DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/SPSCQueue.h"
#include "mozilla/PodOperations.h"
#include <vector>
#include <iostream>
#include <thread>
#include <chrono>
#include <memory>
#include <string>

#ifdef _WIN32
#  include <windows.h>
#endif

using namespace mozilla;

/* Generate a monotonically increasing sequence of numbers. */
template <typename T>
class SequenceGenerator {
 public:
  SequenceGenerator() {}
  void Get(T* aElements, size_t aCount) {
    for (size_t i = 0; i < aCount; i++) {
      aElements[i] = static_cast<T>(mIndex);
      mIndex++;
    }
  }
  void Rewind(size_t aCount) { mIndex -= aCount; }

 private:
  size_t mIndex = 0;
};

/* Checks that a sequence is monotonically increasing. */
template <typename T>
class SequenceVerifier {
 public:
  SequenceVerifier() {}
  void Check(T* aElements, size_t aCount) {
    for (size_t i = 0; i < aCount; i++) {
      if (aElements[i] != static_cast<T>(mIndex)) {
        std::cerr << "Element " << i << " is different. Expected "
                  << static_cast<T>(mIndex) << ", got " << aElements[i] << "."
                  << std::endl;
        MOZ_RELEASE_ASSERT(false);
      }
      mIndex++;
    }
  }

 private:
  size_t mIndex = 0;
};

const int BLOCK_SIZE = 127;

template <typename T>
void TestRing(int capacity) {
  SPSCQueue<T> buf(capacity);
  std::unique_ptr<T[]> seq(new T[capacity]);
  SequenceGenerator<T> gen;
  SequenceVerifier<T> checker;

  int iterations = 1002;

  while (iterations--) {
    gen.Get(seq.get(), BLOCK_SIZE);
    int rv = buf.Enqueue(seq.get(), BLOCK_SIZE);
    MOZ_RELEASE_ASSERT(rv == BLOCK_SIZE);
    PodZero(seq.get(), BLOCK_SIZE);
    rv = buf.Dequeue(seq.get(), BLOCK_SIZE);
    MOZ_RELEASE_ASSERT(rv == BLOCK_SIZE);
    checker.Check(seq.get(), BLOCK_SIZE);
  }
}

void Delay() {
  // On Windows and x86 Android, the timer resolution is so bad that, even if
  // we used `timeBeginPeriod(1)`, any nonzero sleep from the test's inner loops
  // would make this program take far too long.
#ifdef _WIN32
  Sleep(0);
#elif defined(ANDROID)
  std::this_thread::sleep_for(std::chrono::microseconds(0));
#else
  std::this_thread::sleep_for(std::chrono::microseconds(10));
#endif
}

template <typename T>
void TestRingMultiThread(int capacity) {
  SPSCQueue<T> buf(capacity);
  SequenceVerifier<T> checker;
  std::unique_ptr<T[]> outBuffer(new T[capacity]);

  std::thread t([&buf, capacity] {
    int iterations = 1002;
    std::unique_ptr<T[]> inBuffer(new T[capacity]);
    SequenceGenerator<T> gen;

    while (iterations--) {
      Delay();
      gen.Get(inBuffer.get(), BLOCK_SIZE);
      int rv = buf.Enqueue(inBuffer.get(), BLOCK_SIZE);
      MOZ_RELEASE_ASSERT(rv <= BLOCK_SIZE);
      if (rv != BLOCK_SIZE) {
        gen.Rewind(BLOCK_SIZE - rv);
      }
    }
  });

  int remaining = 1002;

  while (remaining--) {
    Delay();
    int rv = buf.Dequeue(outBuffer.get(), BLOCK_SIZE);
    MOZ_RELEASE_ASSERT(rv <= BLOCK_SIZE);
    checker.Check(outBuffer.get(), rv);
  }

  t.join();
}

template <typename T>
void BasicAPITest(T& ring) {
  MOZ_RELEASE_ASSERT(ring.Capacity() == 128);

  MOZ_RELEASE_ASSERT(ring.AvailableRead() == 0);
  MOZ_RELEASE_ASSERT(ring.AvailableWrite() == 128);

  int rv = ring.EnqueueDefault(63);

  MOZ_RELEASE_ASSERT(rv == 63);
  MOZ_RELEASE_ASSERT(ring.AvailableRead() == 63);
  MOZ_RELEASE_ASSERT(ring.AvailableWrite() == 65);

  rv = ring.EnqueueDefault(65);

  MOZ_RELEASE_ASSERT(rv == 65);
  MOZ_RELEASE_ASSERT(ring.AvailableRead() == 128);
  MOZ_RELEASE_ASSERT(ring.AvailableWrite() == 0);

  rv = ring.Dequeue(nullptr, 63);

  MOZ_RELEASE_ASSERT(ring.AvailableRead() == 65);
  MOZ_RELEASE_ASSERT(ring.AvailableWrite() == 63);

  rv = ring.Dequeue(nullptr, 65);

  MOZ_RELEASE_ASSERT(ring.AvailableRead() == 0);
  MOZ_RELEASE_ASSERT(ring.AvailableWrite() == 128);
}

const size_t RING_BUFFER_SIZE = 128;
const size_t ENQUEUE_SIZE = RING_BUFFER_SIZE / 2;

void TestResetAPI() {
  SPSCQueue<float> ring(RING_BUFFER_SIZE);
  std::thread t([&ring] {
    std::unique_ptr<float[]> inBuffer(new float[ENQUEUE_SIZE]);
    int rv = ring.Enqueue(inBuffer.get(), ENQUEUE_SIZE);
    MOZ_RELEASE_ASSERT(rv > 0);
  });

  t.join();

  ring.ResetThreadIds();

  // Enqueue with a different thread. We have reset the thread ID
  // in the ring buffer, this should work.
  std::thread t2([&ring] {
    std::unique_ptr<float[]> inBuffer(new float[ENQUEUE_SIZE]);
    int rv = ring.Enqueue(inBuffer.get(), ENQUEUE_SIZE);
    MOZ_RELEASE_ASSERT(rv > 0);
  });

  t2.join();
}

void TestMove() {
  const size_t ELEMENT_COUNT = 16;
  struct Thing {
    Thing() : mStr("") {}
    explicit Thing(const std::string& aStr) : mStr(aStr) {}
    Thing(Thing&& aOtherThing) {
      mStr = std::move(aOtherThing.mStr);
      // aOtherThing.mStr.clear();
    }
    Thing& operator=(Thing&& aOtherThing) {
      mStr = std::move(aOtherThing.mStr);
      return *this;
    }
    std::string mStr;
  };

  std::vector<Thing> vec_in;
  std::vector<Thing> vec_out;

  for (uint32_t i = 0; i < ELEMENT_COUNT; i++) {
    vec_in.push_back(Thing(std::to_string(i)));
    vec_out.push_back(Thing());
  }

  SPSCQueue<Thing> queue(ELEMENT_COUNT);

  int rv = queue.Enqueue(&vec_in[0], ELEMENT_COUNT);
  MOZ_RELEASE_ASSERT(rv == ELEMENT_COUNT);

  // Check that we've moved the std::string into the queue.
  for (uint32_t i = 0; i < ELEMENT_COUNT; i++) {
    MOZ_RELEASE_ASSERT(vec_in[i].mStr.empty());
  }

  rv = queue.Dequeue(&vec_out[0], ELEMENT_COUNT);
  MOZ_RELEASE_ASSERT(rv == ELEMENT_COUNT);

  for (uint32_t i = 0; i < ELEMENT_COUNT; i++) {
    MOZ_RELEASE_ASSERT(std::stoul(vec_out[i].mStr) == i);
  }
}

int main() {
  const int minCapacity = 199;
  const int maxCapacity = 1277;
  const int capacityIncrement = 27;

  SPSCQueue<float> q1(128);
  BasicAPITest(q1);
  SPSCQueue<char> q2(128);
  BasicAPITest(q2);

  for (uint32_t i = minCapacity; i < maxCapacity; i += capacityIncrement) {
    TestRing<uint32_t>(i);
    TestRingMultiThread<uint32_t>(i);
    TestRing<float>(i);
    TestRingMultiThread<float>(i);
  }

  TestResetAPI();
  TestMove();

  return 0;
}