DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (2d7b281bdf5d)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_BufferList_h
#define mozilla_BufferList_h

#include <algorithm>
#include "mozilla/AllocPolicy.h"
#include "mozilla/Maybe.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/Types.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/Vector.h"
#include <string.h>

// BufferList represents a sequence of buffers of data. A BufferList can choose
// to own its buffers or not. The class handles writing to the buffers,
// iterating over them, and reading data out. Unlike SegmentedVector, the
// buffers may be of unequal size. Like SegmentedVector, BufferList is a nice
// way to avoid large contiguous allocations (which can trigger OOMs).

class InfallibleAllocPolicy;

namespace mozilla {

template <typename AllocPolicy>
class BufferList : private AllocPolicy {
  // Each buffer in a BufferList has a size and a capacity. The first mSize
  // bytes are initialized and the remaining |mCapacity - mSize| bytes are free.
  struct Segment {
    char* mData;
    size_t mSize;
    size_t mCapacity;

    Segment(char* aData, size_t aSize, size_t aCapacity)
        : mData(aData), mSize(aSize), mCapacity(aCapacity) {}

    Segment(const Segment&) = delete;
    Segment& operator=(const Segment&) = delete;

    Segment(Segment&&) = default;
    Segment& operator=(Segment&&) = default;

    char* Start() const { return mData; }
    char* End() const { return mData + mSize; }
  };

  template <typename OtherAllocPolicy>
  friend class BufferList;

 public:
  // For the convenience of callers, all segments are required to be a multiple
  // of 8 bytes in capacity. Also, every buffer except the last one is required
  // to be full (i.e., size == capacity). Therefore, a byte at offset N within
  // the BufferList and stored in memory at an address A will satisfy
  // (N % Align == A % Align) if Align == 2, 4, or 8.
  static const size_t kSegmentAlignment = 8;

  // Allocate a BufferList. The BufferList will free all its buffers when it is
  // destroyed. If an infallible allocator is used, an initial buffer of size
  // aInitialSize and capacity aInitialCapacity is allocated automatically. This
  // data will be contiguous and can be accessed via |Start()|. If a fallible
  // alloc policy is used, aInitialSize must be 0, and the fallible |Init()|
  // method may be called instead. Subsequent buffers will be allocated with
  // capacity aStandardCapacity.
  BufferList(size_t aInitialSize, size_t aInitialCapacity,
             size_t aStandardCapacity, AllocPolicy aAP = AllocPolicy())
      : AllocPolicy(aAP),
        mOwning(true),
        mSegments(aAP),
        mSize(0),
        mStandardCapacity(aStandardCapacity) {
    MOZ_ASSERT(aInitialCapacity % kSegmentAlignment == 0);
    MOZ_ASSERT(aStandardCapacity % kSegmentAlignment == 0);

    if (aInitialCapacity) {
      MOZ_ASSERT((aInitialSize == 0 ||
                  IsSame<AllocPolicy, InfallibleAllocPolicy>::value),
                 "BufferList may only be constructed with an initial size when "
                 "using an infallible alloc policy");

      AllocateSegment(aInitialSize, aInitialCapacity);
    }
  }

  BufferList(const BufferList& aOther) = delete;

  BufferList(BufferList&& aOther)
      : mOwning(aOther.mOwning),
        mSegments(std::move(aOther.mSegments)),
        mSize(aOther.mSize),
        mStandardCapacity(aOther.mStandardCapacity) {
    aOther.mSegments.clear();
    aOther.mSize = 0;
  }

  BufferList& operator=(const BufferList& aOther) = delete;

  BufferList& operator=(BufferList&& aOther) {
    Clear();

    mOwning = aOther.mOwning;
    mSegments = std::move(aOther.mSegments);
    mSize = aOther.mSize;
    aOther.mSegments.clear();
    aOther.mSize = 0;
    return *this;
  }

  ~BufferList() { Clear(); }

  // Initializes the BufferList with a segment of the given size and capacity.
  // May only be called once, before any segments have been allocated.
  bool Init(size_t aInitialSize, size_t aInitialCapacity) {
    MOZ_ASSERT(mSegments.empty());
    MOZ_ASSERT(aInitialCapacity != 0);
    MOZ_ASSERT(aInitialCapacity % kSegmentAlignment == 0);

    return AllocateSegment(aInitialSize, aInitialCapacity);
  }

  bool CopyFrom(const BufferList& aOther) {
    MOZ_ASSERT(mOwning);

    Clear();

    // We don't make an exact copy of aOther. Instead, create a single segment
    // with enough space to hold all data in aOther.
    if (!Init(aOther.mSize, (aOther.mSize + kSegmentAlignment - 1) &
                                ~(kSegmentAlignment - 1))) {
      return false;
    }

    size_t offset = 0;
    for (const Segment& segment : aOther.mSegments) {
      memcpy(Start() + offset, segment.mData, segment.mSize);
      offset += segment.mSize;
    }
    MOZ_ASSERT(offset == mSize);

    return true;
  }

  // Returns the sum of the sizes of all the buffers.
  size_t Size() const { return mSize; }

  size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) {
    size_t size = mSegments.sizeOfExcludingThis(aMallocSizeOf);
    for (Segment& segment : mSegments) {
      size += aMallocSizeOf(segment.Start());
    }
    return size;
  }

  void Clear() {
    if (mOwning) {
      for (Segment& segment : mSegments) {
        this->free_(segment.mData, segment.mCapacity);
      }
    }
    mSegments.clear();

    mSize = 0;
  }

  // Iterates over bytes in the segments. You can advance it by as many bytes as
  // you choose.
  class IterImpl {
    // Invariants:
    //   (0) mSegment <= bufferList.mSegments.length()
    //   (1) mData <= mDataEnd
    //   (2) If mSegment is not the last segment, mData < mDataEnd
    uintptr_t mSegment;
    char* mData;
    char* mDataEnd;

    friend class BufferList;

   public:
    explicit IterImpl(const BufferList& aBuffers)
        : mSegment(0), mData(nullptr), mDataEnd(nullptr) {
      if (!aBuffers.mSegments.empty()) {
        mData = aBuffers.mSegments[0].Start();
        mDataEnd = aBuffers.mSegments[0].End();
      }
    }

    // Returns a pointer to the raw data. It is valid to access up to
    // RemainingInSegment bytes of this buffer.
    char* Data() const {
      MOZ_RELEASE_ASSERT(!Done());
      return mData;
    }

    // Returns true if the memory in the range [Data(), Data() + aBytes) is all
    // part of one contiguous buffer.
    bool HasRoomFor(size_t aBytes) const {
      MOZ_RELEASE_ASSERT(mData <= mDataEnd);
      return size_t(mDataEnd - mData) >= aBytes;
    }

    // Returns the maximum value aBytes for which HasRoomFor(aBytes) will be
    // true.
    size_t RemainingInSegment() const {
      MOZ_RELEASE_ASSERT(mData <= mDataEnd);
      return mDataEnd - mData;
    }

    bool HasBytesAvailable(const BufferList& aBuffers, uint32_t aBytes) const {
      if (RemainingInSegment() >= aBytes) {
        return true;
      }
      aBytes -= RemainingInSegment();
      for (size_t i = mSegment + 1; i < aBuffers.mSegments.length(); i++) {
        if (aBuffers.mSegments[i].mSize >= aBytes) {
          return true;
        }
        aBytes -= aBuffers.mSegments[i].mSize;
      }

      return false;
    }

    // Advances the iterator by aBytes bytes. aBytes must be less than
    // RemainingInSegment(). If advancing by aBytes takes the iterator to the
    // end of a buffer, it will be moved to the beginning of the next buffer
    // unless it is the last buffer.
    void Advance(const BufferList& aBuffers, size_t aBytes) {
      const Segment& segment = aBuffers.mSegments[mSegment];
      MOZ_RELEASE_ASSERT(segment.Start() <= mData);
      MOZ_RELEASE_ASSERT(mData <= mDataEnd);
      MOZ_RELEASE_ASSERT(mDataEnd == segment.End());

      MOZ_RELEASE_ASSERT(HasRoomFor(aBytes));
      mData += aBytes;

      if (mData == mDataEnd && mSegment + 1 < aBuffers.mSegments.length()) {
        mSegment++;
        const Segment& nextSegment = aBuffers.mSegments[mSegment];
        mData = nextSegment.Start();
        mDataEnd = nextSegment.End();
        MOZ_RELEASE_ASSERT(mData < mDataEnd);
      }
    }

    // Advance the iterator by aBytes, possibly crossing segments. This function
    // returns false if it runs out of buffers to advance through. Otherwise it
    // returns true.
    bool AdvanceAcrossSegments(const BufferList& aBuffers, size_t aBytes) {
      size_t bytes = aBytes;
      while (bytes) {
        size_t toAdvance = std::min(bytes, RemainingInSegment());
        if (!toAdvance) {
          return false;
        }
        Advance(aBuffers, toAdvance);
        bytes -= toAdvance;
      }
      return true;
    }

    // Returns true when the iterator reaches the end of the BufferList.
    bool Done() const { return mData == mDataEnd; }

   private:
    // Count the bytes we would need to advance in order to reach aTarget.
    size_t BytesUntil(const BufferList& aBuffers,
                      const IterImpl& aTarget) const {
      size_t offset = 0;

      MOZ_ASSERT(aTarget.IsIn(aBuffers));

      char* data = mData;
      for (uintptr_t segment = mSegment; segment < aTarget.mSegment;
           segment++) {
        offset += aBuffers.mSegments[segment].End() - data;
        data = aBuffers.mSegments[segment].mData;
      }

      MOZ_RELEASE_ASSERT(IsIn(aBuffers));
      MOZ_RELEASE_ASSERT(aTarget.mData >= data);

      offset += aTarget.mData - data;
      return offset;
    }

    bool IsIn(const BufferList& aBuffers) const {
      return mSegment < aBuffers.mSegments.length() &&
             mData >= aBuffers.mSegments[mSegment].mData &&
             mData < aBuffers.mSegments[mSegment].End();
    }
  };

  // Special convenience method that returns Iter().Data().
  char* Start() {
    MOZ_RELEASE_ASSERT(!mSegments.empty());
    return mSegments[0].mData;
  }
  const char* Start() const { return mSegments[0].mData; }

  IterImpl Iter() const { return IterImpl(*this); }

  // Copies aSize bytes from aData into the BufferList. The storage for these
  // bytes may be split across multiple buffers. Size() is increased by aSize.
  inline MOZ_MUST_USE bool WriteBytes(const char* aData, size_t aSize);

  // Allocates a buffer of at most |aMaxBytes| bytes and, if successful, returns
  // that buffer, and places its size in |aSize|. If unsuccessful, returns null
  // and leaves |aSize| undefined.
  inline char* AllocateBytes(size_t aMaxSize, size_t* aSize);

  // Copies possibly non-contiguous byte range starting at aIter into
  // aData. aIter is advanced by aSize bytes. Returns false if it runs out of
  // data before aSize.
  inline bool ReadBytes(IterImpl& aIter, char* aData, size_t aSize) const;

  // Return a new BufferList that shares storage with this BufferList. The new
  // BufferList is read-only. It allows iteration over aSize bytes starting at
  // aIter. Borrow can fail, in which case *aSuccess will be false upon
  // return. The borrowed BufferList can use a different AllocPolicy than the
  // original one. However, it is not responsible for freeing buffers, so the
  // AllocPolicy is only used for the buffer vector.
  template <typename BorrowingAllocPolicy>
  BufferList<BorrowingAllocPolicy> Borrow(
      IterImpl& aIter, size_t aSize, bool* aSuccess,
      BorrowingAllocPolicy aAP = BorrowingAllocPolicy()) const;

  // Return a new BufferList and move storage from this BufferList to it. The
  // new BufferList owns the buffers. Move can fail, in which case *aSuccess
  // will be false upon return. The new BufferList can use a different
  // AllocPolicy than the original one. The new OtherAllocPolicy is responsible
  // for freeing buffers, so the OtherAllocPolicy must use freeing method
  // compatible to the original one.
  template <typename OtherAllocPolicy>
  BufferList<OtherAllocPolicy> MoveFallible(
      bool* aSuccess, OtherAllocPolicy aAP = OtherAllocPolicy());

  // Return a new BufferList that adopts the byte range starting at Iter so that
  // range [aIter, aIter + aSize) is transplanted to the returned BufferList.
  // Contents of the buffer before aIter + aSize is left undefined.
  // Extract can fail, in which case *aSuccess will be false upon return. The
  // moved buffers are erased from the original BufferList. In case of extract
  // fails, the original BufferList is intact.  All other iterators except aIter
  // are invalidated.
  // This method requires aIter and aSize to be 8-byte aligned.
  BufferList Extract(IterImpl& aIter, size_t aSize, bool* aSuccess);

  // Return the number of bytes from 'start' to 'end', two iterators within
  // this BufferList.
  size_t RangeLength(const IterImpl& start, const IterImpl& end) const {
    MOZ_ASSERT(start.IsIn(*this) && end.IsIn(*this));
    return start.BytesUntil(*this, end);
  }

  // This takes ownership of the data
  void* WriteBytesZeroCopy(char* aData, size_t aSize, size_t aCapacity) {
    MOZ_ASSERT(aCapacity != 0);
    MOZ_ASSERT(aSize <= aCapacity);
    MOZ_ASSERT(mOwning);

    if (!mSegments.append(Segment(aData, aSize, aCapacity))) {
      this->free_(aData, aCapacity);
      return nullptr;
    }
    mSize += aSize;
    return aData;
  }

 private:
  explicit BufferList(AllocPolicy aAP)
      : AllocPolicy(aAP), mOwning(false), mSize(0), mStandardCapacity(0) {}

  char* AllocateSegment(size_t aSize, size_t aCapacity) {
    MOZ_RELEASE_ASSERT(mOwning);
    MOZ_ASSERT(aCapacity != 0);
    MOZ_ASSERT(aSize <= aCapacity);

    char* data = this->template pod_malloc<char>(aCapacity);
    if (!data) {
      return nullptr;
    }
    if (!mSegments.append(Segment(data, aSize, aCapacity))) {
      this->free_(data, aCapacity);
      return nullptr;
    }
    mSize += aSize;
    return data;
  }

  bool mOwning;
  Vector<Segment, 1, AllocPolicy> mSegments;
  size_t mSize;
  size_t mStandardCapacity;
};

template <typename AllocPolicy>
MOZ_MUST_USE bool BufferList<AllocPolicy>::WriteBytes(const char* aData,
                                                      size_t aSize) {
  MOZ_RELEASE_ASSERT(mOwning);
  MOZ_RELEASE_ASSERT(mStandardCapacity);

  size_t copied = 0;
  while (copied < aSize) {
    size_t toCopy;
    char* data = AllocateBytes(aSize - copied, &toCopy);
    if (!data) {
      return false;
    }
    memcpy(data, aData + copied, toCopy);
    copied += toCopy;
  }

  return true;
}

template <typename AllocPolicy>
char* BufferList<AllocPolicy>::AllocateBytes(size_t aMaxSize, size_t* aSize) {
  MOZ_RELEASE_ASSERT(mOwning);
  MOZ_RELEASE_ASSERT(mStandardCapacity);

  if (!mSegments.empty()) {
    Segment& lastSegment = mSegments.back();

    size_t capacity = lastSegment.mCapacity - lastSegment.mSize;
    if (capacity) {
      size_t size = std::min(aMaxSize, capacity);
      char* data = lastSegment.mData + lastSegment.mSize;

      lastSegment.mSize += size;
      mSize += size;

      *aSize = size;
      return data;
    }
  }

  size_t size = std::min(aMaxSize, mStandardCapacity);
  char* data = AllocateSegment(size, mStandardCapacity);
  if (data) {
    *aSize = size;
  }
  return data;
}

template <typename AllocPolicy>
bool BufferList<AllocPolicy>::ReadBytes(IterImpl& aIter, char* aData,
                                        size_t aSize) const {
  size_t copied = 0;
  size_t remaining = aSize;
  while (remaining) {
    size_t toCopy = std::min(aIter.RemainingInSegment(), remaining);
    if (!toCopy) {
      // We've run out of data in the last segment.
      return false;
    }
    memcpy(aData + copied, aIter.Data(), toCopy);
    copied += toCopy;
    remaining -= toCopy;

    aIter.Advance(*this, toCopy);
  }

  return true;
}

template <typename AllocPolicy>
template <typename BorrowingAllocPolicy>
BufferList<BorrowingAllocPolicy> BufferList<AllocPolicy>::Borrow(
    IterImpl& aIter, size_t aSize, bool* aSuccess,
    BorrowingAllocPolicy aAP) const {
  BufferList<BorrowingAllocPolicy> result(aAP);

  size_t size = aSize;
  while (size) {
    size_t toAdvance = std::min(size, aIter.RemainingInSegment());

    if (!toAdvance || !result.mSegments.append(
                          typename BufferList<BorrowingAllocPolicy>::Segment(
                              aIter.mData, toAdvance, toAdvance))) {
      *aSuccess = false;
      return result;
    }
    aIter.Advance(*this, toAdvance);
    size -= toAdvance;
  }

  result.mSize = aSize;
  *aSuccess = true;
  return result;
}

template <typename AllocPolicy>
template <typename OtherAllocPolicy>
BufferList<OtherAllocPolicy> BufferList<AllocPolicy>::MoveFallible(
    bool* aSuccess, OtherAllocPolicy aAP) {
  BufferList<OtherAllocPolicy> result(0, 0, mStandardCapacity, aAP);

  IterImpl iter = Iter();
  while (!iter.Done()) {
    size_t toAdvance = iter.RemainingInSegment();

    if (!toAdvance ||
        !result.mSegments.append(typename BufferList<OtherAllocPolicy>::Segment(
            iter.mData, toAdvance, toAdvance))) {
      *aSuccess = false;
      result.mSegments.clear();
      return result;
    }
    iter.Advance(*this, toAdvance);
  }

  result.mSize = mSize;
  mSegments.clear();
  mSize = 0;
  *aSuccess = true;
  return result;
}

template <typename AllocPolicy>
BufferList<AllocPolicy> BufferList<AllocPolicy>::Extract(IterImpl& aIter,
                                                         size_t aSize,
                                                         bool* aSuccess) {
  MOZ_RELEASE_ASSERT(aSize);
  MOZ_RELEASE_ASSERT(mOwning);
  MOZ_ASSERT(aSize % kSegmentAlignment == 0);
  MOZ_ASSERT(intptr_t(aIter.mData) % kSegmentAlignment == 0);

  auto failure = [this, aSuccess]() {
    *aSuccess = false;
    return BufferList(0, 0, mStandardCapacity);
  };

  // Number of segments we'll need to copy data from to satisfy the request.
  size_t segmentsNeeded = 0;
  // If this is None then the last segment is a full segment, otherwise we need
  // to copy this many bytes.
  Maybe<size_t> lastSegmentSize;
  {
    // Copy of the iterator to walk the BufferList and see how many segments we
    // need to copy.
    IterImpl iter = aIter;
    size_t remaining = aSize;
    while (!iter.Done() && remaining &&
           remaining >= iter.RemainingInSegment()) {
      remaining -= iter.RemainingInSegment();
      iter.Advance(*this, iter.RemainingInSegment());
      segmentsNeeded++;
    }

    if (remaining) {
      if (iter.Done()) {
        // We reached the end of the BufferList and there wasn't enough data to
        // satisfy the request.
        return failure();
      }
      lastSegmentSize.emplace(remaining);
      // The last block also counts as a segment. This makes the conditionals
      // on segmentsNeeded work in the rest of the function.
      segmentsNeeded++;
    }
  }

  BufferList result(0, 0, mStandardCapacity);
  if (!result.mSegments.reserve(segmentsNeeded + lastSegmentSize.isSome())) {
    return failure();
  }

  // Copy the first segment, it's special because we can't just steal the
  // entire Segment struct from this->mSegments.
  size_t firstSegmentSize = std::min(aSize, aIter.RemainingInSegment());
  if (!result.WriteBytes(aIter.Data(), firstSegmentSize)) {
    return failure();
  }
  aIter.Advance(*this, firstSegmentSize);
  segmentsNeeded--;

  // The entirety of the request wasn't in the first segment, now copy the
  // rest.
  if (segmentsNeeded) {
    char* finalSegment = nullptr;
    // Pre-allocate the final segment so that if this fails, we return before
    // we delete the elements from |this->mSegments|.
    if (lastSegmentSize.isSome()) {
      MOZ_RELEASE_ASSERT(mStandardCapacity >= *lastSegmentSize);
      finalSegment = this->template pod_malloc<char>(mStandardCapacity);
      if (!finalSegment) {
        return failure();
      }
    }

    size_t copyStart = aIter.mSegment;
    // Copy segments from this over to the result and remove them from our
    // storage. Not needed if the only segment we need to copy is the last
    // partial one.
    size_t segmentsToCopy = segmentsNeeded - lastSegmentSize.isSome();
    for (size_t i = 0; i < segmentsToCopy; ++i) {
      result.mSegments.infallibleAppend(Segment(
          mSegments[aIter.mSegment].mData, mSegments[aIter.mSegment].mSize,
          mSegments[aIter.mSegment].mCapacity));
      aIter.Advance(*this, aIter.RemainingInSegment());
    }
    // Due to the way IterImpl works, there are two cases here: (1) if we've
    // consumed the entirety of the BufferList, then the iterator is pointed at
    // the end of the final segment, (2) otherwise it is pointed at the start
    // of the next segment. We want to verify that we really consumed all
    // |segmentsToCopy| segments.
    MOZ_RELEASE_ASSERT(
        (aIter.mSegment == copyStart + segmentsToCopy) ||
        (aIter.Done() && aIter.mSegment == copyStart + segmentsToCopy - 1));
    mSegments.erase(mSegments.begin() + copyStart,
                    mSegments.begin() + copyStart + segmentsToCopy);

    // Reset the iter's position for what we just deleted.
    aIter.mSegment -= segmentsToCopy;

    if (lastSegmentSize.isSome()) {
      // We called reserve() on result.mSegments so infallibleAppend is safe.
      result.mSegments.infallibleAppend(
          Segment(finalSegment, 0, mStandardCapacity));
      bool r = result.WriteBytes(aIter.Data(), *lastSegmentSize);
      MOZ_RELEASE_ASSERT(r);
      aIter.Advance(*this, *lastSegmentSize);
    }
  }

  mSize -= aSize;
  result.mSize = aSize;

  *aSuccess = true;
  return result;
}

}  // namespace mozilla

#endif /* mozilla_BufferList_h */