DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "vm/Xdr.h"

#include "mozilla/ArrayUtils.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/Utf8.h"

#include <algorithm>  // std::transform
#include <string.h>
#include <type_traits>  // std::is_same
#include <utility>      // std::move

#include "jsapi.h"
#include "jsutil.h"

#include "debugger/DebugAPI.h"
#include "js/BuildId.h"  // JS::BuildIdCharVector
#include "vm/EnvironmentObject.h"
#include "vm/JSContext.h"
#include "vm/JSScript.h"
#include "vm/TraceLogging.h"

using namespace js;

using mozilla::ArrayEqual;
using mozilla::Utf8Unit;

#ifdef DEBUG
bool XDRCoderBase::validateResultCode(JSContext* cx,
                                      JS::TranscodeResult code) const {
  // NOTE: This function is called to verify that we do not have a pending
  // exception on the JSContext at the same time as a TranscodeResult failure.
  if (cx->isHelperThreadContext()) {
    return true;
  }
  return cx->isExceptionPending() == bool(code == JS::TranscodeResult_Throw);
}
#endif

template <XDRMode mode>
XDRResult XDRState<mode>::codeChars(char* chars, size_t nchars) {
  return codeBytes(chars, nchars);
}

template <XDRMode mode>
XDRResult XDRState<mode>::codeChars(Latin1Char* chars, size_t nchars) {
  static_assert(sizeof(Latin1Char) == 1,
                "Latin1Char must be 1 byte for nchars below to be the "
                "proper count of bytes");
  static_assert(std::is_same<Latin1Char, unsigned char>::value,
                "Latin1Char must be unsigned char to C++-safely reinterpret "
                "the bytes generically copied below as Latin1Char");
  return codeBytes(chars, nchars);
}

template <XDRMode mode>
XDRResult XDRState<mode>::codeChars(Utf8Unit* units, size_t count) {
  if (count == 0) {
    return Ok();
  }

  if (mode == XDR_ENCODE) {
    uint8_t* ptr = buf.write(count);
    if (!ptr) {
      return fail(JS::TranscodeResult_Throw);
    }

    std::transform(units, units + count, ptr,
                   [](const Utf8Unit& unit) { return unit.toUint8(); });
  } else {
    const uint8_t* ptr = buf.read(count);
    if (!ptr) {
      return fail(JS::TranscodeResult_Failure_BadDecode);
    }

    std::transform(ptr, ptr + count, units,
                   [](const uint8_t& value) { return Utf8Unit(value); });
  }

  return Ok();
}

template <XDRMode mode>
XDRResult XDRState<mode>::codeChars(char16_t* chars, size_t nchars) {
  if (nchars == 0) {
    return Ok();
  }

  size_t nbytes = nchars * sizeof(char16_t);
  if (mode == XDR_ENCODE) {
    uint8_t* ptr = buf.write(nbytes);
    if (!ptr) {
      return fail(JS::TranscodeResult_Throw);
    }

    // |mozilla::NativeEndian| correctly handles writing into unaligned |ptr|.
    mozilla::NativeEndian::copyAndSwapToLittleEndian(ptr, chars, nchars);
  } else {
    const uint8_t* ptr = buf.read(nbytes);
    if (!ptr) {
      return fail(JS::TranscodeResult_Failure_BadDecode);
    }

    // |mozilla::NativeEndian| correctly handles reading from unaligned |ptr|.
    mozilla::NativeEndian::copyAndSwapFromLittleEndian(chars, ptr, nchars);
  }
  return Ok();
}

template <XDRMode mode, typename CharT>
static XDRResult XDRCodeCharsZ(XDRState<mode>* xdr,
                               XDRTranscodeString<CharT>& buffer) {
  MOZ_ASSERT_IF(mode == XDR_ENCODE, !buffer.empty());
  MOZ_ASSERT_IF(mode == XDR_DECODE, buffer.empty());

  using OwnedString = js::UniquePtr<CharT[], JS::FreePolicy>;
  OwnedString owned;

  static_assert(JSString::MAX_LENGTH <= INT32_MAX,
                "String length must fit in int32_t");

  uint32_t length = 0;
  CharT* chars = nullptr;

  if (mode == XDR_ENCODE) {
    chars = const_cast<CharT*>(buffer.template ref<const CharT*>());

    // Set a reasonable limit on string length.
    size_t lengthSizeT = std::char_traits<CharT>::length(chars);
    if (lengthSizeT > JSString::MAX_LENGTH) {
      ReportAllocationOverflow(xdr->cx());
      return xdr->fail(JS::TranscodeResult_Throw);
    }
    length = static_cast<uint32_t>(lengthSizeT);
  }
  MOZ_TRY(xdr->codeUint32(&length));

  if (mode == XDR_DECODE) {
    owned = xdr->cx()->template make_pod_array<CharT>(length + 1);
    if (!owned) {
      return xdr->fail(JS::TranscodeResult_Throw);
    }
    chars = owned.get();
  }

  MOZ_TRY(xdr->codeChars(chars, length));
  if (mode == XDR_DECODE) {
    // Null-terminate and transfer ownership to caller.
    owned[length] = '\0';
    buffer.template construct<OwnedString>(std::move(owned));
  }

  return Ok();
}

template <XDRMode mode>
XDRResult XDRState<mode>::codeCharsZ(XDRTranscodeString<char>& buffer) {
  return XDRCodeCharsZ(this, buffer);
}

template <XDRMode mode>
XDRResult XDRState<mode>::codeCharsZ(XDRTranscodeString<char16_t>& buffer) {
  return XDRCodeCharsZ(this, buffer);
}

template <XDRMode mode>
static XDRResult VersionCheck(XDRState<mode>* xdr) {
  JS::BuildIdCharVector buildId;
  MOZ_ASSERT(GetBuildId);
  if (!GetBuildId(&buildId)) {
    ReportOutOfMemory(xdr->cx());
    return xdr->fail(JS::TranscodeResult_Throw);
  }
  MOZ_ASSERT(!buildId.empty());

  uint32_t buildIdLength;
  if (mode == XDR_ENCODE) {
    buildIdLength = buildId.length();
  }

  MOZ_TRY(xdr->codeUint32(&buildIdLength));

  if (mode == XDR_DECODE && buildIdLength != buildId.length()) {
    return xdr->fail(JS::TranscodeResult_Failure_BadBuildId);
  }

  if (mode == XDR_ENCODE) {
    MOZ_TRY(xdr->codeBytes(buildId.begin(), buildIdLength));
  } else {
    JS::BuildIdCharVector decodedBuildId;

    // buildIdLength is already checked against the length of current
    // buildId.
    if (!decodedBuildId.resize(buildIdLength)) {
      ReportOutOfMemory(xdr->cx());
      return xdr->fail(JS::TranscodeResult_Throw);
    }

    MOZ_TRY(xdr->codeBytes(decodedBuildId.begin(), buildIdLength));

    // We do not provide binary compatibility with older scripts.
    if (!ArrayEqual(decodedBuildId.begin(), buildId.begin(), buildIdLength)) {
      return xdr->fail(JS::TranscodeResult_Failure_BadBuildId);
    }
  }

  return Ok();
}

template <XDRMode mode>
XDRResult XDRState<mode>::codeFunction(MutableHandleFunction funp,
                                       HandleScriptSourceObject sourceObject) {
  TraceLoggerThread* logger = TraceLoggerForCurrentThread(cx());
  TraceLoggerTextId event = mode == XDR_DECODE ? TraceLogger_DecodeFunction
                                               : TraceLogger_EncodeFunction;
  AutoTraceLog tl(logger, event);

#ifdef DEBUG
  auto sanityCheck = mozilla::MakeScopeExit(
      [&] { MOZ_ASSERT(validateResultCode(cx(), resultCode())); });
#endif
  auto guard = mozilla::MakeScopeExit([&] { funp.set(nullptr); });
  RootedScope scope(cx(), &cx()->global()->emptyGlobalScope());
  if (mode == XDR_DECODE) {
    MOZ_ASSERT(!sourceObject);
    funp.set(nullptr);
  } else if (getTreeKey(funp) != AutoXDRTree::noKey) {
    MOZ_ASSERT(sourceObject);
    scope = funp->nonLazyScript()->enclosingScope();
  } else {
    MOZ_ASSERT(!sourceObject);
    MOZ_ASSERT(funp->nonLazyScript()->enclosingScope()->is<GlobalScope>());
  }

  MOZ_TRY(VersionCheck(this));
  MOZ_TRY(XDRInterpretedFunction(this, scope, sourceObject, funp));

  guard.release();
  return Ok();
}

template <XDRMode mode>
XDRResult XDRState<mode>::codeScript(MutableHandleScript scriptp) {
  TraceLoggerThread* logger = TraceLoggerForCurrentThread(cx());
  TraceLoggerTextId event =
      mode == XDR_DECODE ? TraceLogger_DecodeScript : TraceLogger_EncodeScript;
  AutoTraceLog tl(logger, event);

#ifdef DEBUG
  auto sanityCheck = mozilla::MakeScopeExit(
      [&] { MOZ_ASSERT(validateResultCode(cx(), resultCode())); });
#endif
  auto guard = mozilla::MakeScopeExit([&] { scriptp.set(nullptr); });

  AutoXDRTree scriptTree(this, getTopLevelTreeKey());

  if (mode == XDR_DECODE) {
    scriptp.set(nullptr);
  } else {
    MOZ_ASSERT(!scriptp->enclosingScope());
  }

  MOZ_TRY(VersionCheck(this));
  MOZ_TRY(XDRScript(this, nullptr, nullptr, nullptr, scriptp));

  guard.release();
  return Ok();
}

template class js::XDRState<XDR_ENCODE>;
template class js::XDRState<XDR_DECODE>;

AutoXDRTree::AutoXDRTree(XDRCoderBase* xdr, AutoXDRTree::Key key)
    : key_(key), parent_(this), xdr_(xdr) {
  if (key_ != AutoXDRTree::noKey) {
    xdr->createOrReplaceSubTree(this);
  }
}

AutoXDRTree::~AutoXDRTree() {
  if (key_ != AutoXDRTree::noKey) {
    xdr_->endSubTree();
  }
}

constexpr AutoXDRTree::Key AutoXDRTree::noKey;
constexpr AutoXDRTree::Key AutoXDRTree::noSubTree;
constexpr AutoXDRTree::Key AutoXDRTree::topLevel;

class XDRIncrementalEncoder::DepthFirstSliceIterator {
 public:
  DepthFirstSliceIterator(JSContext* cx, const SlicesTree& tree)
      : stack_(cx), tree_(tree) {}

  template <typename SliceFun>
  bool iterate(SliceFun&& f) {
    MOZ_ASSERT(stack_.empty());

    if (!appendChildrenForKey(AutoXDRTree::topLevel)) {
      return false;
    }

    while (!done()) {
      SlicesNode::ConstRange& iter = next();
      Slice slice = iter.popCopyFront();
      // These fields have different meaning, but they should be
      // correlated if the tree is well formatted.
      MOZ_ASSERT_IF(slice.child == AutoXDRTree::noSubTree, iter.empty());
      if (iter.empty()) {
        pop();
      }

      if (!f(slice)) {
        return false;
      }

      // If we are at the end, go back to the parent script.
      if (slice.child == AutoXDRTree::noSubTree) {
        continue;
      }

      if (!appendChildrenForKey(slice.child)) {
        return false;
      }
    }

    return true;
  }

 private:
  bool done() const { return stack_.empty(); }
  SlicesNode::ConstRange& next() { return stack_.back(); }
  void pop() { stack_.popBack(); }

  MOZ_MUST_USE bool appendChildrenForKey(AutoXDRTree::Key key) {
    MOZ_ASSERT(key != AutoXDRTree::noSubTree);

    SlicesTree::Ptr p = tree_.lookup(key);
    MOZ_ASSERT(p);
    return stack_.append(((const SlicesNode&)p->value()).all());
  }

  Vector<SlicesNode::ConstRange> stack_;
  const SlicesTree& tree_;
};

AutoXDRTree::Key XDRIncrementalEncoder::getTopLevelTreeKey() const {
  return AutoXDRTree::topLevel;
}

AutoXDRTree::Key XDRIncrementalEncoder::getTreeKey(JSFunction* fun) const {
  if (fun->isInterpretedLazy()) {
    static_assert(
        sizeof(fun->lazyScript()->sourceStart()) == 4 ||
            sizeof(fun->lazyScript()->sourceEnd()) == 4,
        "AutoXDRTree key requires LazyScripts positions to be uint32");
    return uint64_t(fun->lazyScript()->sourceStart()) << 32 |
           fun->lazyScript()->sourceEnd();
  }

  if (fun->isInterpreted()) {
    static_assert(sizeof(fun->nonLazyScript()->sourceStart()) == 4 ||
                      sizeof(fun->nonLazyScript()->sourceEnd()) == 4,
                  "AutoXDRTree key requires JSScripts positions to be uint32");
    return uint64_t(fun->nonLazyScript()->sourceStart()) << 32 |
           fun->nonLazyScript()->sourceEnd();
  }

  return AutoXDRTree::noKey;
}

void XDRIncrementalEncoder::createOrReplaceSubTree(AutoXDRTree* child) {
  AutoXDRTree* parent = scope_;
  child->parent_ = parent;
  scope_ = child;
  if (oom_) {
    return;
  }

  size_t cursor = buf.cursor();

  // End the parent slice here, set the key to the child.
  if (parent) {
    Slice& last = node_->back();
    last.sliceLength = cursor - last.sliceBegin;
    last.child = child->key_;
    MOZ_ASSERT_IF(uint32_t(parent->key_) != 0,
                  uint32_t(parent->key_ >> 32) <= uint32_t(child->key_ >> 32) &&
                      uint32_t(child->key_) <= uint32_t(parent->key_));
  }

  // Create or replace the part with what is going to be encoded next.
  SlicesTree::AddPtr p = tree_.lookupForAdd(child->key_);
  SlicesNode tmp;
  if (!p) {
    // Create a new sub-tree node.
    if (!tree_.add(p, child->key_, std::move(tmp))) {
      oom_ = true;
      return;
    }
  } else {
    // Replace an exisiting sub-tree.
    p->value() = std::move(tmp);
  }
  node_ = &p->value();

  // Add content to the root of the new sub-tree,
  // i-e an empty slice with no children.
  if (!node_->append(Slice{cursor, 0, AutoXDRTree::noSubTree})) {
    MOZ_CRASH("SlicesNode have a reserved space of 1.");
  }
}

void XDRIncrementalEncoder::endSubTree() {
  AutoXDRTree* child = scope_;
  AutoXDRTree* parent = child->parent_;
  scope_ = parent;
  if (oom_) {
    return;
  }

  size_t cursor = buf.cursor();

  // End the child sub-tree.
  Slice& last = node_->back();
  last.sliceLength = cursor - last.sliceBegin;
  MOZ_ASSERT(last.child == AutoXDRTree::noSubTree);

  // Stop at the top-level.
  if (!parent) {
    node_ = nullptr;
    return;
  }

  // Restore the parent node.
  SlicesTree::Ptr p = tree_.lookup(parent->key_);
  node_ = &p->value();

  // Append the new slice in the parent node.
  if (!node_->append(Slice{cursor, 0, AutoXDRTree::noSubTree})) {
    oom_ = true;
    return;
  }
}

XDRResult XDRIncrementalEncoder::linearize(JS::TranscodeBuffer& buffer) {
  if (oom_) {
    ReportOutOfMemory(cx());
    return fail(JS::TranscodeResult_Throw);
  }

  // Do not linearize while we are currently adding bytes.
  MOZ_ASSERT(scope_ == nullptr);

  // Visit the tree parts in a depth first order to linearize the bits.
  // Calculate the total length first so we don't incur repeated copying
  // and zeroing of memory for large trees.
  DepthFirstSliceIterator dfs(cx(), tree_);

  size_t totalLength = buffer.length();
  auto sliceCounter = [&](const Slice& slice) -> bool {
    totalLength += slice.sliceLength;
    return true;
  };

  if (!dfs.iterate(sliceCounter)) {
    ReportOutOfMemory(cx());
    return fail(JS::TranscodeResult_Throw);
  };

  if (!buffer.reserve(totalLength)) {
    ReportOutOfMemory(cx());
    return fail(JS::TranscodeResult_Throw);
  }

  auto sliceCopier = [&](const Slice& slice) -> bool {
    // Copy the bytes associated with the current slice to the transcode
    // buffer which would be serialized.
    MOZ_ASSERT(slice.sliceBegin <= slices_.length());
    MOZ_ASSERT(slice.sliceBegin + slice.sliceLength <= slices_.length());

    buffer.infallibleAppend(slices_.begin() + slice.sliceBegin,
                            slice.sliceLength);
    return true;
  };

  if (!dfs.iterate(sliceCopier)) {
    ReportOutOfMemory(cx());
    return fail(JS::TranscodeResult_Throw);
  }

  tree_.clearAndCompact();
  slices_.clearAndFree();
  return Ok();
}