DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/ValueNumbering.h"

#include "jit/AliasAnalysis.h"
#include "jit/IonAnalysis.h"
#include "jit/JitSpewer.h"
#include "jit/MIRGenerator.h"

using namespace js;
using namespace js::jit;

/*
 * Some notes on the main algorithm here:
 *  - The SSA identifier id() is the value number. We do replaceAllUsesWith as
 *    we go, so there's always at most one visible value with a given number.
 *
 *  - Consequently, the GVN algorithm is effectively pessimistic. This means it
 *    is not as powerful as an optimistic GVN would be, but it is simpler and
 *    faster.
 *
 *  - We iterate in RPO, so that when visiting a block, we've already optimized
 *    and hashed all values in dominating blocks. With occasional exceptions,
 *    this allows us to do everything in a single pass.
 *
 *  - When we do use multiple passes, we just re-run the algorithm on the whole
 *    graph instead of doing sparse propagation. This is a tradeoff to keep the
 *    algorithm simpler and lighter on inputs that don't have a lot of
 *    interesting unreachable blocks or degenerate loop induction variables, at
 *    the expense of being slower on inputs that do. The loop for this always
 *    terminates, because it only iterates when code is or will be removed, so
 *    eventually it must stop iterating.
 *
 *  - Values are not immediately removed from the hash set when they go out of
 *    scope. Instead, we check for dominance after a lookup. If the dominance
 *    check fails, the value is removed.
 */

HashNumber
ValueNumberer::VisibleValues::ValueHasher::hash(Lookup ins)
{
    return ins->valueHash();
}

// Test whether two MDefinitions are congruent.
bool
ValueNumberer::VisibleValues::ValueHasher::match(Key k, Lookup l)
{
    // If one of the instructions depends on a store, and the other instruction
    // does not depend on the same store, the instructions are not congruent.
    if (k->dependency() != l->dependency())
        return false;

    bool congruent = k->congruentTo(l); // Ask the values themselves what they think.
#ifdef JS_JITSPEW
    if (congruent != l->congruentTo(k)) {
       JitSpew(JitSpew_GVN, "      congruentTo relation is not symmetric between %s%u and %s%u!!",
               k->opName(), k->id(),
               l->opName(), l->id());
    }
#endif
    return congruent;
}

void
ValueNumberer::VisibleValues::ValueHasher::rekey(Key& k, Key newKey)
{
    k = newKey;
}

ValueNumberer::VisibleValues::VisibleValues(TempAllocator& alloc)
  : set_(alloc)
{}

// Initialize the set.
bool
ValueNumberer::VisibleValues::init()
{
    return set_.init();
}

// Look up the first entry for |def|.
ValueNumberer::VisibleValues::Ptr
ValueNumberer::VisibleValues::findLeader(const MDefinition* def) const
{
    return set_.lookup(def);
}

// Look up the first entry for |def|.
ValueNumberer::VisibleValues::AddPtr
ValueNumberer::VisibleValues::findLeaderForAdd(MDefinition* def)
{
    return set_.lookupForAdd(def);
}

// Insert a value into the set.
bool
ValueNumberer::VisibleValues::add(AddPtr p, MDefinition* def)
{
    return set_.add(p, def);
}

// Insert a value onto the set overwriting any existing entry.
void
ValueNumberer::VisibleValues::overwrite(AddPtr p, MDefinition* def)
{
    set_.replaceKey(p, def);
}

// |def| will be discarded, so remove it from any sets.
void
ValueNumberer::VisibleValues::forget(const MDefinition* def)
{
    Ptr p = set_.lookup(def);
    if (p && *p == def)
        set_.remove(p);
}

// Clear all state.
void
ValueNumberer::VisibleValues::clear()
{
    set_.clear();
}

#ifdef DEBUG
// Test whether |def| is in the set.
bool
ValueNumberer::VisibleValues::has(const MDefinition* def) const
{
    Ptr p = set_.lookup(def);
    return p && *p == def;
}
#endif

// Call MDefinition::justReplaceAllUsesWith, and add some GVN-specific asserts.
static void
ReplaceAllUsesWith(MDefinition* from, MDefinition* to)
{
    MOZ_ASSERT(from != to, "GVN shouldn't try to replace a value with itself");
    MOZ_ASSERT(from->type() == to->type(), "Def replacement has different type");
    MOZ_ASSERT(!to->isDiscarded(), "GVN replaces an instruction by a removed instruction");

    // We don't need the extra setting of UseRemoved flags that the regular
    // replaceAllUsesWith does because we do it ourselves.
    from->justReplaceAllUsesWith(to);
}

// Test whether |succ| is a successor of |block|.
static bool
HasSuccessor(const MControlInstruction* block, const MBasicBlock* succ)
{
    for (size_t i = 0, e = block->numSuccessors(); i != e; ++i) {
        if (block->getSuccessor(i) == succ)
            return true;
    }
    return false;
}

// Given a block which has had predecessors removed but is still reachable, test
// whether the block's new dominator will be closer than its old one and whether
// it will expose potential optimization opportunities.
static MBasicBlock*
ComputeNewDominator(MBasicBlock* block, MBasicBlock* old)
{
    MBasicBlock* now = block->getPredecessor(0);
    for (size_t i = 1, e = block->numPredecessors(); i < e; ++i) {
        MBasicBlock* pred = block->getPredecessor(i);
        // Note that dominators haven't been recomputed yet, so we have to check
        // whether now dominates pred, not block.
        while (!now->dominates(pred)) {
            MBasicBlock* next = now->immediateDominator();
            if (next == old)
                return old;
            if (next == now) {
                MOZ_ASSERT(block == old, "Non-self-dominating block became self-dominating");
                return block;
            }
            now = next;
        }
    }
    MOZ_ASSERT(old != block || old != now, "Missed self-dominating block staying self-dominating");
    return now;
}

// Test for any defs which look potentially interesting to GVN.
static bool
BlockHasInterestingDefs(MBasicBlock* block)
{
    return !block->phisEmpty() || *block->begin() != block->lastIns();
}

// Walk up the dominator tree from |block| to the root and test for any defs
// which look potentially interesting to GVN.
static bool
ScanDominatorsForDefs(MBasicBlock* block)
{
    for (MBasicBlock* i = block;;) {
        if (BlockHasInterestingDefs(block))
            return true;

        MBasicBlock* immediateDominator = i->immediateDominator();
        if (immediateDominator == i)
            break;
        i = immediateDominator;
    }
    return false;
}

// Walk up the dominator tree from |now| to |old| and test for any defs which
// look potentially interesting to GVN.
static bool
ScanDominatorsForDefs(MBasicBlock* now, MBasicBlock* old)
{
    MOZ_ASSERT(old->dominates(now), "Refined dominator not dominated by old dominator");

    for (MBasicBlock* i = now; i != old; i = i->immediateDominator()) {
        if (BlockHasInterestingDefs(i))
            return true;
    }
    return false;
}

// Given a block which has had predecessors removed but is still reachable, test
// whether the block's new dominator will be closer than its old one and whether
// it will expose potential optimization opportunities.
static bool
IsDominatorRefined(MBasicBlock* block)
{
    MBasicBlock* old = block->immediateDominator();
    MBasicBlock* now = ComputeNewDominator(block, old);

    // If this block is just a goto and it doesn't dominate its destination,
    // removing its predecessors won't refine the dominators of anything
    // interesting.
    MControlInstruction* control = block->lastIns();
    if (*block->begin() == control && block->phisEmpty() && control->isGoto() &&
        !block->dominates(control->toGoto()->target()))
    {
        return false;
    }

    // We've computed block's new dominator. Test whether there are any
    // newly-dominating definitions which look interesting.
    if (block == old)
        return block != now && ScanDominatorsForDefs(now);
    MOZ_ASSERT(block != now, "Non-self-dominating block became self-dominating");
    return ScanDominatorsForDefs(now, old);
}

// |def| has just had one of its users release it. If it's now dead, enqueue it
// for discarding, otherwise just make note of it.
bool
ValueNumberer::handleUseReleased(MDefinition* def, UseRemovedOption useRemovedOption)
{
    if (IsDiscardable(def)) {
        values_.forget(def);
        if (!deadDefs_.append(def))
            return false;
    } else {
        if (useRemovedOption == SetUseRemoved)
            def->setUseRemovedUnchecked();
    }
    return true;
}

// Discard |def| and anything in its use-def subtree which is no longer needed.
bool
ValueNumberer::discardDefsRecursively(MDefinition* def)
{
    MOZ_ASSERT(deadDefs_.empty(), "deadDefs_ not cleared");

    return discardDef(def) && processDeadDefs();
}

// Assuming |resume| is unreachable, release its operands.
// It might be nice to integrate this code with prepareForDiscard, however GVN
// needs it to call handleUseReleased so that it can observe when a definition
// becomes unused, so it isn't trivial to do.
bool
ValueNumberer::releaseResumePointOperands(MResumePoint* resume)
{
    for (size_t i = 0, e = resume->numOperands(); i < e; ++i) {
        if (!resume->hasOperand(i))
            continue;
        MDefinition* op = resume->getOperand(i);
        resume->releaseOperand(i);

        // We set the UseRemoved flag when removing resume point operands,
        // because even though we may think we're certain that a particular
        // branch might not be taken, the type information might be incomplete.
        if (!handleUseReleased(op, SetUseRemoved))
            return false;
    }
    return true;
}

// Assuming |phi| is dead, release and remove its operands. If an operand
// becomes dead, push it to the discard worklist.
bool
ValueNumberer::releaseAndRemovePhiOperands(MPhi* phi)
{
    // MPhi saves operands in a vector so we iterate in reverse.
    for (int o = phi->numOperands() - 1; o >= 0; --o) {
        MDefinition* op = phi->getOperand(o);
        phi->removeOperand(o);
        if (!handleUseReleased(op, DontSetUseRemoved))
            return false;
    }
    return true;
}

// Assuming |def| is dead, release its operands. If an operand becomes dead,
// push it to the discard worklist.
bool
ValueNumberer::releaseOperands(MDefinition* def)
{
    for (size_t o = 0, e = def->numOperands(); o < e; ++o) {
        MDefinition* op = def->getOperand(o);
        def->releaseOperand(o);
        if (!handleUseReleased(op, DontSetUseRemoved))
            return false;
    }
    return true;
}

// Discard |def| and mine its operands for any subsequently dead defs.
bool
ValueNumberer::discardDef(MDefinition* def)
{
#ifdef JS_JITSPEW
    JitSpew(JitSpew_GVN, "      Discarding %s %s%u",
            def->block()->isMarked() ? "unreachable" : "dead",
            def->opName(), def->id());
#endif
#ifdef DEBUG
    MOZ_ASSERT(def != nextDef_, "Invalidating the MDefinition iterator");
    if (def->block()->isMarked()) {
        MOZ_ASSERT(!def->hasUses(), "Discarding def that still has uses");
    } else {
        MOZ_ASSERT(IsDiscardable(def), "Discarding non-discardable definition");
        MOZ_ASSERT(!values_.has(def), "Discarding a definition still in the set");
    }
#endif

    MBasicBlock* block = def->block();
    if (def->isPhi()) {
        MPhi* phi = def->toPhi();
        if (!releaseAndRemovePhiOperands(phi))
             return false;
        block->discardPhi(phi);
    } else {
        MInstruction* ins = def->toInstruction();
        if (MResumePoint* resume = ins->resumePoint()) {
            if (!releaseResumePointOperands(resume))
                return false;
        }
        if (!releaseOperands(ins))
             return false;
        block->discardIgnoreOperands(ins);
    }

    // If that was the last definition in the block, it can be safely removed
    // from the graph.
    if (block->phisEmpty() && block->begin() == block->end()) {
        MOZ_ASSERT(block->isMarked(), "Reachable block lacks at least a control instruction");

        // As a special case, don't remove a block which is a dominator tree
        // root so that we don't invalidate the iterator in visitGraph. We'll
        // check for this and remove it later.
        if (block->immediateDominator() != block) {
            JitSpew(JitSpew_GVN, "      Block block%u is now empty; discarding", block->id());
            graph_.removeBlock(block);
            blocksRemoved_ = true;
        } else {
            JitSpew(JitSpew_GVN, "      Dominator root block%u is now empty; will discard later",
                    block->id());
        }
    }

    return true;
}

// Recursively discard all the defs on the deadDefs_ worklist.
bool
ValueNumberer::processDeadDefs()
{
    MDefinition* nextDef = nextDef_;
    while (!deadDefs_.empty()) {
        MDefinition* def = deadDefs_.popCopy();

        // Don't invalidate the MDefinition iterator. This is what we're going
        // to visit next, so we won't miss anything.
        if (def == nextDef)
            continue;

        if (!discardDef(def))
            return false;
    }
    return true;
}

// Test whether |block|, which is a loop header, has any predecessors other than
// |loopPred|, the loop predecessor, which it doesn't dominate.
static bool
hasNonDominatingPredecessor(MBasicBlock* block, MBasicBlock* loopPred)
{
    MOZ_ASSERT(block->isLoopHeader());
    MOZ_ASSERT(block->loopPredecessor() == loopPred);

    for (uint32_t i = 0, e = block->numPredecessors(); i < e; ++i) {
        MBasicBlock* pred = block->getPredecessor(i);
        if (pred != loopPred && !block->dominates(pred))
            return true;
    }
    return false;
}

// A loop is about to be made reachable only through an OSR entry into one of
// its nested loops. Fix everything up.
bool
ValueNumberer::fixupOSROnlyLoop(MBasicBlock* block, MBasicBlock* backedge)
{
    // Create an empty and unreachable(!) block which jumps to |block|. This
    // allows |block| to remain marked as a loop header, so we don't have to
    // worry about moving a different block into place as the new loop header,
    // which is hard, especially if the OSR is into a nested loop. Doing all
    // that would produce slightly more optimal code, but this is so
    // extraordinarily rare that it isn't worth the complexity.
    MBasicBlock* fake = MBasicBlock::New(graph_, block->info(), nullptr, MBasicBlock::NORMAL);
    if (fake == nullptr)
        return false;

    graph_.insertBlockBefore(block, fake);
    fake->setImmediateDominator(fake);
    fake->addNumDominated(1);
    fake->setDomIndex(fake->id());
    fake->setUnreachable();

    // Create zero-input phis to use as inputs for any phis in |block|.
    // Again, this is a little odd, but it's the least-odd thing we can do
    // without significant complexity.
    for (MPhiIterator iter(block->phisBegin()), end(block->phisEnd()); iter != end; ++iter) {
        MPhi* phi = *iter;
        MPhi* fakePhi = MPhi::New(graph_.alloc(), phi->type());
        fake->addPhi(fakePhi);
        if (!phi->addInputSlow(fakePhi))
            return false;
    }

    fake->end(MGoto::New(graph_.alloc(), block));

    if (!block->addPredecessorWithoutPhis(fake))
        return false;

    // Restore |backedge| as |block|'s loop backedge.
    block->clearLoopHeader();
    block->setLoopHeader(backedge);

    JitSpew(JitSpew_GVN, "        Created fake block%u", fake->id());
    hasOSRFixups_ = true;
    return true;
}

// Remove the CFG edge between |pred| and |block|, after releasing the phi
// operands on that edge and discarding any definitions consequently made dead.
bool
ValueNumberer::removePredecessorAndDoDCE(MBasicBlock* block, MBasicBlock* pred, size_t predIndex)
{
    MOZ_ASSERT(!block->isMarked(),
               "Block marked unreachable should have predecessors removed already");

    // Before removing the predecessor edge, scan the phi operands for that edge
    // for dead code before they get removed.
    MOZ_ASSERT(nextDef_ == nullptr);
    for (MPhiIterator iter(block->phisBegin()), end(block->phisEnd()); iter != end; ) {
        MPhi* phi = *iter++;
        MOZ_ASSERT(!values_.has(phi), "Visited phi in block having predecessor removed");
        MOZ_ASSERT(!phi->isGuard());

        MDefinition* op = phi->getOperand(predIndex);
        phi->removeOperand(predIndex);

        nextDef_ = iter != end ? *iter : nullptr;
        if (!handleUseReleased(op, DontSetUseRemoved) || !processDeadDefs())
            return false;

        // If |nextDef_| became dead while we had it pinned, advance the
        // iterator and discard it now.
        while (nextDef_ && !nextDef_->hasUses() && !nextDef_->isGuardRangeBailouts()) {
            phi = nextDef_->toPhi();
            iter++;
            nextDef_ = iter != end ? *iter : nullptr;
            if (!discardDefsRecursively(phi))
                return false;
        }
    }
    nextDef_ = nullptr;

    block->removePredecessorWithoutPhiOperands(pred, predIndex);
    return true;
}

// Remove the CFG edge between |pred| and |block|, and if this makes |block|
// unreachable, mark it so, and remove the rest of its incoming edges too. And
// discard any instructions made dead by the entailed release of any phi
// operands.
bool
ValueNumberer::removePredecessorAndCleanUp(MBasicBlock* block, MBasicBlock* pred)
{
    MOZ_ASSERT(!block->isMarked(), "Removing predecessor on block already marked unreachable");

    // We'll be removing a predecessor, so anything we know about phis in this
    // block will be wrong.
    for (MPhiIterator iter(block->phisBegin()), end(block->phisEnd()); iter != end; ++iter)
        values_.forget(*iter);

    // If this is a loop header, test whether it will become an unreachable
    // loop, or whether it needs special OSR-related fixups.
    bool isUnreachableLoop = false;
    if (block->isLoopHeader()) {
        if (block->loopPredecessor() == pred) {
            if (MOZ_UNLIKELY(hasNonDominatingPredecessor(block, pred))) {
                JitSpew(JitSpew_GVN, "      "
                        "Loop with header block%u is now only reachable through an "
                        "OSR entry into the middle of the loop!!", block->id());
            } else {
                // Deleting the entry into the loop makes the loop unreachable.
                isUnreachableLoop = true;
                JitSpew(JitSpew_GVN, "      "
                        "Loop with header block%u is no longer reachable",
                        block->id());
            }
#ifdef JS_JITSPEW
        } else if (block->hasUniqueBackedge() && block->backedge() == pred) {
            JitSpew(JitSpew_GVN, "      Loop with header block%u is no longer a loop",
                    block->id());
#endif
        }
    }

    // Actually remove the CFG edge.
    if (!removePredecessorAndDoDCE(block, pred, block->getPredecessorIndex(pred)))
        return false;

    // We've now edited the CFG; check to see if |block| became unreachable.
    if (block->numPredecessors() == 0 || isUnreachableLoop) {
        JitSpew(JitSpew_GVN, "      Disconnecting block%u", block->id());

        // Remove |block| from its dominator parent's subtree. This is the only
        // immediately-dominated-block information we need to update, because
        // everything dominated by this block is about to be swept away.
        MBasicBlock* parent = block->immediateDominator();
        if (parent != block)
            parent->removeImmediatelyDominatedBlock(block);

        // Completely disconnect it from the CFG. We do this now rather than
        // just doing it later when we arrive there in visitUnreachableBlock
        // so that we don't leave a partially broken loop sitting around. This
        // also lets visitUnreachableBlock assert that numPredecessors() == 0,
        // which is a nice invariant.
        if (block->isLoopHeader())
            block->clearLoopHeader();
        for (size_t i = 0, e = block->numPredecessors(); i < e; ++i) {
            if (!removePredecessorAndDoDCE(block, block->getPredecessor(i), i))
                return false;
        }

        // Clear out the resume point operands, as they can hold things that
        // don't appear to dominate them live.
        if (MResumePoint* resume = block->entryResumePoint()) {
            if (!releaseResumePointOperands(resume) || !processDeadDefs())
                return false;
            if (MResumePoint* outer = block->outerResumePoint()) {
                if (!releaseResumePointOperands(outer) || !processDeadDefs())
                    return false;
            }
            MOZ_ASSERT(nextDef_ == nullptr);
            for (MInstructionIterator iter(block->begin()), end(block->end()); iter != end; ) {
                MInstruction* ins = *iter++;
                nextDef_ = *iter;
                if (MResumePoint* resume = ins->resumePoint()) {
                    if (!releaseResumePointOperands(resume) || !processDeadDefs())
                        return false;
                }
            }
            nextDef_ = nullptr;
        } else {
#ifdef DEBUG
            MOZ_ASSERT(block->outerResumePoint() == nullptr,
                       "Outer resume point in block without an entry resume point");
            for (MInstructionIterator iter(block->begin()), end(block->end());
                 iter != end;
                 ++iter)
            {
                MOZ_ASSERT(iter->resumePoint() == nullptr,
                           "Instruction with resume point in block without entry resume point");
            }
#endif
        }

        // Use the mark to note that we've already removed all its predecessors,
        // and we know it's unreachable.
        block->mark();
    }

    return true;
}

// Return a simplified form of |def|, if we can.
MDefinition*
ValueNumberer::simplified(MDefinition* def) const
{
    return def->foldsTo(graph_.alloc());
}

// If an equivalent and dominating value already exists in the set, return it.
// Otherwise insert |def| into the set and return it.
MDefinition*
ValueNumberer::leader(MDefinition* def)
{
    // If the value isn't suitable for eliminating, don't bother hashing it. The
    // convention is that congruentTo returns false for node kinds that wish to
    // opt out of redundance elimination.
    // TODO: It'd be nice to clean up that convention (bug 1031406).
    if (!def->isEffectful() && def->congruentTo(def)) {
        // Look for a match.
        VisibleValues::AddPtr p = values_.findLeaderForAdd(def);
        if (p) {
            MDefinition* rep = *p;
            if (!rep->isDiscarded() && rep->block()->dominates(def->block())) {
                // We found a dominating congruent value.
                return rep;
            }

            // The congruent value doesn't dominate. It never will again in this
            // dominator tree, so overwrite it.
            values_.overwrite(p, def);
        } else {
            // No match. Add a new entry.
            if (!values_.add(p, def))
                return nullptr;
        }

#ifdef JS_JITSPEW
        JitSpew(JitSpew_GVN, "      Recording %s%u", def->opName(), def->id());
#endif
    }

    return def;
}

// Test whether |phi| is dominated by a congruent phi.
bool
ValueNumberer::hasLeader(const MPhi* phi, const MBasicBlock* phiBlock) const
{
    if (VisibleValues::Ptr p = values_.findLeader(phi)) {
        const MDefinition* rep = *p;
        return rep != phi && rep->block()->dominates(phiBlock);
    }
    return false;
}

// Test whether there are any phis in |header| which are newly optimizable, as a
// result of optimizations done inside the loop. This is not a sparse approach,
// but restarting is rare enough in practice. Termination is ensured by
// discarding the phi triggering the iteration.
bool
ValueNumberer::loopHasOptimizablePhi(MBasicBlock* header) const
{
    // If the header is unreachable, don't bother re-optimizing it.
    if (header->isMarked())
        return false;

    // Rescan the phis for any that can be simplified, since they may be reading
    // values from backedges.
    for (MPhiIterator iter(header->phisBegin()), end(header->phisEnd()); iter != end; ++iter) {
        MPhi* phi = *iter;
        MOZ_ASSERT_IF(!phi->hasUses(), !DeadIfUnused(phi));

        if (phi->operandIfRedundant() || hasLeader(phi, header))
            return true; // Phi can be simplified.
    }
    return false;
}

// Visit |def|.
bool
ValueNumberer::visitDefinition(MDefinition* def)
{
    // Nop does not fit in any of the previous optimization, as its only purpose
    // is to reduce the register pressure by keeping additional resume
    // point. Still, there is no need consecutive list of MNop instructions, and
    // this will slow down every other iteration on the Graph.
    if (def->isNop()) {
        MNop* nop = def->toNop();
        MBasicBlock* block = nop->block();

        // We look backward to know if we can remove the previous Nop, we do not
        // look forward as we would not benefit from the folding made by GVN.
        MInstructionReverseIterator iter = ++block->rbegin(nop);

        // This nop is at the beginning of the basic block, just replace the
        // resume point of the basic block by the one from the resume point.
        if (iter == block->rend()) {
            JitSpew(JitSpew_GVN, "      Removing Nop%u", nop->id());
            nop->moveResumePointAsEntry();
            block->discard(nop);
            return true;
        }

        // The previous instruction is also a Nop, no need to keep it anymore.
        MInstruction* prev = *iter;
        if (prev->isNop()) {
            JitSpew(JitSpew_GVN, "      Removing Nop%u", prev->id());
            block->discard(prev);
            return true;
        }

        // The Nop is introduced to capture the result and make sure the operands
        // are not live anymore when there are no further uses. Though when
        // all operands are still needed the Nop doesn't decrease the liveness
        // and can get removed.
        MResumePoint* rp = nop->resumePoint();
        if (rp && rp->numOperands() > 0 &&
            rp->getOperand(rp->numOperands() - 1) == prev &&
            !nop->block()->lastIns()->isThrow() &&
            !prev->isAssertRecoveredOnBailout())
        {
            size_t numOperandsLive = 0;
            for (size_t j = 0; j < prev->numOperands(); j++) {
                for (size_t i = 0; i < rp->numOperands(); i++) {
                    if (prev->getOperand(j) == rp->getOperand(i)) {
                        numOperandsLive++;
                        break;
                    }
                }
            }

            if (numOperandsLive == prev->numOperands()) {
                JitSpew(JitSpew_GVN, "      Removing Nop%u", nop->id());
                block->discard(nop);
            }
        }

        return true;
    }

    // Skip optimizations on instructions which are recovered on bailout, to
    // avoid mixing instructions which are recovered on bailouts with
    // instructions which are not.
    if (def->isRecoveredOnBailout())
        return true;

    // If this instruction has a dependency() into an unreachable block, we'll
    // need to update AliasAnalysis.
    MDefinition* dep = def->dependency();
    if (dep != nullptr && (dep->isDiscarded() || dep->block()->isDead())) {
        JitSpew(JitSpew_GVN, "      AliasAnalysis invalidated");
        if (updateAliasAnalysis_ && !dependenciesBroken_) {
            // TODO: Recomputing alias-analysis could theoretically expose more
            // GVN opportunities.
            JitSpew(JitSpew_GVN, "        Will recompute!");
            dependenciesBroken_ = true;
        }
        // Temporarily clear its dependency, to protect foldsTo, which may
        // wish to use the dependency to do store-to-load forwarding.
        def->setDependency(def->toInstruction());
    } else {
        dep = nullptr;
    }

    // Look for a simplified form of |def|.
    MDefinition* sim = simplified(def);
    if (sim != def) {
        if (sim == nullptr)
            return false;

        bool isNewInstruction = sim->block() == nullptr;

        // If |sim| doesn't belong to a block, insert it next to |def|.
        if (isNewInstruction)
            def->block()->insertAfter(def->toInstruction(), sim->toInstruction());

#ifdef JS_JITSPEW
        JitSpew(JitSpew_GVN, "      Folded %s%u to %s%u",
                def->opName(), def->id(), sim->opName(), sim->id());
#endif
        MOZ_ASSERT(!sim->isDiscarded());
        ReplaceAllUsesWith(def, sim);

        // The node's foldsTo said |def| can be replaced by |rep|. If |def| is a
        // guard, then either |rep| is also a guard, or a guard isn't actually
        // needed, so we can clear |def|'s guard flag and let it be discarded.
        def->setNotGuardUnchecked();

        if (def->isGuardRangeBailouts())
            sim->setGuardRangeBailoutsUnchecked();

        if (DeadIfUnused(def)) {
            if (!discardDefsRecursively(def))
                return false;

            // If that ended up discarding |sim|, then we're done here.
            if (sim->isDiscarded())
                return true;
        }

        if (!rerun_ && def->isPhi() && !sim->isPhi()) {
            rerun_ = true;
            JitSpew(JitSpew_GVN, "      Replacing phi%u may have enabled cascading optimisations; "
                                 "will re-run", def->id());
        }

        // Otherwise, procede to optimize with |sim| in place of |def|.
        def = sim;

        // If the simplified instruction was already part of the graph, then we
        // probably already visited and optimized this instruction.
        if (!isNewInstruction)
            return true;
    }

    // Now that foldsTo is done, re-enable the original dependency. Even though
    // it may be pointing into a discarded block, it's still valid for the
    // purposes of detecting congruent loads.
    if (dep != nullptr)
        def->setDependency(dep);

    // Look for a dominating def which makes |def| redundant.
    MDefinition* rep = leader(def);
    if (rep != def) {
        if (rep == nullptr)
            return false;
        if (rep->updateForReplacement(def)) {
#ifdef JS_JITSPEW
            JitSpew(JitSpew_GVN,
                    "      Replacing %s%u with %s%u",
                    def->opName(), def->id(), rep->opName(), rep->id());
#endif
            ReplaceAllUsesWith(def, rep);

            // The node's congruentTo said |def| is congruent to |rep|, and it's
            // dominated by |rep|. If |def| is a guard, it's covered by |rep|,
            // so we can clear |def|'s guard flag and let it be discarded.
            def->setNotGuardUnchecked();

            if (DeadIfUnused(def)) {
                // discardDef should not add anything to the deadDefs, as the
                // redundant operation should have the same input operands.
                mozilla::DebugOnly<bool> r = discardDef(def);
                MOZ_ASSERT(r, "discardDef shouldn't have tried to add anything to the worklist, "
                              "so it shouldn't have failed");
                MOZ_ASSERT(deadDefs_.empty(),
                           "discardDef shouldn't have added anything to the worklist");
            }
            def = rep;
        }
    }

    return true;
}

// Visit the control instruction at the end of |block|.
bool
ValueNumberer::visitControlInstruction(MBasicBlock* block, const MBasicBlock* dominatorRoot)
{
    // Look for a simplified form of the control instruction.
    MControlInstruction* control = block->lastIns();
    MDefinition* rep = simplified(control);
    if (rep == control)
        return true;

    if (rep == nullptr)
        return false;

    MControlInstruction* newControl = rep->toControlInstruction();
    MOZ_ASSERT(!newControl->block(),
               "Control instruction replacement shouldn't already be in a block");
#ifdef JS_JITSPEW
    JitSpew(JitSpew_GVN, "      Folded control instruction %s%u to %s%u",
            control->opName(), control->id(), newControl->opName(), graph_.getNumInstructionIds());
#endif

    // If the simplification removes any CFG edges, update the CFG and remove
    // any blocks that become dead.
    size_t oldNumSuccs = control->numSuccessors();
    size_t newNumSuccs = newControl->numSuccessors();
    if (newNumSuccs != oldNumSuccs) {
        MOZ_ASSERT(newNumSuccs < oldNumSuccs, "New control instruction has too many successors");
        for (size_t i = 0; i != oldNumSuccs; ++i) {
            MBasicBlock* succ = control->getSuccessor(i);
            if (HasSuccessor(newControl, succ))
                continue;
            if (succ->isMarked())
                continue;
            if (!removePredecessorAndCleanUp(succ, block))
                return false;
            if (succ->isMarked())
                continue;
            if (!rerun_) {
                if (!remainingBlocks_.append(succ))
                    return false;
            }
        }
    }

    if (!releaseOperands(control))
        return false;
    block->discardIgnoreOperands(control);
    block->end(newControl);
    if (block->entryResumePoint() && newNumSuccs != oldNumSuccs)
        block->flagOperandsOfPrunedBranches(newControl);
    return processDeadDefs();
}

// |block| is unreachable. Mine it for opportunities to delete more dead
// code, and then discard it.
bool
ValueNumberer::visitUnreachableBlock(MBasicBlock* block)
{
    JitSpew(JitSpew_GVN, "    Visiting unreachable block%u%s%s%s", block->id(),
            block->isLoopHeader() ? " (loop header)" : "",
            block->isSplitEdge() ? " (split edge)" : "",
            block->immediateDominator() == block ? " (dominator root)" : "");

    MOZ_ASSERT(block->isMarked(), "Visiting unmarked (and therefore reachable?) block");
    MOZ_ASSERT(block->numPredecessors() == 0, "Block marked unreachable still has predecessors");
    MOZ_ASSERT(block != graph_.entryBlock(), "Removing normal entry block");
    MOZ_ASSERT(block != graph_.osrBlock(), "Removing OSR entry block");
    MOZ_ASSERT(deadDefs_.empty(), "deadDefs_ not cleared");

    // Disconnect all outgoing CFG edges.
    for (size_t i = 0, e = block->numSuccessors(); i < e; ++i) {
        MBasicBlock* succ = block->getSuccessor(i);
        if (succ->isDead() || succ->isMarked())
            continue;
        if (!removePredecessorAndCleanUp(succ, block))
            return false;
        if (succ->isMarked())
            continue;
        // |succ| is still reachable. Make a note of it so that we can scan
        // it for interesting dominator tree changes later.
        if (!rerun_) {
            if (!remainingBlocks_.append(succ))
                return false;
        }
    }

    // Discard any instructions with no uses. The remaining instructions will be
    // discarded when their last use is discarded.
    MOZ_ASSERT(nextDef_ == nullptr);
    for (MDefinitionIterator iter(block); iter; ) {
        MDefinition* def = *iter++;
        if (def->hasUses())
            continue;
        nextDef_ = *iter;
        if (!discardDefsRecursively(def))
            return false;
    }

    nextDef_ = nullptr;
    MControlInstruction* control = block->lastIns();
    return discardDefsRecursively(control);
}

// Visit all the phis and instructions |block|.
bool
ValueNumberer::visitBlock(MBasicBlock* block, const MBasicBlock* dominatorRoot)
{
    MOZ_ASSERT(!block->isMarked(), "Blocks marked unreachable during GVN");
    MOZ_ASSERT(!block->isDead(), "Block to visit is already dead");

    JitSpew(JitSpew_GVN, "    Visiting block%u", block->id());

    // Visit the definitions in the block top-down.
    MOZ_ASSERT(nextDef_ == nullptr);
    for (MDefinitionIterator iter(block); iter; ) {
        if (!graph_.alloc().ensureBallast())
            return false;
        MDefinition* def = *iter++;

        // Remember where our iterator is so that we don't invalidate it.
        nextDef_ = *iter;

        // If the definition is dead, discard it.
        if (IsDiscardable(def)) {
            if (!discardDefsRecursively(def))
                return false;
            continue;
        }

        if (!visitDefinition(def))
            return false;
    }
    nextDef_ = nullptr;

    return visitControlInstruction(block, dominatorRoot);
}

// Visit all the blocks dominated by dominatorRoot.
bool
ValueNumberer::visitDominatorTree(MBasicBlock* dominatorRoot)
{
    JitSpew(JitSpew_GVN, "  Visiting dominator tree (with %" PRIu64 " blocks) rooted at block%u%s",
            uint64_t(dominatorRoot->numDominated()), dominatorRoot->id(),
            dominatorRoot == graph_.entryBlock() ? " (normal entry block)" :
            dominatorRoot == graph_.osrBlock() ? " (OSR entry block)" :
            dominatorRoot->numPredecessors() == 0 ? " (odd unreachable block)" :
            " (merge point from normal entry and OSR entry)");
    MOZ_ASSERT(dominatorRoot->immediateDominator() == dominatorRoot,
            "root is not a dominator tree root");

    // Visit all blocks dominated by dominatorRoot, in RPO. This has the nice
    // property that we'll always visit a block before any block it dominates,
    // so we can make a single pass through the list and see every full
    // redundance.
    size_t numVisited = 0;
    size_t numDiscarded = 0;
    for (ReversePostorderIterator iter(graph_.rpoBegin(dominatorRoot)); ; ) {
        MOZ_ASSERT(iter != graph_.rpoEnd(), "Inconsistent dominator information");
        MBasicBlock* block = *iter++;
        // We're only visiting blocks in dominatorRoot's tree right now.
        if (!dominatorRoot->dominates(block))
            continue;

        // If this is a loop backedge, remember the header, as we may not be able
        // to find it after we simplify the block.
        MBasicBlock* header = block->isLoopBackedge() ? block->loopHeaderOfBackedge() : nullptr;

        if (block->isMarked()) {
            // This block has become unreachable; handle it specially.
            if (!visitUnreachableBlock(block))
                return false;
            ++numDiscarded;
        } else {
            // Visit the block!
            if (!visitBlock(block, dominatorRoot))
                return false;
            ++numVisited;
        }

        // If the block is/was a loop backedge, check to see if the block that
        // is/was its header has optimizable phis, which would want a re-run.
        if (!rerun_ && header && loopHasOptimizablePhi(header)) {
            JitSpew(JitSpew_GVN, "    Loop phi in block%u can now be optimized; will re-run GVN!",
                    header->id());
            rerun_ = true;
            remainingBlocks_.clear();
        }

        MOZ_ASSERT(numVisited <= dominatorRoot->numDominated() - numDiscarded,
                   "Visited blocks too many times");
        if (numVisited >= dominatorRoot->numDominated() - numDiscarded)
            break;
    }

    totalNumVisited_ += numVisited;
    values_.clear();
    return true;
}

// Visit all the blocks in the graph.
bool
ValueNumberer::visitGraph()
{
    // Due to OSR blocks, the set of blocks dominated by a blocks may not be
    // contiguous in the RPO. Do a separate traversal for each dominator tree
    // root. There's always the main entry, and sometimes there's an OSR entry,
    // and then there are the roots formed where the OSR paths merge with the
    // main entry paths.
    for (ReversePostorderIterator iter(graph_.rpoBegin()); ; ) {
        MOZ_ASSERT(iter != graph_.rpoEnd(), "Inconsistent dominator information");
        MBasicBlock* block = *iter;
        if (block->immediateDominator() == block) {
            if (!visitDominatorTree(block))
                return false;

            // Normally unreachable blocks would be removed by now, but if this
            // block is a dominator tree root, it has been special-cased and left
            // in place in order to avoid invalidating our iterator. Now that
            // we've finished the tree, increment the iterator, and then if it's
            // marked for removal, remove it.
            ++iter;
            if (block->isMarked()) {
                JitSpew(JitSpew_GVN, "      Discarding dominator root block%u",
                        block->id());
                MOZ_ASSERT(block->begin() == block->end(),
                           "Unreachable dominator tree root has instructions after tree walk");
                MOZ_ASSERT(block->phisEmpty(),
                           "Unreachable dominator tree root has phis after tree walk");
                graph_.removeBlock(block);
                blocksRemoved_ = true;
            }

            MOZ_ASSERT(totalNumVisited_ <= graph_.numBlocks(), "Visited blocks too many times");
            if (totalNumVisited_ >= graph_.numBlocks())
                break;
        } else {
            // This block a dominator tree root. Proceed to the next one.
            ++iter;
        }
    }
    totalNumVisited_ = 0;
    return true;
}

bool
ValueNumberer::insertOSRFixups()
{
    ReversePostorderIterator end(graph_.end());
    for (ReversePostorderIterator iter(graph_.begin()); iter != end; ) {
        MBasicBlock* block = *iter++;

        // Only add fixup block above for loops which can be reached from OSR.
        if (!block->isLoopHeader())
            continue;

        // If the loop header is not self-dominated, then this loop does not
        // have to deal with a second entry point, so there is no need to add a
        // second entry point with a fixup block.
        if (block->immediateDominator() != block)
            continue;

        if (!fixupOSROnlyLoop(block, block->backedge()))
            return false;
    }

    return true;
}

// OSR fixups serve the purpose of representing the non-OSR entry into a loop
// when the only real entry is an OSR entry into the middle. However, if the
// entry into the middle is subsequently folded away, the loop may actually
// have become unreachable. Mark-and-sweep all blocks to remove all such code.
bool ValueNumberer::cleanupOSRFixups()
{
    // Mark.
    Vector<MBasicBlock*, 0, JitAllocPolicy> worklist(graph_.alloc());
    unsigned numMarked = 2;
    graph_.entryBlock()->mark();
    graph_.osrBlock()->mark();
    if (!worklist.append(graph_.entryBlock()) || !worklist.append(graph_.osrBlock()))
        return false;
    while (!worklist.empty()) {
        MBasicBlock* block = worklist.popCopy();
        for (size_t i = 0, e = block->numSuccessors(); i != e; ++i) {
            MBasicBlock* succ = block->getSuccessor(i);
            if (!succ->isMarked()) {
                ++numMarked;
                succ->mark();
                if (!worklist.append(succ))
                    return false;
            } else if (succ->isLoopHeader() &&
                       succ->loopPredecessor() == block &&
                       succ->numPredecessors() == 3)
            {
                // Unmark fixup blocks if the loop predecessor is marked after
                // the loop header.
                succ->getPredecessor(1)->unmarkUnchecked();
            }
        }

        // OSR fixup blocks are needed if and only if the loop header is
        // reachable from its backedge (via the OSR block) and not from its
        // original loop predecessor.
        //
        // Thus OSR fixup blocks are removed if the loop header is not
        // reachable, or if the loop header is reachable from both its backedge
        // and its original loop predecessor.
        if (block->isLoopHeader()) {
            MBasicBlock* maybeFixupBlock = nullptr;
            if (block->numPredecessors() == 2) {
                maybeFixupBlock = block->getPredecessor(0);
            } else {
                MOZ_ASSERT(block->numPredecessors() == 3);
                if (!block->loopPredecessor()->isMarked())
                    maybeFixupBlock = block->getPredecessor(1);
            }

            if (maybeFixupBlock &&
                !maybeFixupBlock->isMarked() &&
                maybeFixupBlock->numPredecessors() == 0)
            {
                MOZ_ASSERT(maybeFixupBlock->numSuccessors() == 1,
                           "OSR fixup block should have exactly one successor");
                MOZ_ASSERT(maybeFixupBlock != graph_.entryBlock(),
                           "OSR fixup block shouldn't be the entry block");
                MOZ_ASSERT(maybeFixupBlock != graph_.osrBlock(),
                           "OSR fixup block shouldn't be the OSR entry block");
                maybeFixupBlock->mark();
            }
        }
    }

    // And sweep.
    return RemoveUnmarkedBlocks(mir_, graph_, numMarked);
}

ValueNumberer::ValueNumberer(MIRGenerator* mir, MIRGraph& graph)
  : mir_(mir), graph_(graph),
    values_(graph.alloc()),
    deadDefs_(graph.alloc()),
    remainingBlocks_(graph.alloc()),
    nextDef_(nullptr),
    totalNumVisited_(0),
    rerun_(false),
    blocksRemoved_(false),
    updateAliasAnalysis_(false),
    dependenciesBroken_(false),
    hasOSRFixups_(false)
{}

bool
ValueNumberer::init()
{
    // Initialize the value set. It's tempting to pass in a size here of some
    // function of graph_.getNumInstructionIds(), however if we start out with a
    // large capacity, it will be far larger than the actual element count for
    // most of the pass, so when we remove elements, it would often think it
    // needs to compact itself. Empirically, just letting the HashTable grow as
    // needed on its own seems to work pretty well.
    return values_.init();
}

bool
ValueNumberer::run(UpdateAliasAnalysisFlag updateAliasAnalysis)
{
    updateAliasAnalysis_ = updateAliasAnalysis == UpdateAliasAnalysis;

    JitSpew(JitSpew_GVN, "Running GVN on graph (with %" PRIu64 " blocks)",
            uint64_t(graph_.numBlocks()));

    // Adding fixup blocks only make sense iff we have a second entry point into
    // the graph which cannot be reached any more from the entry point.
    if (graph_.osrBlock()) {
        if (!insertOSRFixups())
            return false;
    }

    // Top level non-sparse iteration loop. If an iteration performs a
    // significant change, such as discarding a block which changes the
    // dominator tree and may enable more optimization, this loop takes another
    // iteration.
    int runs = 0;
    for (;;) {
        if (!visitGraph())
            return false;

        // Test whether any block which was not removed but which had at least
        // one predecessor removed will have a new dominator parent.
        while (!remainingBlocks_.empty()) {
            MBasicBlock* block = remainingBlocks_.popCopy();
            if (!block->isDead() && IsDominatorRefined(block)) {
                JitSpew(JitSpew_GVN, "  Dominator for block%u can now be refined; will re-run GVN!",
                        block->id());
                rerun_ = true;
                remainingBlocks_.clear();
                break;
            }
        }

        if (blocksRemoved_) {
            if (!AccountForCFGChanges(mir_, graph_, dependenciesBroken_, /* underValueNumberer = */ true))
                return false;

            blocksRemoved_ = false;
            dependenciesBroken_ = false;
        }

        if (mir_->shouldCancel("GVN (outer loop)"))
            return false;

        // If no further opportunities have been discovered, we're done.
        if (!rerun_)
            break;

        rerun_ = false;

        // Enforce an arbitrary iteration limit. This is rarely reached, and
        // isn't even strictly necessary, as the algorithm is guaranteed to
        // terminate on its own in a finite amount of time (since every time we
        // re-run we discard the construct which triggered the re-run), but it
        // does help avoid slow compile times on pathological code.
        ++runs;
        if (runs == 6) {
            JitSpew(JitSpew_GVN, "Re-run cutoff of %d reached. Terminating GVN!", runs);
            break;
        }

        JitSpew(JitSpew_GVN, "Re-running GVN on graph (run %d, now with %" PRIu64 " blocks)",
                runs, uint64_t(graph_.numBlocks()));
    }

    if (MOZ_UNLIKELY(hasOSRFixups_)) {
        if (!cleanupOSRFixups())
            return false;
        hasOSRFixups_ = false;
    }

    return true;
}