) {
    SerializeToBuffer(aComments[i], aOutput);
  }
}

}  // Anonymous namespace.

OpusTrackEncoder::OpusTrackEncoder()
  : AudioTrackEncoder()
  , mEncoder(nullptr)
  , mLookahead(0)
  , mResampler(nullptr)
  , mOutputTimeStamp(0)
{
}

OpusTrackEncoder::~OpusTrackEncoder()
{
  if (mEncoder) {
    opus_encoder_destroy(mEncoder);
  }
  if (mResampler) {
    speex_resampler_destroy(mResampler);
    mResampler = nullptr;
  }
}

nsresult
OpusTrackEncoder::Init(int aChannels, int aSamplingRate)
{
  // This monitor is used to wake up other methods that are waiting for encoder
  // to be completely initialized.
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  NS_ENSURE_TRUE((aChannels <= MAX_SUPPORTED_AUDIO_CHANNELS) && (aChannels > 0),
                 NS_ERROR_FAILURE);

  // This version of encoder API only support 1 or 2 channels,
  // So set the mChannels less or equal 2 and
  // let InterleaveTrackData downmix pcm data.
  mChannels = aChannels > MAX_CHANNELS ? MAX_CHANNELS : aChannels;

  // Reject non-audio sample rates.
  NS_ENSURE_TRUE(aSamplingRate >= 8000, NS_ERROR_INVALID_ARG);
  NS_ENSURE_TRUE(aSamplingRate <= 192000, NS_ERROR_INVALID_ARG);

  // According to www.opus-codec.org, creating an opus encoder requires the
  // sampling rate of source signal be one of 8000, 12000, 16000, 24000, or
  // 48000. If this constraint is not satisfied, we resample the input to 48kHz.
  nsTArray<int> supportedSamplingRates;
  supportedSamplingRates.AppendElements(kOpusSupportedInputSamplingRates,
                         ArrayLength(kOpusSupportedInputSamplingRates));
  if (!supportedSamplingRates.Contains(aSamplingRate)) {
    int error;
    mResampler = speex_resampler_init(mChannels,
                                      aSamplingRate,
                                      kOpusSamplingRate,
                                      SPEEX_RESAMPLER_QUALITY_DEFAULT,
                                      &error);

    if (error != RESAMPLER_ERR_SUCCESS) {
      return NS_ERROR_FAILURE;
    }
  }
  mSamplingRate = aSamplingRate;
  NS_ENSURE_TRUE(mSamplingRate > 0, NS_ERROR_FAILURE);

  int error = 0;
  mEncoder = opus_encoder_create(GetOutputSampleRate(), mChannels,
                                 OPUS_APPLICATION_AUDIO, &error);


  mInitialized = (error == OPUS_OK);

  if (mAudioBitrate) {
    opus_encoder_ctl(mEncoder, OPUS_SET_BITRATE(static_cast<int>(mAudioBitrate)));
  }

  mReentrantMonitor.NotifyAll();

  return error == OPUS_OK ? NS_OK : NS_ERROR_FAILURE;
}

int
OpusTrackEncoder::GetOutputSampleRate()
{
  return mResampler ? kOpusSamplingRate : mSamplingRate;
}

int
OpusTrackEncoder::GetPacketDuration()
{
  return GetOutputSampleRate() * kFrameDurationMs / 1000;
}

already_AddRefed<TrackMetadataBase>
OpusTrackEncoder::GetMetadata()
{
  PROFILER_LABEL("OpusTrackEncoder", "GetMetadata",
    js::ProfileEntry::Category::OTHER);
  {
    // Wait if mEncoder is not initialized.
    ReentrantMonitorAutoEnter mon(mReentrantMonitor);
    while (!mCanceled && !mInitialized) {
      mReentrantMonitor.Wait();
    }
  }

  if (mCanceled || mEncodingComplete) {
    return nullptr;
  }

  RefPtr<OpusMetadata> meta = new OpusMetadata();
  meta->mChannels = mChannels;
  meta->mSamplingFrequency = mSamplingRate;

  mLookahead = 0;
  int error = opus_encoder_ctl(mEncoder, OPUS_GET_LOOKAHEAD(&mLookahead));
  if (error != OPUS_OK) {
    mLookahead = 0;
  }

  // The ogg time stamping and pre-skip is always timed at 48000.
  SerializeOpusIdHeader(mChannels, mLookahead * (kOpusSamplingRate /
                        GetOutputSampleRate()), mSamplingRate,
                        &meta->mIdHeader);

  nsCString vendor;
  vendor.AppendASCII(opus_get_version_string());

  nsTArray<nsCString> comments;
  comments.AppendElement(NS_LITERAL_CSTRING("ENCODER=Mozilla" MOZ_APP_UA_VERSION));

  SerializeOpusCommentHeader(vendor, comments,
                             &meta->mCommentHeader);

  return meta.forget();
}

nsresult
OpusTrackEncoder::GetEncodedTrack(EncodedFrameContainer& aData)
{
  PROFILER_LABEL("OpusTrackEncoder", "GetEncodedTrack",
    js::ProfileEntry::Category::OTHER);
  {
    ReentrantMonitorAutoEnter mon(mReentrantMonitor);
    // Wait until initialized or cancelled.
    while (!mCanceled && !mInitialized) {
      mReentrantMonitor.Wait();
    }
    if (mCanceled || mEncodingComplete) {
      return NS_ERROR_FAILURE;
    }
  }

  // calculation below depends on the truth that mInitialized is true.
  MOZ_ASSERT(mInitialized);

  bool wait = true;
  int result = 0;
  // Only wait once, then loop until we run out of packets of input data
  while (result >= 0 && !mEncodingComplete) {
    // re-sampled frames left last time which didn't fit into an Opus packet duration.
    const int framesLeft = mResampledLeftover.Length() / mChannels;
    // When framesLeft is 0, (GetPacketDuration() - framesLeft) is a multiple
    // of kOpusSamplingRate. There is not precision loss in the integer division
    // in computing framesToFetch. If frameLeft > 0, we need to add 1 to
    // framesToFetch to ensure there will be at least n frames after re-sampling.
    const int frameRoundUp = framesLeft ? 1 : 0;

    MOZ_ASSERT(GetPacketDuration() >= framesLeft);
    // Try to fetch m frames such that there will be n frames
    // where (n + frameLeft) >= GetPacketDuration() after re-sampling.
    const int framesToFetch = !mResampler ? GetPacketDuration()
                              : (GetPacketDuration() - framesLeft) * mSamplingRate / kOpusSamplingRate
                              + frameRoundUp;
    {
      // Move all the samples from mRawSegment to mSourceSegment. We only hold
      // the monitor in this block.
      ReentrantMonitorAutoEnter mon(mReentrantMonitor);

      // Wait until enough raw data, end of stream or cancelled.
      while (!mCanceled && mRawSegment.GetDuration() +
             mSourceSegment.GetDuration() < framesToFetch &&
             !mEndOfStream) {
        if (wait) {
          mReentrantMonitor.Wait();
          wait = false;
        } else {
          goto done; // nested while's...
        }
      }

      if (mCanceled) {
        return NS_ERROR_FAILURE;
      }

      mSourceSegment.AppendFrom(&mRawSegment);

      // Pad |mLookahead| samples to the end of source stream to prevent lost of
      // original data, the pcm duration will be calculated at rate 48K later.
      if (mEndOfStream && !mEosSetInEncoder) {
        mEosSetInEncoder = true;
        mSourceSegment.AppendNullData(mLookahead);
      }
    }

    // Start encoding data.
    AutoTArray<AudioDataValue, 9600> pcm;
    pcm.SetLength(GetPacketDuration() * mChannels);
    AudioSegment::ChunkIterator iter(mSourceSegment);
    int frameCopied = 0;

    while (!iter.IsEnded() && frameCopied < framesToFetch) {
      AudioChunk chunk = *iter;

      // Chunk to the required frame size.
      int frameToCopy = chunk.GetDuration();
      if (frameCopied + frameToCopy > framesToFetch) {
        frameToCopy = framesToFetch - frameCopied;
      }

      if (!chunk.IsNull()) {
        // Append the interleaved data to the end of pcm buffer.
        AudioTrackEncoder::InterleaveTrackData(chunk, frameToCopy, mChannels,
                                               pcm.Elements() + frameCopied * mChannels);
      } else {
        memset(pcm.Elements() + frameCopied * mChannels, 0,
               frameToCopy * mChannels * sizeof(AudioDataValue));
      }

      frameCopied += frameToCopy;
      iter.Next();
    }

    RefPtr<EncodedFrame> audiodata = new EncodedFrame();
    audiodata->SetFrameType(EncodedFrame::OPUS_AUDIO_FRAME);
    int framesInPCM = frameCopied;
    if (mResampler) {
      AutoTArray<AudioDataValue, 9600> resamplingDest;
      // We want to consume all the input data, so we slightly oversize the
      // resampled data buffer so we can fit the output data in. We cannot really
      // predict the output frame count at each call.
      uint32_t outframes = frameCopied * kOpusSamplingRate / mSamplingRate + 1;
      uint32_t inframes = frameCopied;

      resamplingDest.SetLength(outframes * mChannels);

#if MOZ_SAMPLE_TYPE_S16
      short* in = reinterpret_cast<short*>(pcm.Elements());
      short* out = reinterpret_cast<short*>(resamplingDest.Elements());
      speex_resampler_process_interleaved_int(mResampler, in, &inframes,
                                              out, &outframes);
#else
      float* in = reinterpret_cast<float*>(pcm.Elements());
      float* out = reinterpret_cast<float*>(resamplingDest.Elements());
      speex_resampler_process_interleaved_float(mResampler, in, &inframes,
                                                out, &outframes);
#endif

      MOZ_ASSERT(pcm.Length() >= mResampledLeftover.Length());
      PodCopy(pcm.Elements(), mResampledLeftover.Elements(),
              mResampledLeftover.Length());

      uint32_t outframesToCopy = std::min(outframes,
                                          static_cast<uint32_t>(GetPacketDuration() - framesLeft));

      MOZ_ASSERT(pcm.Length() - mResampledLeftover.Length() >=
                 outframesToCopy * mChannels);
      PodCopy(pcm.Elements() + mResampledLeftover.Length(),
              resamplingDest.Elements(), outframesToCopy * mChannels);
      int frameLeftover = outframes - outframesToCopy;
      mResampledLeftover.SetLength(frameLeftover * mChannels);
      PodCopy(mResampledLeftover.Elements(),
              resamplingDest.Elements() + outframesToCopy * mChannels,
              mResampledLeftover.Length());
      // This is always at 48000Hz.
      framesInPCM = framesLeft + outframesToCopy;
      audiodata->SetDuration(framesInPCM);
    } else {
      // The ogg time stamping and pre-skip is always timed at 48000.
      audiodata->SetDuration(frameCopied * (kOpusSamplingRate / mSamplingRate));
    }

    // Remove the raw data which has been pulled to pcm buffer.
    // The value of frameCopied should equal to (or smaller than, if eos)
    // GetPacketDuration().
    mSourceSegment.RemoveLeading(frameCopied);

    // Has reached the end of input stream and all queued data has pulled for
    // encoding.
    if (mSourceSegment.GetDuration() == 0 && mEosSetInEncoder) {
      mEncodingComplete = true;
      LOG("[Opus] Done encoding.");
    }

    MOZ_ASSERT(mEosSetInEncoder || framesInPCM == GetPacketDuration());

    // Append null data to pcm buffer if the leftover data is not enough for
    // opus encoder.
    if (framesInPCM < GetPacketDuration() && mEosSetInEncoder) {
      PodZero(pcm.Elements() + framesInPCM * mChannels,
              (GetPacketDuration() - framesInPCM) * mChannels);
    }
    nsTArray<uint8_t> frameData;
    // Encode the data with Opus Encoder.
    frameData.SetLength(MAX_DATA_BYTES);
    // result is returned as opus error code if it is negative.
    result = 0;
#ifdef MOZ_SAMPLE_TYPE_S16
    const opus_int16* pcmBuf = static_cast<opus_int16*>(pcm.Elements());
    result = opus_encode(mEncoder, pcmBuf, GetPacketDuration(),
                         frameData.Elements(), MAX_DATA_BYTES);
#else
    const float* pcmBuf = static_cast<float*>(pcm.Elements());
    result = opus_encode_float(mEncoder, pcmBuf, GetPacketDuration(),
                               frameData.Elements(), MAX_DATA_BYTES);
#endif
    frameData.SetLength(result >= 0 ? result : 0);

    if (result < 0) {
      LOG("[Opus] Fail to encode data! Result: %s.", opus_strerror(result));
    }
    if (mEncodingComplete) {
      if (mResampler) {
        speex_resampler_destroy(mResampler);
        mResampler = nullptr;
      }
      mResampledLeftover.SetLength(0);
    }

    audiodata->SwapInFrameData(frameData);
    // timestamp should be the time of the first sample
    audiodata->SetTimeStamp(mOutputTimeStamp);
    mOutputTimeStamp += FramesToUsecs(GetPacketDuration(), kOpusSamplingRate).value();
    LOG("[Opus] mOutputTimeStamp %lld.",mOutputTimeStamp);
    aData.AppendEncodedFrame(audiodata);
  }
done:
  return result >= 0 ? NS_OK : NS_ERROR_FAILURE;
}

} // namespace mozilla