DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef vm_Xdr_h
#define vm_Xdr_h

#include "mozilla/EndianUtils.h"
#include "mozilla/MaybeOneOf.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/Utf8.h"

#include "jsapi.h"
#include "jsfriendapi.h"
#include "NamespaceImports.h"

#include "js/CompileOptions.h"
#include "js/Transcoding.h"
#include "js/TypeDecls.h"
#include "vm/JSAtom.h"

namespace js {

class LifoAlloc;

enum XDRMode { XDR_ENCODE, XDR_DECODE };

using XDRResult = mozilla::Result<mozilla::Ok, JS::TranscodeResult>;

class XDRBufferBase {
 public:
  explicit XDRBufferBase(JSContext* cx, size_t cursor = 0)
      : context_(cx),
        cursor_(cursor)
#ifdef DEBUG
        // Note, when decoding the buffer can be set to a range, which does not
        // have any alignment requirement as opposed to allocations.
        ,
        aligned_(false)
#endif
  {
  }

  JSContext* cx() const { return context_; }

  size_t cursor() const { return cursor_; }

 protected:
  JSContext* const context_;
  size_t cursor_;
#ifdef DEBUG
  bool aligned_;
#endif
};

template <XDRMode mode>
class XDRBuffer;

template <>
class XDRBuffer<XDR_ENCODE> : public XDRBufferBase {
 public:
  XDRBuffer(JSContext* cx, JS::TranscodeBuffer& buffer, size_t cursor = 0)
      : XDRBufferBase(cx, cursor), buffer_(buffer) {}

  uint8_t* write(size_t n) {
    MOZ_ASSERT(n != 0);
    if (!buffer_.growByUninitialized(n)) {
      ReportOutOfMemory(cx());
      return nullptr;
    }
    uint8_t* ptr = &buffer_[cursor_];
    cursor_ += n;
    return ptr;
  }

  const uint8_t* read(size_t n) {
    MOZ_CRASH("Should never read in encode mode");
    return nullptr;
  }

 private:
  JS::TranscodeBuffer& buffer_;
};

template <>
class XDRBuffer<XDR_DECODE> : public XDRBufferBase {
 public:
  XDRBuffer(JSContext* cx, const JS::TranscodeRange& range)
      : XDRBufferBase(cx), buffer_(range) {}

  XDRBuffer(JSContext* cx, JS::TranscodeBuffer& buffer, size_t cursor = 0)
      : XDRBufferBase(cx, cursor), buffer_(buffer.begin(), buffer.length()) {}

  const uint8_t* read(size_t n) {
    MOZ_ASSERT(cursor_ < buffer_.length());
    uint8_t* ptr = &buffer_[cursor_];
    cursor_ += n;

    // Don't let buggy code read past our buffer
    if (cursor_ > buffer_.length()) {
      return nullptr;
    }

    return ptr;
  }

  uint8_t* write(size_t n) {
    MOZ_CRASH("Should never write in decode mode");
    return nullptr;
  }

 private:
  const JS::TranscodeRange buffer_;
};

class XDRCoderBase;
class XDRIncrementalEncoder;

// An AutoXDRTree is used to identify section encoded by an
// XDRIncrementalEncoder.
//
// Its primary goal is to identify functions, such that we can first encode them
// as LazyScript, and later replaced by them by their corresponding bytecode
// once delazified.
//
// As a convenience, this is also used to identify the top-level of the content
// encoded by an XDRIncrementalEncoder.
//
// Sections can be encoded any number of times in an XDRIncrementalEncoder, and
// the latest encoded version would replace all the previous one.
class MOZ_RAII AutoXDRTree {
 public:
  // For a JSFunction, a tree key is defined as being:
  //     script()->begin << 32 | script()->end
  //
  // Based on the invariant that |begin <= end|, we can make special
  // keys, such as the top-level script.
  using Key = uint64_t;

  AutoXDRTree(XDRCoderBase* xdr, Key key);
  ~AutoXDRTree();

  // Indicate the lack of a key for the current tree.
  static constexpr Key noKey = 0;

  // Used to end the slices when there is no children.
  static constexpr Key noSubTree = Key(1) << 32;

  // Used as the root key of the tree in the hash map.
  static constexpr Key topLevel = Key(2) << 32;

 private:
  friend class XDRIncrementalEncoder;

  Key key_;
  AutoXDRTree* parent_;
  XDRCoderBase* xdr_;
};

template <typename CharT>
using XDRTranscodeString =
    mozilla::MaybeOneOf<const CharT*, js::UniquePtr<CharT[], JS::FreePolicy>>;

class XDRCoderBase {
 private:
#ifdef DEBUG
  JS::TranscodeResult resultCode_;
#endif

 protected:
  XDRCoderBase()
#ifdef DEBUG
      : resultCode_(JS::TranscodeResult_Ok)
#endif
  {
  }

 public:
  virtual AutoXDRTree::Key getTopLevelTreeKey() const {
    return AutoXDRTree::noKey;
  }
  virtual AutoXDRTree::Key getTreeKey(JSFunction* fun) const {
    return AutoXDRTree::noKey;
  }
  virtual void createOrReplaceSubTree(AutoXDRTree* child){};
  virtual void endSubTree(){};

#ifdef DEBUG
  // Record logical failures of XDR.
  JS::TranscodeResult resultCode() const { return resultCode_; }
  void setResultCode(JS::TranscodeResult code) {
    MOZ_ASSERT(resultCode() == JS::TranscodeResult_Ok);
    resultCode_ = code;
  }
  bool validateResultCode(JSContext* cx, JS::TranscodeResult code) const;
#endif
};

/*
 * XDR serialization state.  All data is encoded in little endian.
 */
template <XDRMode mode>
class XDRState : public XDRCoderBase {
 protected:
  XDRBuffer<mode> buf;

 public:
  XDRState(JSContext* cx, JS::TranscodeBuffer& buffer, size_t cursor = 0)
      : buf(cx, buffer, cursor) {}

  template <typename RangeType>
  XDRState(JSContext* cx, const RangeType& range) : buf(cx, range) {}

  virtual ~XDRState(){};

  JSContext* cx() const { return buf.cx(); }

  virtual bool hasOptions() const { return false; }
  virtual const JS::ReadOnlyCompileOptions& options() {
    MOZ_CRASH("does not have options");
  }
  virtual bool hasScriptSourceObjectOut() const { return false; }
  virtual ScriptSourceObject** scriptSourceObjectOut() {
    MOZ_CRASH("does not have scriptSourceObjectOut.");
  }

  XDRResult fail(JS::TranscodeResult code) {
#ifdef DEBUG
    MOZ_ASSERT(code != JS::TranscodeResult_Ok);
    MOZ_ASSERT(validateResultCode(cx(), code));
    setResultCode(code);
#endif
    return mozilla::Err(code);
  }

  XDRResult peekData(const uint8_t** pptr, size_t length) {
    const uint8_t* ptr = buf.read(length);
    if (!ptr) {
      return fail(JS::TranscodeResult_Failure_BadDecode);
    }
    *pptr = ptr;
    return Ok();
  }

  XDRResult codeUint8(uint8_t* n) {
    if (mode == XDR_ENCODE) {
      uint8_t* ptr = buf.write(sizeof(*n));
      if (!ptr) {
        return fail(JS::TranscodeResult_Throw);
      }
      *ptr = *n;
    } else {
      const uint8_t* ptr = buf.read(sizeof(*n));
      if (!ptr) {
        return fail(JS::TranscodeResult_Failure_BadDecode);
      }
      *n = *ptr;
    }
    return Ok();
  }

  XDRResult codeUint16(uint16_t* n) {
    if (mode == XDR_ENCODE) {
      uint8_t* ptr = buf.write(sizeof(*n));
      if (!ptr) {
        return fail(JS::TranscodeResult_Throw);
      }
      mozilla::LittleEndian::writeUint16(ptr, *n);
    } else {
      const uint8_t* ptr = buf.read(sizeof(*n));
      if (!ptr) {
        return fail(JS::TranscodeResult_Failure_BadDecode);
      }
      *n = mozilla::LittleEndian::readUint16(ptr);
    }
    return Ok();
  }

  XDRResult codeUint32(uint32_t* n) {
    if (mode == XDR_ENCODE) {
      uint8_t* ptr = buf.write(sizeof(*n));
      if (!ptr) {
        return fail(JS::TranscodeResult_Throw);
      }
      mozilla::LittleEndian::writeUint32(ptr, *n);
    } else {
      const uint8_t* ptr = buf.read(sizeof(*n));
      if (!ptr) {
        return fail(JS::TranscodeResult_Failure_BadDecode);
      }
      *n = mozilla::LittleEndian::readUint32(ptr);
    }
    return Ok();
  }

  XDRResult codeUint64(uint64_t* n) {
    if (mode == XDR_ENCODE) {
      uint8_t* ptr = buf.write(sizeof(*n));
      if (!ptr) {
        return fail(JS::TranscodeResult_Throw);
      }
      mozilla::LittleEndian::writeUint64(ptr, *n);
    } else {
      const uint8_t* ptr = buf.read(sizeof(*n));
      if (!ptr) {
        return fail(JS::TranscodeResult_Failure_BadDecode);
      }
      *n = mozilla::LittleEndian::readUint64(ptr);
    }
    return Ok();
  }

  /*
   * Use SFINAE to refuse any specialization which is not an enum.  Uses of
   * this function do not have to specialize the type of the enumerated field
   * as C++ will extract the parameterized from the argument list.
   */
  template <typename T>
  XDRResult codeEnum32(
      T* val,
      typename mozilla::EnableIf<mozilla::IsEnum<T>::value, T>::Type* = NULL) {
    // Mix the enumeration value with a random magic number, such that a
    // corruption with a low-ranged value (like 0) is less likely to cause a
    // miss-interpretation of the XDR content and instead cause a failure.
    const uint32_t MAGIC = 0x21AB218C;
    uint32_t tmp;
    if (mode == XDR_ENCODE) {
      tmp = uint32_t(*val) ^ MAGIC;
    }
    MOZ_TRY(codeUint32(&tmp));
    if (mode == XDR_DECODE) {
      *val = T(tmp ^ MAGIC);
    }
    return Ok();
  }

  XDRResult codeDouble(double* dp) {
    union DoublePun {
      double d;
      uint64_t u;
    } pun;
    if (mode == XDR_ENCODE) {
      pun.d = *dp;
    }
    MOZ_TRY(codeUint64(&pun.u));
    if (mode == XDR_DECODE) {
      *dp = pun.d;
    }
    return Ok();
  }

  XDRResult codeMarker(uint32_t magic) {
    uint32_t actual = magic;
    MOZ_TRY(codeUint32(&actual));
    if (actual != magic) {
      // Fail in debug, but only soft-fail in release
      MOZ_ASSERT(false, "Bad XDR marker");
      return fail(JS::TranscodeResult_Failure_BadDecode);
    }
    return Ok();
  }

  XDRResult codeBytes(void* bytes, size_t len) {
    if (len == 0) {
      return Ok();
    }
    if (mode == XDR_ENCODE) {
      uint8_t* ptr = buf.write(len);
      if (!ptr) {
        return fail(JS::TranscodeResult_Throw);
      }
      memcpy(ptr, bytes, len);
    } else {
      const uint8_t* ptr = buf.read(len);
      if (!ptr) {
        return fail(JS::TranscodeResult_Failure_BadDecode);
      }
      memcpy(bytes, ptr, len);
    }
    return Ok();
  }

  // Prefer using a variant below that is encoding aware.
  XDRResult codeChars(char* chars, size_t nchars);

  XDRResult codeChars(JS::Latin1Char* chars, size_t nchars);
  XDRResult codeChars(mozilla::Utf8Unit* units, size_t nchars);
  XDRResult codeChars(char16_t* chars, size_t nchars);

  // Transcode null-terminated strings. When decoding, a new buffer is
  // allocated and ownership is returned to caller.
  //
  // NOTE: Throws if string longer than JSString::MAX_LENGTH.
  XDRResult codeCharsZ(XDRTranscodeString<char>& buffer);
  XDRResult codeCharsZ(XDRTranscodeString<char16_t>& buffer);

  XDRResult codeFunction(JS::MutableHandleFunction objp,
                         HandleScriptSourceObject sourceObject = nullptr);
  XDRResult codeScript(MutableHandleScript scriptp);
};

using XDREncoder = XDRState<XDR_ENCODE>;
using XDRDecoder = XDRState<XDR_DECODE>;

class XDROffThreadDecoder : public XDRDecoder {
  const JS::ReadOnlyCompileOptions* options_;
  ScriptSourceObject** sourceObjectOut_;

 public:
  // Note, when providing an JSContext, where isJSContext is false,
  // then the initialization of the ScriptSourceObject would remain
  // incomplete. Thus, the sourceObjectOut must be used to finish the
  // initialization with ScriptSourceObject::initFromOptions after the
  // decoding.
  //
  // When providing a sourceObjectOut pointer, you have to ensure that it is
  // marked by the GC to avoid dangling pointers.
  XDROffThreadDecoder(JSContext* cx, const JS::ReadOnlyCompileOptions* options,
                      ScriptSourceObject** sourceObjectOut,
                      const JS::TranscodeRange& range)
      : XDRDecoder(cx, range),
        options_(options),
        sourceObjectOut_(sourceObjectOut) {
    MOZ_ASSERT(options);
    MOZ_ASSERT(sourceObjectOut);
    MOZ_ASSERT(*sourceObjectOut == nullptr);
  }

  bool hasOptions() const override { return true; }
  const JS::ReadOnlyCompileOptions& options() override { return *options_; }
  bool hasScriptSourceObjectOut() const override { return true; }
  ScriptSourceObject** scriptSourceObjectOut() override {
    return sourceObjectOut_;
  }
};

class XDRIncrementalEncoder : public XDREncoder {
  // The incremental encoder encodes the content of scripts and functions in
  // the XDRBuffer. It can be used to encode multiple times the same
  // AutoXDRTree, and uses its key to identify which part to replace.
  //
  // Internally, this encoder keeps a tree representation of the scopes. Each
  // node is composed of a vector of slices which are interleaved by child
  // nodes.
  //
  // A slice corresponds to an index and a length within the content of the
  // slices_ buffer. The index is updated when a slice is created, and the
  // length is updated when the slice is ended, either by creating a new scope
  // child, or by closing the scope and going back to the parent.
  //
  //                  +---+---+---+
  //        begin     |   |   |   |
  //        length    |   |   |   |
  //        child     | . | . | . |
  //                  +-|-+-|-+---+
  //                    |   |
  //          +---------+   +---------+
  //          |                       |
  //          v                       v
  //      +---+---+                 +---+
  //      |   |   |                 |   |
  //      |   |   |                 |   |
  //      | . | . |                 | . |
  //      +-|-+---+                 +---+
  //        |
  //        |
  //        |
  //        v
  //      +---+
  //      |   |
  //      |   |
  //      | . |
  //      +---+
  //
  //
  // The tree key is used to identify the child nodes, and to make them
  // easily replaceable.
  //
  // The tree is rooted at the |topLevel| key.
  //

  struct Slice {
    size_t sliceBegin;
    size_t sliceLength;
    AutoXDRTree::Key child;
  };

  using SlicesNode = Vector<Slice, 1, SystemAllocPolicy>;
  using SlicesTree =
      HashMap<AutoXDRTree::Key, SlicesNode, DefaultHasher<AutoXDRTree::Key>,
              SystemAllocPolicy>;

  // Last opened XDR-tree on the stack.
  AutoXDRTree* scope_;
  // Node corresponding to the opened scope.
  SlicesNode* node_;
  // Tree of slices.
  SlicesTree tree_;
  JS::TranscodeBuffer slices_;
  bool oom_;

  class DepthFirstSliceIterator;

 public:
  explicit XDRIncrementalEncoder(JSContext* cx)
      : XDREncoder(cx, slices_, 0),
        scope_(nullptr),
        node_(nullptr),
        oom_(false) {}

  virtual ~XDRIncrementalEncoder() {}

  AutoXDRTree::Key getTopLevelTreeKey() const override;
  AutoXDRTree::Key getTreeKey(JSFunction* fun) const override;

  void createOrReplaceSubTree(AutoXDRTree* child) override;
  void endSubTree() override;

  // Append the content collected during the incremental encoding into the
  // buffer given as argument.
  XDRResult linearize(JS::TranscodeBuffer& buffer);
};

template <XDRMode mode>
XDRResult XDRAtom(XDRState<mode>* xdr, js::MutableHandleAtom atomp);

} /* namespace js */

#endif /* vm_Xdr_h */