DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_AUDIONODESTREAM_H_
#define MOZILLA_AUDIONODESTREAM_H_

#include "MediaStreamGraph.h"
#include "mozilla/dom/AudioNodeBinding.h"
#include "AudioBlock.h"

namespace mozilla {

namespace dom {
struct ThreeDPoint;
struct AudioTimelineEvent;
class AudioContext;
} // namespace dom

class ThreadSharedFloatArrayBufferList;
class AudioNodeEngine;

/**
 * An AudioNodeStream produces one audio track with ID AUDIO_TRACK.
 * The start time of the AudioTrack is aligned to the start time of the
 * AudioContext's destination node stream, plus some multiple of BLOCK_SIZE
 * samples.
 *
 * An AudioNodeStream has an AudioNodeEngine plugged into it that does the
 * actual audio processing. AudioNodeStream contains the glue code that
 * integrates audio processing with the MediaStreamGraph.
 */
class AudioNodeStream : public ProcessedMediaStream
{
  typedef dom::ChannelCountMode ChannelCountMode;
  typedef dom::ChannelInterpretation ChannelInterpretation;

public:
  typedef mozilla::dom::AudioContext AudioContext;

  enum { AUDIO_TRACK = 1 };

  typedef AutoTArray<AudioBlock, 1> OutputChunks;

  // Flags re main thread updates and stream output.
  typedef unsigned Flags;
  enum : Flags {
    NO_STREAM_FLAGS = 0U,
    NEED_MAIN_THREAD_FINISHED = 1U << 0,
    NEED_MAIN_THREAD_CURRENT_TIME = 1U << 1,
    // Internal AudioNodeStreams can only pass their output to another
    // AudioNode, whereas external AudioNodeStreams can pass their output
    // to other ProcessedMediaStreams or hardware audio output.
    EXTERNAL_OUTPUT = 1U << 2,
  };
  /**
   * Create a stream that will process audio for an AudioNode.
   * Takes ownership of aEngine.
   * If aGraph is non-null, use that as the MediaStreamGraph, otherwise use
   * aCtx's graph. aGraph is only non-null when called for AudioDestinationNode
   * since the context's graph hasn't been set up in that case.
   */
  static already_AddRefed<AudioNodeStream>
  Create(AudioContext* aCtx, AudioNodeEngine* aEngine, Flags aKind,
         MediaStreamGraph* aGraph = nullptr);

protected:
  /**
   * Transfers ownership of aEngine to the new AudioNodeStream.
   */
  AudioNodeStream(AudioNodeEngine* aEngine,
                  Flags aFlags,
                  TrackRate aSampleRate);

  ~AudioNodeStream();

public:
  // Control API
  /**
   * Sets a parameter that's a time relative to some stream's played time.
   * This time is converted to a time relative to this stream when it's set.
   */
  void SetStreamTimeParameter(uint32_t aIndex, AudioContext* aContext,
                              double aStreamTime);
  void SetDoubleParameter(uint32_t aIndex, double aValue);
  void SetInt32Parameter(uint32_t aIndex, int32_t aValue);
  void SetThreeDPointParameter(uint32_t aIndex, const dom::ThreeDPoint& aValue);
  void SetBuffer(already_AddRefed<ThreadSharedFloatArrayBufferList>&& aBuffer);
  // This sends a single event to the timeline on the MSG thread side.
  void SendTimelineEvent(uint32_t aIndex, const dom::AudioTimelineEvent& aEvent);
  // This consumes the contents of aData.  aData will be emptied after this returns.
  void SetRawArrayData(nsTArray<float>& aData);
  void SetChannelMixingParameters(uint32_t aNumberOfChannels,
                                  ChannelCountMode aChannelCountMoe,
                                  ChannelInterpretation aChannelInterpretation);
  void SetPassThrough(bool aPassThrough);
  ChannelInterpretation GetChannelInterpretation()
  {
    return mChannelInterpretation;
  }

  void SetAudioParamHelperStream()
  {
    MOZ_ASSERT(!mAudioParamStream, "Can only do this once");
    mAudioParamStream = true;
  }

  /*
   * Resume stream after updating its concept of current time by aAdvance.
   * Main thread.  Used only from AudioDestinationNode when resuming a stream
   * suspended to save running the MediaStreamGraph when there are no other
   * nodes in the AudioContext.
   */
  void AdvanceAndResume(StreamTime aAdvance);

  AudioNodeStream* AsAudioNodeStream() override { return this; }
  void AddInput(MediaInputPort* aPort) override;
  void RemoveInput(MediaInputPort* aPort) override;

  // Graph thread only
  void SetStreamTimeParameterImpl(uint32_t aIndex, MediaStream* aRelativeToStream,
                                  double aStreamTime);
  void SetChannelMixingParametersImpl(uint32_t aNumberOfChannels,
                                      ChannelCountMode aChannelCountMoe,
                                      ChannelInterpretation aChannelInterpretation);
  void ProcessInput(GraphTime aFrom, GraphTime aTo, uint32_t aFlags) override;
  /**
   * Produce the next block of output, before input is provided.
   * ProcessInput() will be called later, and it then should not change
   * the output.  This is used only for DelayNodeEngine in a feedback loop.
   */
  void ProduceOutputBeforeInput(GraphTime aFrom);
  bool IsAudioParamStream() const
  {
    return mAudioParamStream;
  }

  const OutputChunks& LastChunks() const
  {
    return mLastChunks;
  }
  bool MainThreadNeedsUpdates() const override
  {
    return ((mFlags & NEED_MAIN_THREAD_FINISHED) && mFinished) ||
      (mFlags & NEED_MAIN_THREAD_CURRENT_TIME);
  }

  // Any thread
  AudioNodeEngine* Engine() { return mEngine; }
  TrackRate SampleRate() const { return mSampleRate; }

  size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const override;
  size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override;

  void SizeOfAudioNodesIncludingThis(MallocSizeOf aMallocSizeOf,
                                     AudioNodeSizes& aUsage) const;

  /*
   * SetActive() is called when either an active input is added or the engine
   * for a source node transitions from inactive to active.  This is not
   * called from engines for processing nodes because they only become active
   * when there are active input streams, in which case this stream is already
   * active.
   */
  void SetActive();
  /*
   * ScheduleCheckForInactive() is called during stream processing when the
   * engine transitions from active to inactive, or the stream finishes.  It
   * schedules a call to CheckForInactive() after stream processing.
   */
  void ScheduleCheckForInactive();

protected:
  class AdvanceAndResumeMessage;
  class CheckForInactiveMessage;

  void DestroyImpl() override;

  /*
   * CheckForInactive() is called when the engine transitions from active to
   * inactive, or an active input is removed, or the stream finishes.  If the
   * stream is now inactive, then mInputChunks will be cleared and mLastChunks
   * will be set to null.  ProcessBlock() will not be called on the engine
   * again until SetActive() is called.
   */
  void CheckForInactive();

  void AdvanceOutputSegment();
  void FinishOutput();
  void AccumulateInputChunk(uint32_t aInputIndex, const AudioBlock& aChunk,
                            AudioBlock* aBlock,
                            nsTArray<float>* aDownmixBuffer);
  void UpMixDownMixChunk(const AudioBlock* aChunk, uint32_t aOutputChannelCount,
                         nsTArray<const float*>& aOutputChannels,
                         nsTArray<float>& aDownmixBuffer);

  uint32_t ComputedNumberOfChannels(uint32_t aInputChannelCount);
  void ObtainInputBlock(AudioBlock& aTmpChunk, uint32_t aPortIndex);
  void IncrementActiveInputCount();
  void DecrementActiveInputCount();

  // The engine that will generate output for this node.
  nsAutoPtr<AudioNodeEngine> mEngine;
  // The mixed input blocks are kept from iteration to iteration to avoid
  // reallocating channel data arrays and any buffers for mixing.
  OutputChunks mInputChunks;
  // The last block produced by this node.
  OutputChunks mLastChunks;
  // The stream's sampling rate
  const TrackRate mSampleRate;
  // Whether this is an internal or external stream
  const Flags mFlags;
  // The number of input streams that may provide non-silent input.
  uint32_t mActiveInputCount = 0;
  // The number of input channels that this stream requires. 0 means don't care.
  uint32_t mNumberOfInputChannels;
  // The mixing modes
  ChannelCountMode mChannelCountMode;
  ChannelInterpretation mChannelInterpretation;
  // Streams are considered active if the stream has not finished and either
  // the engine is active or there are active input streams.
  bool mIsActive;
  // Whether the stream should be marked as finished as soon
  // as the current time range has been computed block by block.
  bool mMarkAsFinishedAfterThisBlock;
  // Whether the stream is an AudioParamHelper stream.
  bool mAudioParamStream;
  // Whether the stream just passes its input through.
  bool mPassThrough;
};

} // namespace mozilla

#endif /* MOZILLA_AUDIONODESTREAM_H_ */