DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
/* -*-  Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2; -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "HeapSnapshot.h"

#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/gzip_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl_lite.h>

#include "js/Debug.h"
#include "js/TypeDecls.h"
#include "js/UbiNodeBreadthFirst.h"
#include "js/UbiNodeCensus.h"
#include "js/UbiNodeDominatorTree.h"
#include "js/UbiNodeShortestPaths.h"
#include "mozilla/Attributes.h"
#include "mozilla/CycleCollectedJSRuntime.h"
#include "mozilla/devtools/AutoMemMap.h"
#include "mozilla/devtools/CoreDump.pb.h"
#include "mozilla/devtools/DeserializedNode.h"
#include "mozilla/devtools/DominatorTree.h"
#include "mozilla/devtools/FileDescriptorOutputStream.h"
#include "mozilla/devtools/HeapSnapshotTempFileHelperChild.h"
#include "mozilla/devtools/ZeroCopyNSIOutputStream.h"
#include "mozilla/dom/ChromeUtils.h"
#include "mozilla/dom/ContentChild.h"
#include "mozilla/dom/HeapSnapshotBinding.h"
#include "mozilla/RangedPtr.h"
#include "mozilla/Telemetry.h"

#include "jsapi.h"
#include "jsfriendapi.h"
#include "nsCycleCollectionParticipant.h"
#include "nsCRTGlue.h"
#include "nsDirectoryServiceDefs.h"
#include "nsIFile.h"
#include "nsIOutputStream.h"
#include "nsISupportsImpl.h"
#include "nsNetUtil.h"
#include "nsPrintfCString.h"
#include "prerror.h"
#include "prio.h"
#include "prtypes.h"

namespace mozilla {
namespace devtools {

using namespace JS;
using namespace dom;

using ::google::protobuf::io::ArrayInputStream;
using ::google::protobuf::io::CodedInputStream;
using ::google::protobuf::io::GzipInputStream;
using ::google::protobuf::io::ZeroCopyInputStream;

using JS::ubi::AtomOrTwoByteChars;
using JS::ubi::ShortestPaths;

MallocSizeOf
GetCurrentThreadDebuggerMallocSizeOf()
{
  auto ccrt = CycleCollectedJSRuntime::Get();
  MOZ_ASSERT(ccrt);
  auto cx = ccrt->Context();
  MOZ_ASSERT(cx);
  auto mallocSizeOf = JS::dbg::GetDebuggerMallocSizeOf(cx);
  MOZ_ASSERT(mallocSizeOf);
  return mallocSizeOf;
}

/*** Cycle Collection Boilerplate *****************************************************************/

NS_IMPL_CYCLE_COLLECTION_WRAPPERCACHE(HeapSnapshot, mParent)

NS_IMPL_CYCLE_COLLECTING_ADDREF(HeapSnapshot)
NS_IMPL_CYCLE_COLLECTING_RELEASE(HeapSnapshot)

NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(HeapSnapshot)
  NS_WRAPPERCACHE_INTERFACE_MAP_ENTRY
  NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END

/* virtual */ JSObject*
HeapSnapshot::WrapObject(JSContext* aCx, HandleObject aGivenProto)
{
  return HeapSnapshotBinding::Wrap(aCx, this, aGivenProto);
}

/*** Reading Heap Snapshots ***********************************************************************/

/* static */ already_AddRefed<HeapSnapshot>
HeapSnapshot::Create(JSContext* cx,
                     GlobalObject& global,
                     const uint8_t* buffer,
                     uint32_t size,
                     ErrorResult& rv)
{
  RefPtr<HeapSnapshot> snapshot = new HeapSnapshot(cx, global.GetAsSupports());
  if (!snapshot->init(cx, buffer, size)) {
    rv.Throw(NS_ERROR_UNEXPECTED);
    return nullptr;
  }
  return snapshot.forget();
}

template<typename MessageType>
static bool
parseMessage(ZeroCopyInputStream& stream, uint32_t sizeOfMessage, MessageType& message)
{
  // We need to create a new `CodedInputStream` for each message so that the
  // 64MB limit is applied per-message rather than to the whole stream.
  CodedInputStream codedStream(&stream);

  // The protobuf message nesting that core dumps exhibit is dominated by
  // allocation stacks' frames. In the most deeply nested case, each frame has
  // two messages: a StackFrame message and a StackFrame::Data message. These
  // frames are on top of a small constant of other messages. There are a
  // MAX_STACK_DEPTH number of frames, so we multiply this by 3 to make room for
  // the two messages per frame plus some head room for the constant number of
  // non-dominating messages.
  codedStream.SetRecursionLimit(HeapSnapshot::MAX_STACK_DEPTH * 3);

  auto limit = codedStream.PushLimit(sizeOfMessage);
  if (NS_WARN_IF(!message.ParseFromCodedStream(&codedStream)) ||
      NS_WARN_IF(!codedStream.ConsumedEntireMessage()) ||
      NS_WARN_IF(codedStream.BytesUntilLimit() != 0))
  {
    return false;
  }

  codedStream.PopLimit(limit);
  return true;
}

template<typename CharT, typename InternedStringSet>
struct GetOrInternStringMatcher
{
  using ReturnType = const CharT*;

  InternedStringSet& internedStrings;

  explicit GetOrInternStringMatcher(InternedStringSet& strings) : internedStrings(strings) { }

  const CharT* match(const std::string* str) {
    MOZ_ASSERT(str);
    size_t length = str->length() / sizeof(CharT);
    auto tempString = reinterpret_cast<const CharT*>(str->data());

    UniquePtr<CharT[], NSFreePolicy> owned(NS_strndup(tempString, length));
    if (!owned || !internedStrings.append(Move(owned)))
      return nullptr;

    return internedStrings.back().get();
  }

  const CharT* match(uint64_t ref) {
    if (MOZ_LIKELY(ref < internedStrings.length())) {
      auto& string = internedStrings[ref];
      MOZ_ASSERT(string);
      return string.get();
    }

    return nullptr;
  }
};

template<
  // Either char or char16_t.
  typename CharT,
  // A reference to either `internedOneByteStrings` or `internedTwoByteStrings`
  // if CharT is char or char16_t respectively.
  typename InternedStringSet>
const CharT*
HeapSnapshot::getOrInternString(InternedStringSet& internedStrings,
                                Maybe<StringOrRef>& maybeStrOrRef)
{
  // Incomplete message: has neither a string nor a reference to an already
  // interned string.
  if (MOZ_UNLIKELY(maybeStrOrRef.isNothing()))
    return nullptr;

  GetOrInternStringMatcher<CharT, InternedStringSet> m(internedStrings);
  return maybeStrOrRef->match(m);
}

// Get a de-duplicated string as a Maybe<StringOrRef> from the given `msg`.
#define GET_STRING_OR_REF_WITH_PROP_NAMES(msg, strPropertyName, refPropertyName) \
  (msg.has_##refPropertyName()                                                   \
    ? Some(StringOrRef(msg.refPropertyName()))                                   \
    : msg.has_##strPropertyName()                                                \
      ? Some(StringOrRef(&msg.strPropertyName()))                                \
      : Nothing())

#define GET_STRING_OR_REF(msg, property)      \
  (msg.has_##property##ref()                  \
     ? Some(StringOrRef(msg.property##ref())) \
     : msg.has_##property()                   \
       ? Some(StringOrRef(&msg.property()))   \
       : Nothing())

bool
HeapSnapshot::saveNode(const protobuf::Node& node, NodeIdSet& edgeReferents)
{
  // NB: de-duplicated string properties must be read back and interned in the
  // same order here as they are written and serialized in
  // `CoreDumpWriter::writeNode` or else indices in references to already
  // serialized strings will be off.

  if (NS_WARN_IF(!node.has_id()))
    return false;
  NodeId id = node.id();

  // NodeIds are derived from pointers (at most 48 bits) and we rely on them
  // fitting into JS numbers (IEEE 754 doubles, can precisely store 53 bit
  // integers) despite storing them on disk as 64 bit integers.
  if (NS_WARN_IF(!JS::Value::isNumberRepresentable(id)))
    return false;

  // Should only deserialize each node once.
  if (NS_WARN_IF(nodes.has(id)))
    return false;

  if (NS_WARN_IF(!JS::ubi::Uint32IsValidCoarseType(node.coarsetype())))
    return false;
  auto coarseType = JS::ubi::Uint32ToCoarseType(node.coarsetype());

  Maybe<StringOrRef> typeNameOrRef = GET_STRING_OR_REF_WITH_PROP_NAMES(node, typename_, typenameref);
  auto typeName = getOrInternString<char16_t>(internedTwoByteStrings, typeNameOrRef);
  if (NS_WARN_IF(!typeName))
    return false;

  if (NS_WARN_IF(!node.has_size()))
    return false;
  uint64_t size = node.size();

  auto edgesLength = node.edges_size();
  DeserializedNode::EdgeVector edges;
  if (NS_WARN_IF(!edges.reserve(edgesLength)))
    return false;
  for (decltype(edgesLength) i = 0; i < edgesLength; i++) {
    auto& protoEdge = node.edges(i);

    if (NS_WARN_IF(!protoEdge.has_referent()))
      return false;
    NodeId referent = protoEdge.referent();

    if (NS_WARN_IF(!edgeReferents.put(referent)))
      return false;

    const char16_t* edgeName = nullptr;
    if (protoEdge.EdgeNameOrRef_case() != protobuf::Edge::EDGENAMEORREF_NOT_SET) {
      Maybe<StringOrRef> edgeNameOrRef = GET_STRING_OR_REF(protoEdge, name);
      edgeName = getOrInternString<char16_t>(internedTwoByteStrings, edgeNameOrRef);
      if (NS_WARN_IF(!edgeName))
        return false;
    }

    edges.infallibleAppend(DeserializedEdge(referent, edgeName));
  }

  Maybe<StackFrameId> allocationStack;
  if (node.has_allocationstack()) {
    StackFrameId id = 0;
    if (NS_WARN_IF(!saveStackFrame(node.allocationstack(), id)))
      return false;
    allocationStack.emplace(id);
  }
  MOZ_ASSERT(allocationStack.isSome() == node.has_allocationstack());

  const char* jsObjectClassName = nullptr;
  if (node.JSObjectClassNameOrRef_case() != protobuf::Node::JSOBJECTCLASSNAMEORREF_NOT_SET) {
    Maybe<StringOrRef> clsNameOrRef = GET_STRING_OR_REF(node, jsobjectclassname);
    jsObjectClassName = getOrInternString<char>(internedOneByteStrings, clsNameOrRef);
    if (NS_WARN_IF(!jsObjectClassName))
      return false;
  }

  const char* scriptFilename = nullptr;
  if (node.ScriptFilenameOrRef_case() != protobuf::Node::SCRIPTFILENAMEORREF_NOT_SET) {
    Maybe<StringOrRef> scriptFilenameOrRef = GET_STRING_OR_REF(node, scriptfilename);
    scriptFilename = getOrInternString<char>(internedOneByteStrings, scriptFilenameOrRef);
    if (NS_WARN_IF(!scriptFilename))
      return false;
  }

  if (NS_WARN_IF(!nodes.putNew(id, DeserializedNode(id, coarseType, typeName,
                                                    size, Move(edges),
                                                    allocationStack,
                                                    jsObjectClassName,
                                                    scriptFilename, *this))))
  {
    return false;
  };

  return true;
}

bool
HeapSnapshot::saveStackFrame(const protobuf::StackFrame& frame,
                             StackFrameId& outFrameId)
{
  // NB: de-duplicated string properties must be read in the same order here as
  // they are written in `CoreDumpWriter::getProtobufStackFrame` or else indices
  // in references to already serialized strings will be off.

  if (frame.has_ref()) {
    // We should only get a reference to the previous frame if we have already
    // seen the previous frame.
    if (!frames.has(frame.ref()))
      return false;

    outFrameId = frame.ref();
    return true;
  }

  // Incomplete message.
  if (!frame.has_data())
    return false;

  auto data = frame.data();

  if (!data.has_id())
    return false;
  StackFrameId id = data.id();

  // This should be the first and only time we see this frame.
  if (frames.has(id))
    return false;

  if (!data.has_line())
    return false;
  uint32_t line = data.line();

  if (!data.has_column())
    return false;
  uint32_t column = data.column();

  if (!data.has_issystem())
    return false;
  bool isSystem = data.issystem();

  if (!data.has_isselfhosted())
    return false;
  bool isSelfHosted = data.isselfhosted();

  Maybe<StringOrRef> sourceOrRef = GET_STRING_OR_REF(data, source);
  auto source = getOrInternString<char16_t>(internedTwoByteStrings, sourceOrRef);
  if (!source)
    return false;

  const char16_t* functionDisplayName = nullptr;
  if (data.FunctionDisplayNameOrRef_case() !=
      protobuf::StackFrame_Data::FUNCTIONDISPLAYNAMEORREF_NOT_SET)
  {
    Maybe<StringOrRef> nameOrRef = GET_STRING_OR_REF(data, functiondisplayname);
    functionDisplayName = getOrInternString<char16_t>(internedTwoByteStrings, nameOrRef);
    if (!functionDisplayName)
      return false;
  }

  Maybe<StackFrameId> parent;
  if (data.has_parent()) {
    StackFrameId parentId = 0;
    if (!saveStackFrame(data.parent(), parentId))
      return false;
    parent = Some(parentId);
  }

  if (!frames.putNew(id, DeserializedStackFrame(id, parent, line, column,
                                                source, functionDisplayName,
                                                isSystem, isSelfHosted, *this)))
  {
    return false;
  }

  outFrameId = id;
  return true;
}

#undef GET_STRING_OR_REF_WITH_PROP_NAMES
#undef GET_STRING_OR_REF

// Because protobuf messages aren't self-delimiting, we serialize each message
// preceded by its size in bytes. When deserializing, we read this size and then
// limit reading from the stream to the given byte size. If we didn't, then the
// first message would consume the entire stream.
static bool
readSizeOfNextMessage(ZeroCopyInputStream& stream, uint32_t* sizep)
{
  MOZ_ASSERT(sizep);
  CodedInputStream codedStream(&stream);
  return codedStream.ReadVarint32(sizep) && *sizep > 0;
}

bool
HeapSnapshot::init(JSContext* cx, const uint8_t* buffer, uint32_t size)
{
  if (!nodes.init() || !frames.init())
    return false;

  ArrayInputStream stream(buffer, size);
  GzipInputStream gzipStream(&stream);
  uint32_t sizeOfMessage = 0;

  // First is the metadata.

  protobuf::Metadata metadata;
  if (NS_WARN_IF(!readSizeOfNextMessage(gzipStream, &sizeOfMessage)))
    return false;
  if (!parseMessage(gzipStream, sizeOfMessage, metadata))
    return false;
  if (metadata.has_timestamp())
    timestamp.emplace(metadata.timestamp());

  // Next is the root node.

  protobuf::Node root;
  if (NS_WARN_IF(!readSizeOfNextMessage(gzipStream, &sizeOfMessage)))
    return false;
  if (!parseMessage(gzipStream, sizeOfMessage, root))
    return false;

  // Although the id is optional in the protobuf format for future proofing, we
  // can't currently do anything without it.
  if (NS_WARN_IF(!root.has_id()))
    return false;
  rootId = root.id();

  // The set of all node ids we've found edges pointing to.
  NodeIdSet edgeReferents(cx);
  if (NS_WARN_IF(!edgeReferents.init()))
    return false;

  if (NS_WARN_IF(!saveNode(root, edgeReferents)))
    return false;

  // Finally, the rest of the nodes in the core dump.

  // Test for the end of the stream. The protobuf library gives no way to tell
  // the difference between an underlying read error and the stream being
  // done. All we can do is attempt to read the size of the next message and
  // extrapolate guestimations from the result of that operation.
  while (readSizeOfNextMessage(gzipStream, &sizeOfMessage)) {
    protobuf::Node node;
    if (!parseMessage(gzipStream, sizeOfMessage, node))
      return false;
    if (NS_WARN_IF(!saveNode(node, edgeReferents)))
      return false;
  }

  // Check the set of node ids referred to by edges we found and ensure that we
  // have the node corresponding to each id. If we don't have all of them, it is
  // unsafe to perform analyses of this heap snapshot.
  for (auto range = edgeReferents.all(); !range.empty(); range.popFront()) {
    if (NS_WARN_IF(!nodes.has(range.front())))
      return false;
  }

  return true;
}


/*** Heap Snapshot Analyses ***********************************************************************/

void
HeapSnapshot::TakeCensus(JSContext* cx, JS::HandleObject options,
                         JS::MutableHandleValue rval, ErrorResult& rv)
{
  JS::ubi::Census census(cx);
  if (NS_WARN_IF(!census.init())) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return;
  }

  JS::ubi::CountTypePtr rootType;
  if (NS_WARN_IF(!JS::ubi::ParseCensusOptions(cx,  census, options, rootType))) {
    rv.Throw(NS_ERROR_UNEXPECTED);
    return;
  }

  JS::ubi::RootedCount rootCount(cx, rootType->makeCount());
  if (NS_WARN_IF(!rootCount)) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return;
  }

  JS::ubi::CensusHandler handler(census, rootCount, GetCurrentThreadDebuggerMallocSizeOf());

  {
    JS::AutoCheckCannotGC nogc;

    JS::ubi::CensusTraversal traversal(JS_GetRuntime(cx), handler, nogc);
    if (NS_WARN_IF(!traversal.init())) {
      rv.Throw(NS_ERROR_OUT_OF_MEMORY);
      return;
    }

    if (NS_WARN_IF(!traversal.addStart(getRoot()))) {
      rv.Throw(NS_ERROR_OUT_OF_MEMORY);
      return;
    }

    if (NS_WARN_IF(!traversal.traverse())) {
      rv.Throw(NS_ERROR_UNEXPECTED);
      return;
    }
  }

  if (NS_WARN_IF(!handler.report(cx, rval))) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return;
  }
}

void
HeapSnapshot::DescribeNode(JSContext* cx, JS::HandleObject breakdown, uint64_t nodeId,
                           JS::MutableHandleValue rval, ErrorResult& rv) {
  MOZ_ASSERT(breakdown);
  JS::RootedValue breakdownVal(cx, JS::ObjectValue(*breakdown));
  JS::ubi::CountTypePtr rootType = JS::ubi::ParseBreakdown(cx, breakdownVal);
  if (NS_WARN_IF(!rootType)) {
    rv.Throw(NS_ERROR_UNEXPECTED);
    return;
  }

  JS::ubi::RootedCount rootCount(cx, rootType->makeCount());
  if (NS_WARN_IF(!rootCount)) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return;
  }

  JS::ubi::Node::Id id(nodeId);
  Maybe<JS::ubi::Node> node = getNodeById(id);
  if (NS_WARN_IF(node.isNothing())) {
    rv.Throw(NS_ERROR_INVALID_ARG);
    return;
  }

  MallocSizeOf mallocSizeOf = GetCurrentThreadDebuggerMallocSizeOf();
  if (NS_WARN_IF(!rootCount->count(mallocSizeOf, *node))) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return;
  }

  if (NS_WARN_IF(!rootCount->report(cx, rval))) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return;
  }
}


already_AddRefed<DominatorTree>
HeapSnapshot::ComputeDominatorTree(ErrorResult& rv)
{
  Maybe<JS::ubi::DominatorTree> maybeTree;
  {
    auto ccrt = CycleCollectedJSRuntime::Get();
    MOZ_ASSERT(ccrt);
    auto rt = ccrt->Runtime();
    MOZ_ASSERT(rt);
    JS::AutoCheckCannotGC nogc(rt);
    maybeTree = JS::ubi::DominatorTree::Create(rt, nogc, getRoot());
  }

  if (NS_WARN_IF(maybeTree.isNothing())) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return nullptr;
  }

  return MakeAndAddRef<DominatorTree>(Move(*maybeTree), this, mParent);
}

void
HeapSnapshot::ComputeShortestPaths(JSContext*cx, uint64_t start,
                                   const Sequence<uint64_t>& targets,
                                   uint64_t maxNumPaths,
                                   JS::MutableHandleObject results,
                                   ErrorResult& rv)
{
  // First ensure that our inputs are valid.

  if (NS_WARN_IF(maxNumPaths == 0)) {
    rv.Throw(NS_ERROR_INVALID_ARG);
    return;
  }

  Maybe<JS::ubi::Node> startNode = getNodeById(start);
  if (NS_WARN_IF(startNode.isNothing())) {
    rv.Throw(NS_ERROR_INVALID_ARG);
    return;
  }

  if (NS_WARN_IF(targets.Length() == 0)) {
    rv.Throw(NS_ERROR_INVALID_ARG);
    return;
  }

  // Aggregate the targets into a set and make sure that they exist in the heap
  // snapshot.

  JS::ubi::NodeSet targetsSet;
  if (NS_WARN_IF(!targetsSet.init())) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return;
  }

  for (const auto& target : targets) {
    Maybe<JS::ubi::Node> targetNode = getNodeById(target);
    if (NS_WARN_IF(targetNode.isNothing())) {
      rv.Throw(NS_ERROR_INVALID_ARG);
      return;
    }

    if (NS_WARN_IF(!targetsSet.put(*targetNode))) {
      rv.Throw(NS_ERROR_OUT_OF_MEMORY);
      return;
    }
  }

  // Walk the heap graph and find the shortest paths.

  Maybe<ShortestPaths> maybeShortestPaths;
  {
    auto ccrt = CycleCollectedJSRuntime::Get();
    MOZ_ASSERT(ccrt);
    auto rt = ccrt->Runtime();
    MOZ_ASSERT(rt);
    JS::AutoCheckCannotGC nogc(rt);
    maybeShortestPaths = ShortestPaths::Create(rt, nogc, maxNumPaths, *startNode,
                                               Move(targetsSet));
  }

  if (NS_WARN_IF(maybeShortestPaths.isNothing())) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return;
  }

  auto& shortestPaths = *maybeShortestPaths;

  // Convert the results into a Map object mapping target node IDs to arrays of
  // paths found.

  RootedObject resultsMap(cx, JS::NewMapObject(cx));
  if (NS_WARN_IF(!resultsMap)) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return;
  }

  for (auto range = shortestPaths.eachTarget(); !range.empty(); range.popFront()) {
    JS::RootedValue key(cx, JS::NumberValue(range.front().identifier()));
    JS::AutoValueVector paths(cx);

    bool ok = shortestPaths.forEachPath(range.front(), [&](JS::ubi::Path& path) {
      JS::AutoValueVector pathValues(cx);

      for (JS::ubi::BackEdge* edge : path) {
        JS::RootedObject pathPart(cx, JS_NewPlainObject(cx));
        if (!pathPart) {
          return false;
        }

        JS::RootedValue predecessor(cx, NumberValue(edge->predecessor().identifier()));
        if (!JS_DefineProperty(cx, pathPart, "predecessor", predecessor, JSPROP_ENUMERATE)) {
          return false;
        }

        RootedValue edgeNameVal(cx, NullValue());
        if (edge->name()) {
          RootedString edgeName(cx, JS_AtomizeUCString(cx, edge->name().get()));
          if (!edgeName) {
            return false;
          }
          edgeNameVal = StringValue(edgeName);
        }

        if (!JS_DefineProperty(cx, pathPart, "edge", edgeNameVal, JSPROP_ENUMERATE)) {
          return false;
        }

        if (!pathValues.append(ObjectValue(*pathPart))) {
          return false;
        }
      }

      RootedObject pathObj(cx, JS_NewArrayObject(cx, pathValues));
      return pathObj && paths.append(ObjectValue(*pathObj));
    });

    if (NS_WARN_IF(!ok)) {
      rv.Throw(NS_ERROR_OUT_OF_MEMORY);
      return;
    }

    JS::RootedObject pathsArray(cx, JS_NewArrayObject(cx, paths));
    if (NS_WARN_IF(!pathsArray)) {
      rv.Throw(NS_ERROR_OUT_OF_MEMORY);
      return;
    }

    JS::RootedValue pathsVal(cx, ObjectValue(*pathsArray));
    if (NS_WARN_IF(!JS::MapSet(cx, resultsMap, key, pathsVal))) {
      rv.Throw(NS_ERROR_OUT_OF_MEMORY);
      return;
    }
  }

  results.set(resultsMap);
}

/*** Saving Heap Snapshots ************************************************************************/

// If we are only taking a snapshot of the heap affected by the given set of
// globals, find the set of compartments the globals are allocated
// within. Returns false on OOM failure.
static bool
PopulateCompartmentsWithGlobals(CompartmentSet& compartments, AutoObjectVector& globals)
{
  if (!compartments.init())
    return false;

  unsigned length = globals.length();
  for (unsigned i = 0; i < length; i++) {
    if (!compartments.put(GetObjectCompartment(globals[i])))
      return false;
  }

  return true;
}

// Add the given set of globals as explicit roots in the given roots
// list. Returns false on OOM failure.
static bool
AddGlobalsAsRoots(AutoObjectVector& globals, ubi::RootList& roots)
{
  unsigned length = globals.length();
  for (unsigned i = 0; i < length; i++) {
    if (!roots.addRoot(ubi::Node(globals[i].get()),
                       MOZ_UTF16("heap snapshot global")))
    {
      return false;
    }
  }
  return true;
}

// Choose roots and limits for a traversal, given `boundaries`. Set `roots` to
// the set of nodes within the boundaries that are referred to by nodes
// outside. If `boundaries` does not include all JS compartments, initialize
// `compartments` to the set of included compartments; otherwise, leave
// `compartments` uninitialized. (You can use compartments.initialized() to
// check.)
//
// If `boundaries` is incoherent, or we encounter an error while trying to
// handle it, or we run out of memory, set `rv` appropriately and return
// `false`.
static bool
EstablishBoundaries(JSContext* cx,
                    ErrorResult& rv,
                    const HeapSnapshotBoundaries& boundaries,
                    ubi::RootList& roots,
                    CompartmentSet& compartments)
{
  MOZ_ASSERT(!roots.initialized());
  MOZ_ASSERT(!compartments.initialized());

  bool foundBoundaryProperty = false;

  if (boundaries.mRuntime.WasPassed()) {
    foundBoundaryProperty = true;

    if (!boundaries.mRuntime.Value()) {
      rv.Throw(NS_ERROR_INVALID_ARG);
      return false;
    }

    if (!roots.init()) {
      rv.Throw(NS_ERROR_OUT_OF_MEMORY);
      return false;
    }
  }

  if (boundaries.mDebugger.WasPassed()) {
    if (foundBoundaryProperty) {
      rv.Throw(NS_ERROR_INVALID_ARG);
      return false;
    }
    foundBoundaryProperty = true;

    JSObject* dbgObj = boundaries.mDebugger.Value();
    if (!dbgObj || !dbg::IsDebugger(*dbgObj)) {
      rv.Throw(NS_ERROR_INVALID_ARG);
      return false;
    }

    AutoObjectVector globals(cx);
    if (!dbg::GetDebuggeeGlobals(cx, *dbgObj, globals) ||
        !PopulateCompartmentsWithGlobals(compartments, globals) ||
        !roots.init(compartments) ||
        !AddGlobalsAsRoots(globals, roots))
    {
      rv.Throw(NS_ERROR_OUT_OF_MEMORY);
      return false;
    }
  }

  if (boundaries.mGlobals.WasPassed()) {
    if (foundBoundaryProperty) {
      rv.Throw(NS_ERROR_INVALID_ARG);
      return false;
    }
    foundBoundaryProperty = true;

    uint32_t length = boundaries.mGlobals.Value().Length();
    if (length == 0) {
      rv.Throw(NS_ERROR_INVALID_ARG);
      return false;
    }

    AutoObjectVector globals(cx);
    for (uint32_t i = 0; i < length; i++) {
      JSObject* global = boundaries.mGlobals.Value().ElementAt(i);
      if (!JS_IsGlobalObject(global)) {
        rv.Throw(NS_ERROR_INVALID_ARG);
        return false;
      }
      if (!globals.append(global)) {
        rv.Throw(NS_ERROR_OUT_OF_MEMORY);
        return false;
      }
    }

    if (!PopulateCompartmentsWithGlobals(compartments, globals) ||
        !roots.init(compartments) ||
        !AddGlobalsAsRoots(globals, roots))
    {
      rv.Throw(NS_ERROR_OUT_OF_MEMORY);
      return false;
    }
  }

  if (!foundBoundaryProperty) {
    rv.Throw(NS_ERROR_INVALID_ARG);
    return false;
  }

  MOZ_ASSERT(roots.initialized());
  MOZ_ASSERT_IF(boundaries.mDebugger.WasPassed(), compartments.initialized());
  MOZ_ASSERT_IF(boundaries.mGlobals.WasPassed(), compartments.initialized());
  return true;
}


// A variant covering all the various two-byte strings that we can get from the
// ubi::Node API.
class TwoByteString : public Variant<JSAtom*, const char16_t*, JS::ubi::EdgeName>
{
  using Base = Variant<JSAtom*, const char16_t*, JS::ubi::EdgeName>;

  struct AsTwoByteStringMatcher
  {
    using ReturnType = TwoByteString;

    TwoByteString match(JSAtom* atom) {
      return TwoByteString(atom);
    }

    TwoByteString match(const char16_t* chars) {
      return TwoByteString(chars);
    }
  };

  struct IsNonNullMatcher
  {
    using ReturnType = bool;

    template<typename T>
    bool match(const T& t) { return t != nullptr; }
  };

  struct LengthMatcher
  {
    using ReturnType = size_t;

    size_t match(JSAtom* atom) {
      MOZ_ASSERT(atom);
      JS::ubi::AtomOrTwoByteChars s(atom);
      return s.length();
    }

    size_t match(const char16_t* chars) {
      MOZ_ASSERT(chars);
      return NS_strlen(chars);
    }

    size_t match(const JS::ubi::EdgeName& ptr) {
      MOZ_ASSERT(ptr);
      return NS_strlen(ptr.get());
    }
  };

  struct CopyToBufferMatcher
  {
    using ReturnType = size_t;

    RangedPtr<char16_t> destination;
    size_t              maxLength;

    CopyToBufferMatcher(RangedPtr<char16_t> destination, size_t maxLength)
      : destination(destination)
      , maxLength(maxLength)
    { }

    size_t match(JS::ubi::EdgeName& ptr) {
      return ptr ? match(ptr.get()) : 0;
    }

    size_t match(JSAtom* atom) {
      MOZ_ASSERT(atom);
      JS::ubi::AtomOrTwoByteChars s(atom);
      return s.copyToBuffer(destination, maxLength);
    }

    size_t match(const char16_t* chars) {
      MOZ_ASSERT(chars);
      JS::ubi::AtomOrTwoByteChars s(chars);
      return s.copyToBuffer(destination, maxLength);
    }
  };

public:
  template<typename T>
  MOZ_IMPLICIT TwoByteString(T&& rhs) : Base(Forward<T>(rhs)) { }

  template<typename T>
  TwoByteString& operator=(T&& rhs) {
    MOZ_ASSERT(this != &rhs, "self-move disallowed");
    this->~TwoByteString();
    new (this) TwoByteString(Forward<T>(rhs));
    return *this;
  }

  TwoByteString(const TwoByteString&) = delete;
  TwoByteString& operator=(const TwoByteString&) = delete;

  // Rewrap the inner value of a JS::ubi::AtomOrTwoByteChars as a TwoByteString.
  static TwoByteString from(JS::ubi::AtomOrTwoByteChars&& s) {
    AsTwoByteStringMatcher m;
    return s.match(m);
  }

  // Returns true if the given TwoByteString is non-null, false otherwise.
  bool isNonNull() const {
    IsNonNullMatcher m;
    return match(m);
  }

  // Return the length of the string, 0 if it is null.
  size_t length() const {
    LengthMatcher m;
    return match(m);
  }

  // Copy the contents of a TwoByteString into the provided buffer. The buffer
  // is NOT null terminated. The number of characters written is returned.
  size_t copyToBuffer(RangedPtr<char16_t> destination, size_t maxLength) {
    CopyToBufferMatcher m(destination, maxLength);
    return match(m);
  }

  struct HashPolicy;
};

// A hashing policy for TwoByteString.
//
// Atoms are pointer hashed and use pointer equality, which means that we
// tolerate some duplication across atoms and the other two types of two-byte
// strings. In practice, we expect the amount of this duplication to be very low
// because each type is generally a different semantic thing in addition to
// having a slightly different representation. For example, the set of edge
// names and the set stack frames' source names naturally tend not to overlap
// very much if at all.
struct TwoByteString::HashPolicy {
  using Lookup = TwoByteString;

  struct HashingMatcher {
    using ReturnType  = js::HashNumber;

    js::HashNumber match(const JSAtom* atom) {
      return js::DefaultHasher<const JSAtom*>::hash(atom);
    }

    js::HashNumber match(const char16_t* chars) {
      MOZ_ASSERT(chars);
      auto length = NS_strlen(chars);
      return HashString(chars, length);
    }

    js::HashNumber match(const JS::ubi::EdgeName& ptr) {
      MOZ_ASSERT(ptr);
      return match(ptr.get());
    }
  };

  static js::HashNumber hash(const Lookup& l) {
    HashingMatcher hasher;
    return l.match(hasher);
  }

  struct EqualityMatcher {
    using ReturnType = bool;
    const TwoByteString& rhs;
    explicit EqualityMatcher(const TwoByteString& rhs) : rhs(rhs) { }

    bool match(const JSAtom* atom) {
      return rhs.is<JSAtom*>() && rhs.as<JSAtom*>() == atom;
    }

    bool match(const char16_t* chars) {
      MOZ_ASSERT(chars);

      const char16_t* rhsChars = nullptr;
      if (rhs.is<const char16_t*>())
        rhsChars = rhs.as<const char16_t*>();
      else if (rhs.is<JS::ubi::EdgeName>())
        rhsChars = rhs.as<JS::ubi::EdgeName>().get();
      else
        return false;
      MOZ_ASSERT(rhsChars);

      auto length = NS_strlen(chars);
      if (NS_strlen(rhsChars) != length)
        return false;

      return memcmp(chars, rhsChars, length * sizeof(char16_t)) == 0;
    }

    bool match(const JS::ubi::EdgeName& ptr) {
      MOZ_ASSERT(ptr);
      return match(ptr.get());
    }
  };

  static bool match(const TwoByteString& k, const Lookup& l) {
    EqualityMatcher eq(l);
    return k.match(eq);
  }

  static void rekey(TwoByteString& k, TwoByteString&& newKey) {
    k = Move(newKey);
  }
};

// A `CoreDumpWriter` that serializes nodes to protobufs and writes them to the
// given `ZeroCopyOutputStream`.
class MOZ_STACK_CLASS StreamWriter : public CoreDumpWriter
{
  using FrameSet         = js::HashSet<uint64_t>;
  using TwoByteStringMap = js::HashMap<TwoByteString, uint64_t, TwoByteString::HashPolicy>;
  using OneByteStringMap = js::HashMap<const char*, uint64_t>;

  JSContext*       cx;
  bool             wantNames;
  // The set of |JS::ubi::StackFrame::identifier()|s that have already been
  // serialized and written to the core dump.
  FrameSet         framesAlreadySerialized;
  // The set of two-byte strings that have already been serialized and written
  // to the core dump.
  TwoByteStringMap twoByteStringsAlreadySerialized;
  // The set of one-byte strings that have already been serialized and written
  // to the core dump.
  OneByteStringMap oneByteStringsAlreadySerialized;

  ::google::protobuf::io::ZeroCopyOutputStream& stream;

  bool writeMessage(const ::google::protobuf::MessageLite& message) {
    // We have to create a new CodedOutputStream when writing each message so
    // that the 64MB size limit used by Coded{Output,Input}Stream to prevent
    // integer overflow is enforced per message rather than on the whole stream.
    ::google::protobuf::io::CodedOutputStream codedStream(&stream);
    codedStream.WriteVarint32(message.ByteSize());
    message.SerializeWithCachedSizes(&codedStream);
    return !codedStream.HadError();
  }

  // Attach the full two-byte string or a reference to a two-byte string that
  // has already been serialized to a protobuf message.
  template <typename SetStringFunction,
            typename SetRefFunction>
  bool attachTwoByteString(TwoByteString& string, SetStringFunction setString,
                           SetRefFunction setRef) {
    auto ptr = twoByteStringsAlreadySerialized.lookupForAdd(string);
    if (ptr) {
      setRef(ptr->value());
      return true;
    }

    auto length = string.length();
    auto stringData = MakeUnique<std::string>(length * sizeof(char16_t), '\0');
    if (!stringData)
      return false;

    auto buf = const_cast<char16_t*>(reinterpret_cast<const char16_t*>(stringData->data()));
    string.copyToBuffer(RangedPtr<char16_t>(buf, length), length);

    uint64_t ref = twoByteStringsAlreadySerialized.count();
    if (!twoByteStringsAlreadySerialized.add(ptr, Move(string), ref))
      return false;

    setString(stringData.release());
    return true;
  }

  // Attach the full one-byte string or a reference to a one-byte string that
  // has already been serialized to a protobuf message.
  template <typename SetStringFunction,
            typename SetRefFunction>
  bool attachOneByteString(const char* string, SetStringFunction setString,
                           SetRefFunction setRef) {
    auto ptr = oneByteStringsAlreadySerialized.lookupForAdd(string);
    if (ptr) {
      setRef(ptr->value());
      return true;
    }

    auto length = strlen(string);
    auto stringData = MakeUnique<std::string>(string, length);
    if (!stringData)
      return false;

    uint64_t ref = oneByteStringsAlreadySerialized.count();
    if (!oneByteStringsAlreadySerialized.add(ptr, string, ref))
      return false;

    setString(stringData.release());
    return true;
  }

  protobuf::StackFrame* getProtobufStackFrame(JS::ubi::StackFrame& frame,
                                              size_t depth = 1) {
    // NB: de-duplicated string properties must be written in the same order
    // here as they are read in `HeapSnapshot::saveStackFrame` or else indices
    // in references to already serialized strings will be off.

    MOZ_ASSERT(frame,
               "null frames should be represented as the lack of a serialized "
               "stack frame");

    auto id = frame.identifier();
    auto protobufStackFrame = MakeUnique<protobuf::StackFrame>();
    if (!protobufStackFrame)
      return nullptr;

    if (framesAlreadySerialized.has(id)) {
      protobufStackFrame->set_ref(id);
      return protobufStackFrame.release();
    }

    auto data = MakeUnique<protobuf::StackFrame_Data>();
    if (!data)
      return nullptr;

    data->set_id(id);
    data->set_line(frame.line());
    data->set_column(frame.column());
    data->set_issystem(frame.isSystem());
    data->set_isselfhosted(frame.isSelfHosted());

    auto dupeSource = TwoByteString::from(frame.source());
    if (!attachTwoByteString(dupeSource,
                             [&] (std::string* source) { data->set_allocated_source(source); },
                             [&] (uint64_t ref) { data->set_sourceref(ref); }))
    {
      return nullptr;
    }

    auto dupeName = TwoByteString::from(frame.functionDisplayName());
    if (dupeName.isNonNull()) {
      if (!attachTwoByteString(dupeName,
                               [&] (std::string* name) { data->set_allocated_functiondisplayname(name); },
                               [&] (uint64_t ref) { data->set_functiondisplaynameref(ref); }))
      {
        return nullptr;
      }
    }

    auto parent = frame.parent();
    if (parent && depth < HeapSnapshot::MAX_STACK_DEPTH) {
      auto protobufParent = getProtobufStackFrame(parent, depth + 1);
      if (!protobufParent)
        return nullptr;
      data->set_allocated_parent(protobufParent);
    }

    protobufStackFrame->set_allocated_data(data.release());

    if (!framesAlreadySerialized.put(id))
      return nullptr;

    return protobufStackFrame.release();
  }

public:
  StreamWriter(JSContext* cx,
               ::google::protobuf::io::ZeroCopyOutputStream& stream,
               bool wantNames)
    : cx(cx)
    , wantNames(wantNames)
    , framesAlreadySerialized(cx)
    , twoByteStringsAlreadySerialized(cx)
    , oneByteStringsAlreadySerialized(cx)
    , stream(stream)
  { }

  bool init() {
    return framesAlreadySerialized.init() &&
           twoByteStringsAlreadySerialized.init() &&
           oneByteStringsAlreadySerialized.init();
  }

  ~StreamWriter() override { }

  virtual bool writeMetadata(uint64_t timestamp) final {
    protobuf::Metadata metadata;
    metadata.set_timestamp(timestamp);
    return writeMessage(metadata);
  }

  virtual bool writeNode(const JS::ubi::Node& ubiNode,
                         EdgePolicy includeEdges) final {
    // NB: de-duplicated string properties must be written in the same order
    // here as they are read in `HeapSnapshot::saveNode` or else indices in
    // references to already serialized strings will be off.

    protobuf::Node protobufNode;
    protobufNode.set_id(ubiNode.identifier());

    protobufNode.set_coarsetype(JS::ubi::CoarseTypeToUint32(ubiNode.coarseType()));

    auto typeName = TwoByteString(ubiNode.typeName());
    if (NS_WARN_IF(!attachTwoByteString(typeName,
                                        [&] (std::string* name) { protobufNode.set_allocated_typename_(name); },
                                        [&] (uint64_t ref) { protobufNode.set_typenameref(ref); })))
    {
      return false;
    }

    mozilla::MallocSizeOf mallocSizeOf = dbg::GetDebuggerMallocSizeOf(cx);
    MOZ_ASSERT(mallocSizeOf);
    protobufNode.set_size(ubiNode.size(mallocSizeOf));

    if (includeEdges) {
      auto edges = ubiNode.edges(JS_GetRuntime(cx), wantNames);
      if (NS_WARN_IF(!edges))
        return false;

      for ( ; !edges->empty(); edges->popFront()) {
        ubi::Edge& ubiEdge = edges->front();

        protobuf::Edge* protobufEdge = protobufNode.add_edges();
        if (NS_WARN_IF(!protobufEdge)) {
          return false;
        }

        protobufEdge->set_referent(ubiEdge.referent.identifier());

        if (wantNames && ubiEdge.name) {
          TwoByteString edgeName(Move(ubiEdge.name));
          if (NS_WARN_IF(!attachTwoByteString(edgeName,
                                              [&] (std::string* name) { protobufEdge->set_allocated_name(name); },
                                              [&] (uint64_t ref) { protobufEdge->set_nameref(ref); })))
          {
            return false;
          }
        }
      }
    }

    if (ubiNode.hasAllocationStack()) {
      auto ubiStackFrame = ubiNode.allocationStack();
      auto protoStackFrame = getProtobufStackFrame(ubiStackFrame);
      if (NS_WARN_IF(!protoStackFrame))
        return false;
      protobufNode.set_allocated_allocationstack(protoStackFrame);
    }

    if (auto className = ubiNode.jsObjectClassName()) {
      if (NS_WARN_IF(!attachOneByteString(className,
                                          [&] (std::string* name) { protobufNode.set_allocated_jsobjectclassname(name); },
                                          [&] (uint64_t ref) { protobufNode.set_jsobjectclassnameref(ref); })))
      {
        return false;
      }
    }

    if (auto scriptFilename = ubiNode.scriptFilename()) {
      if (NS_WARN_IF(!attachOneByteString(scriptFilename,
                                          [&] (std::string* name) { protobufNode.set_allocated_scriptfilename(name); },
                                          [&] (uint64_t ref) { protobufNode.set_scriptfilenameref(ref); })))
      {
        return false;
      }
    }

    return writeMessage(protobufNode);
  }
};

// A JS::ubi::BreadthFirst handler that serializes a snapshot of the heap into a
// core dump.
class MOZ_STACK_CLASS HeapSnapshotHandler
{
  CoreDumpWriter&     writer;
  JS::CompartmentSet* compartments;

public:
  // For telemetry.
  uint32_t nodeCount;
  uint32_t edgeCount;

  HeapSnapshotHandler(CoreDumpWriter& writer,
                      JS::CompartmentSet* compartments)
    : writer(writer),
      compartments(compartments)
  { }

  // JS::ubi::BreadthFirst handler interface.

  class NodeData { };
  typedef JS::ubi::BreadthFirst<HeapSnapshotHandler> Traversal;
  bool operator() (Traversal& traversal,
                   JS::ubi::Node origin,
                   const JS::ubi::Edge& edge,
                   NodeData*,
                   bool first)
  {
    edgeCount++;

    // We're only interested in the first time we reach edge.referent, not in
    // every edge arriving at that node. "But, don't we want to serialize every
    // edge in the heap graph?" you ask. Don't worry! This edge is still
    // serialized into the core dump. Serializing a node also serializes each of
    // its edges, and if we are traversing a given edge, we must have already
    // visited and serialized the origin node and its edges.
    if (!first)
      return true;

    nodeCount++;

    const JS::ubi::Node& referent = edge.referent;

    if (!compartments)
      // We aren't targeting a particular set of compartments, so serialize all the
      // things!
      return writer.writeNode(referent, CoreDumpWriter::INCLUDE_EDGES);

    // We are targeting a particular set of compartments. If this node is in our target
    // set, serialize it and all of its edges. If this node is _not_ in our
    // target set, we also serialize under the assumption that it is a shared
    // resource being used by something in our target compartments since we reached it
    // by traversing the heap graph. However, we do not serialize its outgoing
    // edges and we abandon further traversal from this node.

    JSCompartment* compartment = referent.compartment();

    if (compartments->has(compartment))
      return writer.writeNode(referent, CoreDumpWriter::INCLUDE_EDGES);

    traversal.abandonReferent();
    return writer.writeNode(referent, CoreDumpWriter::EXCLUDE_EDGES);
  }
};


bool
WriteHeapGraph(JSContext* cx,
               const JS::ubi::Node& node,
               CoreDumpWriter& writer,
               bool wantNames,
               JS::CompartmentSet* compartments,
               JS::AutoCheckCannotGC& noGC,
               uint32_t& outNodeCount,
               uint32_t& outEdgeCount)
{
  // Serialize the starting node to the core dump.

  if (NS_WARN_IF(!writer.writeNode(node, CoreDumpWriter::INCLUDE_EDGES))) {
    return false;
  }

  // Walk the heap graph starting from the given node and serialize it into the
  // core dump.

  HeapSnapshotHandler handler(writer, compartments);
  HeapSnapshotHandler::Traversal traversal(JS_GetRuntime(cx), handler, noGC);
  if (!traversal.init())
    return false;
  traversal.wantNames = wantNames;

  bool ok = traversal.addStartVisited(node) &&
            traversal.traverse();

  if (ok) {
    outNodeCount = handler.nodeCount;
    outEdgeCount = handler.edgeCount;
  }

  return ok;
}

static unsigned long
msSinceProcessCreation(const TimeStamp& now)
{
  bool ignored;
  auto duration = now - TimeStamp::ProcessCreation(ignored);
  return (unsigned long) duration.ToMilliseconds();
}

/* static */ already_AddRefed<nsIFile>
HeapSnapshot::CreateUniqueCoreDumpFile(ErrorResult& rv,
                                       const TimeStamp& now,
                                       nsAString& outFilePath)
{
  nsCOMPtr<nsIFile> file;
  rv = NS_GetSpecialDirectory(NS_OS_TEMP_DIR, getter_AddRefs(file));
  if (NS_WARN_IF(rv.Failed()))
    return nullptr;

  auto ms = msSinceProcessCreation(now);
  rv = file->AppendNative(nsPrintfCString("%lu.fxsnapshot", ms));
  if (NS_WARN_IF(rv.Failed()))
    return nullptr;

  rv = file->CreateUnique(nsIFile::NORMAL_FILE_TYPE, 0666);
  if (NS_WARN_IF(rv.Failed()))
    return nullptr;

  rv = file->GetPath(outFilePath);
  if (NS_WARN_IF(rv.Failed()))
    return nullptr;

  return file.forget();
}

// Deletion policy for cleaning up PHeapSnapshotTempFileHelperChild pointers.
class DeleteHeapSnapshotTempFileHelperChild
{
public:
  MOZ_CONSTEXPR DeleteHeapSnapshotTempFileHelperChild() { }

  void operator()(PHeapSnapshotTempFileHelperChild* ptr) const {
    NS_WARN_IF(!HeapSnapshotTempFileHelperChild::Send__delete__(ptr));
  }
};

// A UniquePtr alias to automatically manage PHeapSnapshotTempFileHelperChild
// pointers.
using UniqueHeapSnapshotTempFileHelperChild = UniquePtr<PHeapSnapshotTempFileHelperChild,
                                                        DeleteHeapSnapshotTempFileHelperChild>;

// Get an nsIOutputStream that we can write the heap snapshot to. In non-e10s
// and in the e10s parent process, open a file directly and create an output
// stream for it. In e10s child processes, we are sandboxed without access to
// the filesystem. Use IPDL to request a file descriptor from the parent
// process.
static already_AddRefed<nsIOutputStream>
getCoreDumpOutputStream(ErrorResult& rv, TimeStamp& start, nsAString& outFilePath)
{
  if (XRE_IsParentProcess()) {
    // Create the file and open the output stream directly.

    nsCOMPtr<nsIFile> file = HeapSnapshot::CreateUniqueCoreDumpFile(rv,
                                                                    start,
                                                                    outFilePath);
    if (NS_WARN_IF(rv.Failed()))
      return nullptr;

    nsCOMPtr<nsIOutputStream> outputStream;
    rv = NS_NewLocalFileOutputStream(getter_AddRefs(outputStream), file,
                                     PR_WRONLY, -1, 0);
    if (NS_WARN_IF(rv.Failed()))
      return nullptr;

    return outputStream.forget();
  } else {
    // Request a file descriptor from the parent process over IPDL.

    auto cc = ContentChild::GetSingleton();
    if (!cc) {
      rv.Throw(NS_ERROR_UNEXPECTED);
      return nullptr;
    }

    UniqueHeapSnapshotTempFileHelperChild helper(
      cc->SendPHeapSnapshotTempFileHelperConstructor());
    if (NS_WARN_IF(!helper)) {
      rv.Throw(NS_ERROR_UNEXPECTED);
      return nullptr;
    }

    OpenHeapSnapshotTempFileResponse response;
    if (!helper->SendOpenHeapSnapshotTempFile(&response)) {
      rv.Throw(NS_ERROR_UNEXPECTED);
      return nullptr;
    }
    if (response.type() == OpenHeapSnapshotTempFileResponse::Tnsresult) {
      rv.Throw(response.get_nsresult());
      return nullptr;
    }

    auto opened = response.get_OpenedFile();
    outFilePath = opened.path();
    nsCOMPtr<nsIOutputStream> outputStream =
      FileDescriptorOutputStream::Create(opened.descriptor());
    if (NS_WARN_IF(!outputStream)) {
      rv.Throw(NS_ERROR_UNEXPECTED);
      return nullptr;
    }

    return outputStream.forget();
  }
}

} // namespace devtools

namespace dom {

using namespace JS;
using namespace devtools;

/* static */ void
ThreadSafeChromeUtils::SaveHeapSnapshot(GlobalObject& global,
                                        const HeapSnapshotBoundaries& boundaries,
                                        nsAString& outFilePath,
                                        ErrorResult& rv)
{
  auto start = TimeStamp::Now();

  bool wantNames = true;
  CompartmentSet compartments;
  uint32_t nodeCount = 0;
  uint32_t edgeCount = 0;

  nsCOMPtr<nsIOutputStream> outputStream = getCoreDumpOutputStream(rv, start, outFilePath);
  if (NS_WARN_IF(rv.Failed()))
    return;

  ZeroCopyNSIOutputStream zeroCopyStream(outputStream);
  ::google::protobuf::io::GzipOutputStream gzipStream(&zeroCopyStream);

  JSContext* cx = global.Context();
  StreamWriter writer(cx, gzipStream, wantNames);
  if (NS_WARN_IF(!writer.init())) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return;
  }

  {
    Maybe<AutoCheckCannotGC> maybeNoGC;
    ubi::RootList rootList(JS_GetRuntime(cx), maybeNoGC, wantNames);
    if (!EstablishBoundaries(cx, rv, boundaries, rootList, compartments))
      return;

    MOZ_ASSERT(maybeNoGC.isSome());
    ubi::Node roots(&rootList);

    // Serialize the initial heap snapshot metadata to the core dump.
    if (!writer.writeMetadata(PR_Now()) ||
        // Serialize the heap graph to the core dump, starting from our list of
        // roots.
        !WriteHeapGraph(cx,
                        roots,
                        writer,
                        wantNames,
                        compartments.initialized() ? &compartments : nullptr,
                        maybeNoGC.ref(),
                        nodeCount,
                        edgeCount))
    {
      rv.Throw(zeroCopyStream.failed()
               ? zeroCopyStream.result()
               : NS_ERROR_UNEXPECTED);
      return;
    }
  }

  Telemetry::AccumulateTimeDelta(Telemetry::DEVTOOLS_SAVE_HEAP_SNAPSHOT_MS,
                                 start);
  Telemetry::Accumulate(Telemetry::DEVTOOLS_HEAP_SNAPSHOT_NODE_COUNT,
                        nodeCount);
  Telemetry::Accumulate(Telemetry::DEVTOOLS_HEAP_SNAPSHOT_EDGE_COUNT,
                        edgeCount);
}

/* static */ already_AddRefed<HeapSnapshot>
ThreadSafeChromeUtils::ReadHeapSnapshot(GlobalObject& global,
                                        const nsAString& filePath,
                                        ErrorResult& rv)
{
  auto start = TimeStamp::Now();

  UniquePtr<char[]> path(ToNewCString(filePath));
  if (!path) {
    rv.Throw(NS_ERROR_OUT_OF_MEMORY);
    return nullptr;
  }

  AutoMemMap mm;
  rv = mm.init(path.get());
  if (rv.Failed())
    return nullptr;

  RefPtr<HeapSnapshot> snapshot = HeapSnapshot::Create(
      global.Context(), global, reinterpret_cast<const uint8_t*>(mm.address()),
      mm.size(), rv);

  if (!rv.Failed())
    Telemetry::AccumulateTimeDelta(Telemetry::DEVTOOLS_READ_HEAP_SNAPSHOT_MS,
                                   start);

  return snapshot.forget();
}

} // namespace dom
} // namespace mozilla