DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* A template class for tagged unions. */

#include <new>
#include <stdint.h>

#include "mozilla/Assertions.h"
#include "mozilla/FunctionTypeTraits.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/OperatorNewExtensions.h"
#include "mozilla/TemplateLib.h"
#include "mozilla/TypeTraits.h"
#include <utility>

#ifndef mozilla_Variant_h
#  define mozilla_Variant_h

namespace IPC {
template <typename T>
struct ParamTraits;
}  // namespace IPC

namespace mozilla {

template <typename... Ts>
class Variant;

namespace detail {

// Nth<N, types...>::Type is the Nth type (0-based) in the list of types Ts.
template <size_t N, typename... Ts>
struct Nth;

template <typename T, typename... Ts>
struct Nth<0, T, Ts...> {
  using Type = T;
};

template <size_t N, typename T, typename... Ts>
struct Nth<N, T, Ts...> {
  using Type = typename Nth<N - 1, Ts...>::Type;
};

/// SelectVariantTypeHelper is used in the implementation of SelectVariantType.
template <typename T, typename... Variants>
struct SelectVariantTypeHelper;

template <typename T>
struct SelectVariantTypeHelper<T> {
  static constexpr size_t count = 0;
};

template <typename T, typename... Variants>
struct SelectVariantTypeHelper<T, T, Variants...> {
  typedef T Type;
  static constexpr size_t count =
      1 + SelectVariantTypeHelper<T, Variants...>::count;
};

template <typename T, typename... Variants>
struct SelectVariantTypeHelper<T, const T, Variants...> {
  typedef const T Type;
  static constexpr size_t count =
      1 + SelectVariantTypeHelper<T, Variants...>::count;
};

template <typename T, typename... Variants>
struct SelectVariantTypeHelper<T, const T&, Variants...> {
  typedef const T& Type;
  static constexpr size_t count =
      1 + SelectVariantTypeHelper<T, Variants...>::count;
};

template <typename T, typename... Variants>
struct SelectVariantTypeHelper<T, T&&, Variants...> {
  typedef T&& Type;
  static constexpr size_t count =
      1 + SelectVariantTypeHelper<T, Variants...>::count;
};

template <typename T, typename Head, typename... Variants>
struct SelectVariantTypeHelper<T, Head, Variants...>
    : public SelectVariantTypeHelper<T, Variants...> {};

/**
 * SelectVariantType takes a type T and a list of variant types Variants and
 * yields a type Type, selected from Variants, that can store a value of type T
 * or a reference to type T. If no such type was found, Type is not defined.
 * SelectVariantType also has a `count` member that contains the total number of
 * selectable types (which will be used to check that a requested type is not
 * ambiguously present twice.)
 */
template <typename T, typename... Variants>
struct SelectVariantType
    : public SelectVariantTypeHelper<
          typename RemoveConst<typename RemoveReference<T>::Type>::Type,
          Variants...> {};

// Compute a fast, compact type that can be used to hold integral values that
// distinctly map to every type in Ts.
template <typename... Ts>
struct VariantTag {
 private:
  static const size_t TypeCount = sizeof...(Ts);

 public:
  using Type = typename Conditional < TypeCount < 3, bool,
        typename Conditional<TypeCount<(1 << 8), uint_fast8_t,
                                       size_t  // stop caring past a certain
                                               // point :-)
                                       >::Type>::Type;
};

// TagHelper gets the given sentinel tag value for the given type T. This has to
// be split out from VariantImplementation because you can't nest a partial
// template specialization within a template class.

template <typename Tag, size_t N, typename T, typename U, typename Next,
          bool isMatch>
struct TagHelper;

// In the case where T != U, we continue recursion.
template <typename Tag, size_t N, typename T, typename U, typename Next>
struct TagHelper<Tag, N, T, U, Next, false> {
  static Tag tag() { return Next::template tag<U>(); }
};

// In the case where T == U, return the tag number.
template <typename Tag, size_t N, typename T, typename U, typename Next>
struct TagHelper<Tag, N, T, U, Next, true> {
  static Tag tag() { return Tag(N); }
};

// The VariantImplementation template provides the guts of mozilla::Variant.  We
// create a VariantImplementation for each T in Ts... which handles
// construction, destruction, etc for when the Variant's type is T.  If the
// Variant's type isn't T, it punts the request on to the next
// VariantImplementation.

template <typename Tag, size_t N, typename... Ts>
struct VariantImplementation;

// The singly typed Variant / recursion base case.
template <typename Tag, size_t N, typename T>
struct VariantImplementation<Tag, N, T> {
  template <typename U>
  static Tag tag() {
    static_assert(mozilla::IsSame<T, U>::value,
                  "mozilla::Variant: tag: bad type!");
    return Tag(N);
  }

  template <typename Variant>
  static void copyConstruct(void* aLhs, const Variant& aRhs) {
    ::new (KnownNotNull, aLhs) T(aRhs.template as<N>());
  }

  template <typename Variant>
  static void moveConstruct(void* aLhs, Variant&& aRhs) {
    ::new (KnownNotNull, aLhs) T(aRhs.template extract<N>());
  }

  template <typename Variant>
  static void destroy(Variant& aV) {
    aV.template as<N>().~T();
  }

  template <typename Variant>
  static bool equal(const Variant& aLhs, const Variant& aRhs) {
    return aLhs.template as<N>() == aRhs.template as<N>();
  }

  template <typename Matcher, typename ConcreteVariant>
  static decltype(auto) match(Matcher&& aMatcher, ConcreteVariant& aV) {
    return aMatcher(aV.template as<N>());
  }

  template <typename ConcreteVariant, typename Matcher>
  static decltype(auto) matchN(ConcreteVariant& aV, Matcher&& aMatcher) {
    return aMatcher(aV.template as<N>());
  }
};

// VariantImplementation for some variant type T.
template <typename Tag, size_t N, typename T, typename... Ts>
struct VariantImplementation<Tag, N, T, Ts...> {
  // The next recursive VariantImplementation.
  using Next = VariantImplementation<Tag, N + 1, Ts...>;

  template <typename U>
  static Tag tag() {
    return TagHelper<Tag, N, T, U, Next, IsSame<T, U>::value>::tag();
  }

  template <typename Variant>
  static void copyConstruct(void* aLhs, const Variant& aRhs) {
    if (aRhs.template is<N>()) {
      ::new (KnownNotNull, aLhs) T(aRhs.template as<N>());
    } else {
      Next::copyConstruct(aLhs, aRhs);
    }
  }

  template <typename Variant>
  static void moveConstruct(void* aLhs, Variant&& aRhs) {
    if (aRhs.template is<N>()) {
      ::new (KnownNotNull, aLhs) T(aRhs.template extract<N>());
    } else {
      Next::moveConstruct(aLhs, std::move(aRhs));
    }
  }

  template <typename Variant>
  static void destroy(Variant& aV) {
    if (aV.template is<N>()) {
      aV.template as<N>().~T();
    } else {
      Next::destroy(aV);
    }
  }

  template <typename Variant>
  static bool equal(const Variant& aLhs, const Variant& aRhs) {
    if (aLhs.template is<N>()) {
      MOZ_ASSERT(aRhs.template is<N>());
      return aLhs.template as<N>() == aRhs.template as<N>();
    } else {
      return Next::equal(aLhs, aRhs);
    }
  }

  template <typename Matcher, typename ConcreteVariant>
  static decltype(auto) match(Matcher&& aMatcher, ConcreteVariant& aV) {
    if (aV.template is<N>()) {
      return aMatcher(aV.template as<N>());
    } else {
      // If you're seeing compilation errors here like "no matching
      // function for call to 'match'" then that means that the
      // Matcher doesn't exhaust all variant types. There must exist a
      // Matcher::operator()(T&) for every variant type T.
      //
      // If you're seeing compilation errors here like "cannot initialize
      // return object of type <...> with an rvalue of type <...>" then that
      // means that the Matcher::operator()(T&) overloads are returning
      // different types. They must all return the same type.
      return Next::match(std::forward<Matcher>(aMatcher), aV);
    }
  }

  template <typename ConcreteVariant, typename Mi, typename... Ms>
  static decltype(auto) matchN(ConcreteVariant& aV, Mi&& aMi, Ms&&... aMs) {
    if (aV.template is<N>()) {
      return aMi(aV.template as<N>());
    } else {
      // If you're seeing compilation errors here like "no matching
      // function for call to 'match'" then that means that the
      // Matchers don't exhaust all variant types. There must exist a
      // Matcher (with its operator()(T&)) for every variant type T, in the
      // exact same order.
      return Next::matchN(aV, std::forward<Ms>(aMs)...);
    }
  }
};

/**
 * AsVariantTemporary stores a value of type T to allow construction of a
 * Variant value via type inference. Because T is copied and there's no
 * guarantee that the copy can be elided, AsVariantTemporary is best used with
 * primitive or very small types.
 */
template <typename T>
struct AsVariantTemporary {
  explicit AsVariantTemporary(const T& aValue) : mValue(aValue) {}

  template <typename U>
  explicit AsVariantTemporary(U&& aValue) : mValue(std::forward<U>(aValue)) {}

  AsVariantTemporary(const AsVariantTemporary& aOther)
      : mValue(aOther.mValue) {}

  AsVariantTemporary(AsVariantTemporary&& aOther)
      : mValue(std::move(aOther.mValue)) {}

  AsVariantTemporary() = delete;
  void operator=(const AsVariantTemporary&) = delete;
  void operator=(AsVariantTemporary&&) = delete;

  typename RemoveConst<typename RemoveReference<T>::Type>::Type mValue;
};

}  // namespace detail

// Used to unambiguously specify one of the Variant's type.
template <typename T>
struct VariantType {
  using Type = T;
};

// Used to specify one of the Variant's type by index.
template <size_t N>
struct VariantIndex {
  static constexpr size_t index = N;
};

/**
 * # mozilla::Variant
 *
 * A variant / tagged union / heterogenous disjoint union / sum-type template
 * class. Similar in concept to (but not derived from) `boost::variant`.
 *
 * Sometimes, you may wish to use a C union with non-POD types. However, this is
 * forbidden in C++ because it is not clear which type in the union should have
 * its constructor and destructor run on creation and deletion
 * respectively. This is the problem that `mozilla::Variant` solves.
 *
 * ## Usage
 *
 * A `mozilla::Variant` instance is constructed (via move or copy) from one of
 * its variant types (ignoring const and references). It does *not* support
 * construction from subclasses of variant types or types that coerce to one of
 * the variant types.
 *
 *     Variant<char, uint32_t> v1('a');
 *     Variant<UniquePtr<A>, B, C> v2(MakeUnique<A>());
 *     Variant<bool, char> v3(VariantType<char>, 0); // disambiguation needed
 *     Variant<int, int> v4(VariantIndex<1>, 0); // 2nd int
 *
 * Because specifying the full type of a Variant value is often verbose,
 * there are two easier ways to construct values:
 *
 * A. AsVariant() can be used to construct a Variant value using type inference
 * in contexts such as expressions or when returning values from functions.
 * Because AsVariant() must copy or move the value into a temporary and this
 * cannot necessarily be elided by the compiler, it's mostly appropriate only
 * for use with primitive or very small types.
 *
 *     Variant<char, uint32_t> Foo() { return AsVariant('x'); }
 *     // ...
 *     Variant<char, uint32_t> v1 = Foo();  // v1 holds char('x').
 *
 * B. Brace-construction with VariantType or VariantIndex; this also allows
 * in-place construction with any number of arguments.
 *
 *     struct AB { AB(int, int){...} };
 *     static Variant<AB, bool> foo()
 *     {
 *       return {VariantIndex<0>{}, 1, 2};
 *     }
 *     // ...
 *     Variant<AB, bool> v0 = Foo();  // v0 holds AB(1,2).
 *
 * All access to the contained value goes through type-safe accessors.
 * Either the stored type, or the type index may be provided.
 *
 *     void
 *     Foo(Variant<A, B, C> v)
 *     {
 *       if (v.is<A>()) {
 *         A& ref = v.as<A>();
 *         ...
 *       } else (v.is<1>()) { // Instead of v.is<B>.
 *         ...
 *       } else {
 *         ...
 *       }
 *     }
 *
 * In some situation, a Variant may be constructed from templated types, in
 * which case it is possible that the same type could be given multiple times by
 * an external developer. Or seemingly-different types could be aliases.
 * In this case, repeated types can only be accessed through their index, to
 * prevent ambiguous access by type.
 *
 *    // Bad!
 *    template <typename T>
 *    struct ResultOrError
 *    {
 *      Variant<T, int> m;
 *      ResultOrError() : m(int(0)) {} // Error '0' by default
 *      ResultOrError(const T& r) : m(r) {}
 *      bool IsResult() const { return m.is<T>(); }
 *      bool IsError() const { return m.is<int>(); }
 *    };
 *    // Now instantiante with the result being an int too:
 *    ResultOrError<int> myResult(123); // Fail!
 *    // In Variant<int, int>, which 'int' are we refering to, from inside
 *    // ResultOrError functions?
 *
 *    // Good!
 *    template <typename T>
 *    struct ResultOrError
 *    {
 *      Variant<T, int> m;
 *      ResultOrError() : m(VariantIndex<1>{}, 0) {} // Error '0' by default
 *      ResultOrError(const T& r) : m(VariantIndex<0>{}, r) {}
 *      bool IsResult() const { return m.is<0>(); } // 0 -> T
 *      bool IsError() const { return m.is<1>(); } // 1 -> int
 *    };
 *    // Now instantiante with the result being an int too:
 *    ResultOrError<int> myResult(123); // It now works!
 *
 * Attempting to use the contained value as type `T1` when the `Variant`
 * instance contains a value of type `T2` causes an assertion failure.
 *
 *     A a;
 *     Variant<A, B, C> v(a);
 *     v.as<B>(); // <--- Assertion failure!
 *
 * Trying to use a `Variant<Ts...>` instance as some type `U` that is not a
 * member of the set of `Ts...` is a compiler error.
 *
 *     A a;
 *     Variant<A, B, C> v(a);
 *     v.as<SomeRandomType>(); // <--- Compiler error!
 *
 * Additionally, you can turn a `Variant` that `is<T>` into a `T` by moving it
 * out of the containing `Variant` instance with the `extract<T>` method:
 *
 *     Variant<UniquePtr<A>, B, C> v(MakeUnique<A>());
 *     auto ptr = v.extract<UniquePtr<A>>();
 *
 * Finally, you can exhaustively match on the contained variant and branch into
 * different code paths depending on which type is contained. This is preferred
 * to manually checking every variant type T with is<T>() because it provides
 * compile-time checking that you handled every type, rather than runtime
 * assertion failures.
 *
 *     // Bad!
 *     char* foo(Variant<A, B, C, D>& v) {
 *       if (v.is<A>()) {
 *         return ...;
 *       } else if (v.is<B>()) {
 *         return ...;
 *       } else {
 *         return doSomething(v.as<C>()); // Forgot about case D!
 *       }
 *     }
 *
 *     // Instead, a single function object (that can deal with all possible
 *     // options) may be provided:
 *     struct FooMatcher
 *     {
 *       // The return type of all matchers must be identical.
 *       char* operator()(A& a) { ... }
 *       char* operator()(B& b) { ... }
 *       char* operator()(C& c) { ... }
 *       char* operator()(D& d) { ... } // Compile-time error to forget D!
 *     }
 *     char* foo(Variant<A, B, C, D>& v) {
 *       return v.match(FooMatcher());
 *     }
 *
 *     // In some situations, a single generic lambda may also be appropriate:
 *     char* foo(Variant<A, B, C, D>& v) {
 *       return v.match([](auto&){...});
 *     }
 *
 *     // Alternatively, multiple function objects may be provided, each one
 *     // corresponding to an option, in the same order:
 *     char* foo(Variant<A, B, C, D>& v) {
 *       return v.match([](A&) { ... },
 *                      [](B&) { ... },
 *                      [](C&) { ... },
 *                      [](D&) { ... });
 *     }
 *
 * ## Examples
 *
 * A tree is either an empty leaf, or a node with a value and two children:
 *
 *     struct Leaf { };
 *
 *     template<typename T>
 *     struct Node
 *     {
 *       T value;
 *       Tree<T>* left;
 *       Tree<T>* right;
 *     };
 *
 *     template<typename T>
 *     using Tree = Variant<Leaf, Node<T>>;
 *
 * A copy-on-write string is either a non-owning reference to some existing
 * string, or an owning reference to our copy:
 *
 *     class CopyOnWriteString
 *     {
 *       Variant<const char*, UniquePtr<char[]>> string;
 *
 *       ...
 *     };
 *
 * Because Variant must be aligned suitable to hold any value stored within it,
 * and because |alignas| requirements don't affect platform ABI with respect to
 * how parameters are laid out in memory, Variant can't be used as the type of a
 * function parameter.  Pass Variant to functions by pointer or reference
 * instead.
 */
template <typename... Ts>
class MOZ_INHERIT_TYPE_ANNOTATIONS_FROM_TEMPLATE_ARGS MOZ_NON_PARAM Variant {
  friend struct IPC::ParamTraits<mozilla::Variant<Ts...>>;

  using Tag = typename detail::VariantTag<Ts...>::Type;
  using Impl = detail::VariantImplementation<Tag, 0, Ts...>;

  static constexpr size_t RawDataAlignment = tl::Max<alignof(Ts)...>::value;
  static constexpr size_t RawDataSize = tl::Max<sizeof(Ts)...>::value;

  // Raw storage for the contained variant value.
  alignas(RawDataAlignment) unsigned char rawData[RawDataSize];

  // Each type is given a unique tag value that lets us keep track of the
  // contained variant value's type.
  Tag tag;

  // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
  // -Werror compile error) to reinterpret_cast<> |rawData| to |T*|, even
  // through |void*|.  Placing the latter cast in these separate functions
  // breaks the chain such that affected GCC versions no longer warn/error.
  void* ptr() { return rawData; }

  const void* ptr() const { return rawData; }

 public:
  /** Perfect forwarding construction for some variant type T. */
  template <typename RefT,
            // RefT captures both const& as well as && (as intended, to support
            // perfect forwarding), so we have to remove those qualifiers here
            // when ensuring that T is a variant of this type, and getting T's
            // tag, etc.
            typename T = typename detail::SelectVariantType<RefT, Ts...>::Type>
  explicit Variant(RefT&& aT) : tag(Impl::template tag<T>()) {
    static_assert(
        detail::SelectVariantType<RefT, Ts...>::count == 1,
        "Variant can only be selected by type if that type is unique");
    ::new (KnownNotNull, ptr()) T(std::forward<RefT>(aT));
  }

  /**
   * Perfect forwarding construction for some variant type T, by
   * explicitly giving the type.
   * This is necessary to construct from any number of arguments,
   * or to convert from a type that is not in the Variant's type list.
   */
  template <typename T, typename... Args>
  MOZ_IMPLICIT Variant(const VariantType<T>&, Args&&... aTs)
      : tag(Impl::template tag<T>()) {
    ::new (KnownNotNull, ptr()) T(std::forward<Args>(aTs)...);
  }

  /**
   * Perfect forwarding construction for some variant type T, by
   * explicitly giving the type index.
   * This is necessary to construct from any number of arguments,
   * or to convert from a type that is not in the Variant's type list,
   * or to construct a type that is present more than once in the Variant.
   */
  template <size_t N, typename... Args>
  MOZ_IMPLICIT Variant(const VariantIndex<N>&, Args&&... aTs) : tag(N) {
    using T = typename detail::Nth<N, Ts...>::Type;
    ::new (KnownNotNull, ptr()) T(std::forward<Args>(aTs)...);
  }

  /**
   * Constructs this Variant from an AsVariantTemporary<T> such that T can be
   * stored in one of the types allowable in this Variant. This is used in the
   * implementation of AsVariant().
   */
  template <typename RefT>
  MOZ_IMPLICIT Variant(detail::AsVariantTemporary<RefT>&& aValue)
      : tag(Impl::template tag<
            typename detail::SelectVariantType<RefT, Ts...>::Type>()) {
    using T = typename detail::SelectVariantType<RefT, Ts...>::Type;
    static_assert(
        detail::SelectVariantType<RefT, Ts...>::count == 1,
        "Variant can only be selected by type if that type is unique");
    ::new (KnownNotNull, ptr()) T(std::move(aValue.mValue));
  }

  /** Copy construction. */
  Variant(const Variant& aRhs) : tag(aRhs.tag) {
    Impl::copyConstruct(ptr(), aRhs);
  }

  /** Move construction. */
  Variant(Variant&& aRhs) : tag(aRhs.tag) {
    Impl::moveConstruct(ptr(), std::move(aRhs));
  }

  /** Copy assignment. */
  Variant& operator=(const Variant& aRhs) {
    MOZ_ASSERT(&aRhs != this, "self-assign disallowed");
    this->~Variant();
    ::new (KnownNotNull, this) Variant(aRhs);
    return *this;
  }

  /** Move assignment. */
  Variant& operator=(Variant&& aRhs) {
    MOZ_ASSERT(&aRhs != this, "self-assign disallowed");
    this->~Variant();
    ::new (KnownNotNull, this) Variant(std::move(aRhs));
    return *this;
  }

  /** Move assignment from AsVariant(). */
  template <typename T>
  Variant& operator=(detail::AsVariantTemporary<T>&& aValue) {
    static_assert(
        detail::SelectVariantType<T, Ts...>::count == 1,
        "Variant can only be selected by type if that type is unique");
    this->~Variant();
    ::new (KnownNotNull, this) Variant(std::move(aValue));
    return *this;
  }

  ~Variant() { Impl::destroy(*this); }

  /** Check which variant type is currently contained. */
  template <typename T>
  bool is() const {
    static_assert(
        detail::SelectVariantType<T, Ts...>::count == 1,
        "provided a type not uniquely found in this Variant's type list");
    return Impl::template tag<T>() == tag;
  }

  template <size_t N>
  bool is() const {
    static_assert(N < sizeof...(Ts),
                  "provided an index outside of this Variant's type list");
    return N == size_t(tag);
  }

  /**
   * Operator == overload that defers to the variant type's operator==
   * implementation if the rhs is tagged as the same type as this one.
   */
  bool operator==(const Variant& aRhs) const {
    return tag == aRhs.tag && Impl::equal(*this, aRhs);
  }

  /**
   * Operator != overload that defers to the negation of the variant type's
   * operator== implementation if the rhs is tagged as the same type as this
   * one.
   */
  bool operator!=(const Variant& aRhs) const { return !(*this == aRhs); }

  // Accessors for working with the contained variant value.

  /** Mutable reference. */
  template <typename T>
  T& as() {
    static_assert(
        detail::SelectVariantType<T, Ts...>::count == 1,
        "provided a type not uniquely found in this Variant's type list");
    MOZ_RELEASE_ASSERT(is<T>());
    return *static_cast<T*>(ptr());
  }

  template <size_t N>
  typename detail::Nth<N, Ts...>::Type& as() {
    static_assert(N < sizeof...(Ts),
                  "provided an index outside of this Variant's type list");
    MOZ_RELEASE_ASSERT(is<N>());
    return *static_cast<typename detail::Nth<N, Ts...>::Type*>(ptr());
  }

  /** Immutable const reference. */
  template <typename T>
  const T& as() const {
    static_assert(detail::SelectVariantType<T, Ts...>::count == 1,
                  "provided a type not found in this Variant's type list");
    MOZ_RELEASE_ASSERT(is<T>());
    return *static_cast<const T*>(ptr());
  }

  template <size_t N>
  const typename detail::Nth<N, Ts...>::Type& as() const {
    static_assert(N < sizeof...(Ts),
                  "provided an index outside of this Variant's type list");
    MOZ_RELEASE_ASSERT(is<N>());
    return *static_cast<const typename detail::Nth<N, Ts...>::Type*>(ptr());
  }

  /**
   * Extract the contained variant value from this container into a temporary
   * value.  On completion, the value in the variant will be in a
   * safely-destructible state, as determined by the behavior of T's move
   * constructor when provided the variant's internal value.
   */
  template <typename T>
  T extract() {
    static_assert(
        detail::SelectVariantType<T, Ts...>::count == 1,
        "provided a type not uniquely found in this Variant's type list");
    MOZ_ASSERT(is<T>());
    return T(std::move(as<T>()));
  }

  template <size_t N>
  typename detail::Nth<N, Ts...>::Type extract() {
    static_assert(N < sizeof...(Ts),
                  "provided an index outside of this Variant's type list");
    MOZ_RELEASE_ASSERT(is<N>());
    return typename detail::Nth<N, Ts...>::Type(std::move(as<N>()));
  }

  // Exhaustive matching of all variant types on the contained value.

  /** Match on an immutable const reference. */
  template <typename Matcher>
  decltype(auto) match(Matcher&& aMatcher) const {
    return Impl::match(std::forward<Matcher>(aMatcher), *this);
  }

  template <typename M0, typename M1, typename... Ms>
  decltype(auto) match(M0&& aM0, M1&& aM1, Ms&&... aMs) const {
    static_assert(
        2 + sizeof...(Ms) == sizeof...(Ts),
        "Variant<T...>::match() takes either one callable argument that "
        "accepts every type T; or one for each type T, in order");
    static_assert(
        tl::And<IsSame<typename FunctionTypeTraits<M0>::ReturnType,
                       typename FunctionTypeTraits<M1>::ReturnType>::value,
                IsSame<typename FunctionTypeTraits<M1>::ReturnType,
                       typename FunctionTypeTraits<Ms>::ReturnType>::value...>::
            value,
        "all matchers must have the same return type");
    return Impl::matchN(*this, std::forward<M0>(aM0), std::forward<M1>(aM1),
                        std::forward<Ms>(aMs)...);
  }

  /** Match on a mutable non-const reference. */
  template <typename Matcher>
  decltype(auto) match(Matcher&& aMatcher) {
    return Impl::match(std::forward<Matcher>(aMatcher), *this);
  }

  template <typename M0, typename M1, typename... Ms>
  decltype(auto) match(M0&& aM0, M1&& aM1, Ms&&... aMs) {
    static_assert(
        2 + sizeof...(Ms) == sizeof...(Ts),
        "Variant<T...>::match() takes either one callable argument that "
        "accepts every type T; or one for each type T, in order");
    static_assert(
        tl::And<IsSame<typename FunctionTypeTraits<M0>::ReturnType,
                       typename FunctionTypeTraits<M1>::ReturnType>::value,
                IsSame<typename FunctionTypeTraits<M0>::ReturnType,
                       typename FunctionTypeTraits<Ms>::ReturnType>::value...>::
            value,
        "all matchers must have the same return type");
    return Impl::matchN(*this, std::forward<M0>(aM0), std::forward<M1>(aM1),
                        std::forward<Ms>(aMs)...);
  }

  /**
   * Incorporate the current variant's tag into hashValue.
   * Note that this does not hash the actual contents; you must take
   * care of that yourself, perhaps by using a match.
   */
  mozilla::HashNumber addTagToHash(mozilla::HashNumber hashValue) const {
    return mozilla::AddToHash(hashValue, tag);
  }
};

/*
 * AsVariant() is used to construct a Variant<T,...> value containing the
 * provided T value using type inference. It can be used to construct Variant
 * values in expressions or return them from functions without specifying the
 * entire Variant type.
 *
 * Because AsVariant() must copy or move the value into a temporary and this
 * cannot necessarily be elided by the compiler, it's mostly appropriate only
 * for use with primitive or very small types.
 *
 * AsVariant() returns a AsVariantTemporary value which is implicitly
 * convertible to any Variant that can hold a value of type T.
 */
template <typename T>
detail::AsVariantTemporary<T> AsVariant(T&& aValue) {
  return detail::AsVariantTemporary<T>(std::forward<T>(aValue));
}

}  // namespace mozilla

#endif /* mozilla_Variant_h */