DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (7b5b4eed4707)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef vm_TypedArrayObject_inl_h
#define vm_TypedArrayObject_inl_h

/* Utilities and common inline code for TypedArray */

#include "vm/TypedArrayObject.h"

#include "mozilla/Assertions.h"
#include "mozilla/Compiler.h"
#include "mozilla/FloatingPoint.h"

#include <algorithm>

#include "jsnum.h"

#include "builtin/Array.h"
#include "jit/AtomicOperations.h"
#include "js/Conversions.h"
#include "js/Value.h"
#include "vm/BigIntType.h"
#include "vm/JSContext.h"
#include "vm/NativeObject.h"

#include "gc/ObjectKind-inl.h"
#include "vm/ObjectOperations-inl.h"

namespace js {

template <typename To, typename From>
inline To ConvertNumber(From src);

template <>
inline int8_t ConvertNumber<int8_t, float>(float src) {
  return JS::ToInt8(src);
}

template <>
inline uint8_t ConvertNumber<uint8_t, float>(float src) {
  return JS::ToUint8(src);
}

template <>
inline uint8_clamped ConvertNumber<uint8_clamped, float>(float src) {
  return uint8_clamped(src);
}

template <>
inline int16_t ConvertNumber<int16_t, float>(float src) {
  return JS::ToInt16(src);
}

template <>
inline uint16_t ConvertNumber<uint16_t, float>(float src) {
  return JS::ToUint16(src);
}

template <>
inline int32_t ConvertNumber<int32_t, float>(float src) {
  return JS::ToInt32(src);
}

template <>
inline uint32_t ConvertNumber<uint32_t, float>(float src) {
  return JS::ToUint32(src);
}

template <>
inline int64_t ConvertNumber<int64_t, float>(float src) {
  return JS::ToInt64(src);
}

template <>
inline uint64_t ConvertNumber<uint64_t, float>(float src) {
  return JS::ToUint64(src);
}

template <>
inline int8_t ConvertNumber<int8_t, double>(double src) {
  return JS::ToInt8(src);
}

template <>
inline uint8_t ConvertNumber<uint8_t, double>(double src) {
  return JS::ToUint8(src);
}

template <>
inline uint8_clamped ConvertNumber<uint8_clamped, double>(double src) {
  return uint8_clamped(src);
}

template <>
inline int16_t ConvertNumber<int16_t, double>(double src) {
  return JS::ToInt16(src);
}

template <>
inline uint16_t ConvertNumber<uint16_t, double>(double src) {
  return JS::ToUint16(src);
}

template <>
inline int32_t ConvertNumber<int32_t, double>(double src) {
  return JS::ToInt32(src);
}

template <>
inline uint32_t ConvertNumber<uint32_t, double>(double src) {
  return JS::ToUint32(src);
}

template <>
inline int64_t ConvertNumber<int64_t, double>(double src) {
  return JS::ToInt64(src);
}

template <>
inline uint64_t ConvertNumber<uint64_t, double>(double src) {
  return JS::ToUint64(src);
}

template <typename To, typename From>
inline To ConvertNumber(From src) {
  static_assert(
      !mozilla::IsFloatingPoint<From>::value ||
          (mozilla::IsFloatingPoint<From>::value &&
           mozilla::IsFloatingPoint<To>::value),
      "conversion from floating point to int should have been handled by "
      "specializations above");
  return To(src);
}

template <typename NativeType>
struct TypeIDOfType;
template <>
struct TypeIDOfType<int8_t> {
  static const Scalar::Type id = Scalar::Int8;
  static const JSProtoKey protoKey = JSProto_Int8Array;
};
template <>
struct TypeIDOfType<uint8_t> {
  static const Scalar::Type id = Scalar::Uint8;
  static const JSProtoKey protoKey = JSProto_Uint8Array;
};
template <>
struct TypeIDOfType<int16_t> {
  static const Scalar::Type id = Scalar::Int16;
  static const JSProtoKey protoKey = JSProto_Int16Array;
};
template <>
struct TypeIDOfType<uint16_t> {
  static const Scalar::Type id = Scalar::Uint16;
  static const JSProtoKey protoKey = JSProto_Uint16Array;
};
template <>
struct TypeIDOfType<int32_t> {
  static const Scalar::Type id = Scalar::Int32;
  static const JSProtoKey protoKey = JSProto_Int32Array;
};
template <>
struct TypeIDOfType<uint32_t> {
  static const Scalar::Type id = Scalar::Uint32;
  static const JSProtoKey protoKey = JSProto_Uint32Array;
};
template <>
struct TypeIDOfType<int64_t> {
  static const Scalar::Type id = Scalar::BigInt64;
  static const JSProtoKey protoKey = JSProto_BigInt64Array;
};
template <>
struct TypeIDOfType<uint64_t> {
  static const Scalar::Type id = Scalar::BigUint64;
  static const JSProtoKey protoKey = JSProto_BigUint64Array;
};
template <>
struct TypeIDOfType<float> {
  static const Scalar::Type id = Scalar::Float32;
  static const JSProtoKey protoKey = JSProto_Float32Array;
};
template <>
struct TypeIDOfType<double> {
  static const Scalar::Type id = Scalar::Float64;
  static const JSProtoKey protoKey = JSProto_Float64Array;
};
template <>
struct TypeIDOfType<uint8_clamped> {
  static const Scalar::Type id = Scalar::Uint8Clamped;
  static const JSProtoKey protoKey = JSProto_Uint8ClampedArray;
};

class SharedOps {
 public:
  template <typename T>
  static T load(SharedMem<T*> addr) {
    return js::jit::AtomicOperations::loadSafeWhenRacy(addr);
  }

  template <typename T>
  static void store(SharedMem<T*> addr, T value) {
    js::jit::AtomicOperations::storeSafeWhenRacy(addr, value);
  }

  template <typename T>
  static void memcpy(SharedMem<T*> dest, SharedMem<T*> src, size_t size) {
    js::jit::AtomicOperations::memcpySafeWhenRacy(dest, src, size);
  }

  template <typename T>
  static void memmove(SharedMem<T*> dest, SharedMem<T*> src, size_t size) {
    js::jit::AtomicOperations::memmoveSafeWhenRacy(dest, src, size);
  }

  template <typename T>
  static void podCopy(SharedMem<T*> dest, SharedMem<T*> src, size_t nelem) {
    js::jit::AtomicOperations::podCopySafeWhenRacy(dest, src, nelem);
  }

  template <typename T>
  static void podMove(SharedMem<T*> dest, SharedMem<T*> src, size_t nelem) {
    js::jit::AtomicOperations::podMoveSafeWhenRacy(dest, src, nelem);
  }

  static SharedMem<void*> extract(TypedArrayObject* obj) {
    return obj->dataPointerEither();
  }
};

class UnsharedOps {
 public:
  template <typename T>
  static T load(SharedMem<T*> addr) {
    return *addr.unwrapUnshared();
  }

  template <typename T>
  static void store(SharedMem<T*> addr, T value) {
    *addr.unwrapUnshared() = value;
  }

  template <typename T>
  static void memcpy(SharedMem<T*> dest, SharedMem<T*> src, size_t size) {
    ::memcpy(dest.unwrapUnshared(), src.unwrapUnshared(), size);
  }

  template <typename T>
  static void memmove(SharedMem<T*> dest, SharedMem<T*> src, size_t size) {
    ::memmove(dest.unwrapUnshared(), src.unwrapUnshared(), size);
  }

  template <typename T>
  static void podCopy(SharedMem<T*> dest, SharedMem<T*> src, size_t nelem) {
    // std::copy_n better matches the argument values/types of this
    // function, but as noted below it allows the input/output ranges to
    // overlap.  std::copy does not, so use it so the compiler has extra
    // ability to optimize.
    const auto* first = src.unwrapUnshared();
    const auto* last = first + nelem;
    auto* result = dest.unwrapUnshared();
    std::copy(first, last, result);
  }

  template <typename T>
  static void podMove(SharedMem<T*> dest, SharedMem<T*> src, size_t n) {
    // std::copy_n copies from |src| to |dest| starting from |src|, so
    // input/output ranges *may* permissibly overlap, as this function
    // allows.
    const auto* start = src.unwrapUnshared();
    auto* result = dest.unwrapUnshared();
    std::copy_n(start, n, result);
  }

  static SharedMem<void*> extract(TypedArrayObject* obj) {
    return SharedMem<void*>::unshared(obj->dataPointerUnshared());
  }
};

template <typename T, typename Ops>
class ElementSpecific {
 public:
  /*
   * Copy |source|'s elements into |target|, starting at |target[offset]|.
   * Act as if the assignments occurred from a fresh copy of |source|, in
   * case the two memory ranges overlap.
   */
  static bool setFromTypedArray(Handle<TypedArrayObject*> target,
                                Handle<TypedArrayObject*> source,
                                uint32_t offset) {
    // WARNING: |source| may be an unwrapped typed array from a different
    // compartment. Proceed with caution!

    MOZ_ASSERT(TypeIDOfType<T>::id == target->type(),
               "calling wrong setFromTypedArray specialization");
    MOZ_ASSERT(!target->hasDetachedBuffer(), "target isn't detached");
    MOZ_ASSERT(!source->hasDetachedBuffer(), "source isn't detached");

    MOZ_ASSERT(offset <= target->length());
    MOZ_ASSERT(source->length() <= target->length() - offset);

    if (TypedArrayObject::sameBuffer(target, source)) {
      return setFromOverlappingTypedArray(target, source, offset);
    }

    SharedMem<T*> dest =
        target->dataPointerEither().template cast<T*>() + offset;
    uint32_t count = source->length();

    if (source->type() == target->type()) {
      Ops::podCopy(dest, source->dataPointerEither().template cast<T*>(),
                   count);
      return true;
    }

    SharedMem<void*> data = Ops::extract(source);
    switch (source->type()) {
      case Scalar::Int8: {
        SharedMem<int8_t*> src = data.cast<int8_t*>();
        for (uint32_t i = 0; i < count; ++i) {
          Ops::store(dest++, ConvertNumber<T>(Ops::load(src++)));
        }
        break;
      }
      case Scalar::Uint8:
      case Scalar::Uint8Clamped: {
        SharedMem<uint8_t*> src = data.cast<uint8_t*>();
        for (uint32_t i = 0; i < count; ++i) {
          Ops::store(dest++, ConvertNumber<T>(Ops::load(src++)));
        }
        break;
      }
      case Scalar::Int16: {
        SharedMem<int16_t*> src = data.cast<int16_t*>();
        for (uint32_t i = 0; i < count; ++i) {
          Ops::store(dest++, ConvertNumber<T>(Ops::load(src++)));
        }
        break;
      }
      case Scalar::Uint16: {
        SharedMem<uint16_t*> src = data.cast<uint16_t*>();
        for (uint32_t i = 0; i < count; ++i) {
          Ops::store(dest++, ConvertNumber<T>(Ops::load(src++)));
        }
        break;
      }
      case Scalar::Int32: {
        SharedMem<int32_t*> src = data.cast<int32_t*>();
        for (uint32_t i = 0; i < count; ++i) {
          Ops::store(dest++, ConvertNumber<T>(Ops::load(src++)));
        }
        break;
      }
      case Scalar::Uint32: {
        SharedMem<uint32_t*> src = data.cast<uint32_t*>();
        for (uint32_t i = 0; i < count; ++i) {
          Ops::store(dest++, ConvertNumber<T>(Ops::load(src++)));
        }
        break;
      }
      case Scalar::BigInt64: {
        SharedMem<int64_t*> src = data.cast<int64_t*>();
        for (uint32_t i = 0; i < count; ++i) {
          Ops::store(dest++, ConvertNumber<T>(Ops::load(src++)));
        }
        break;
      }
      case Scalar::BigUint64: {
        SharedMem<uint64_t*> src = data.cast<uint64_t*>();
        for (uint32_t i = 0; i < count; ++i) {
          Ops::store(dest++, ConvertNumber<T>(Ops::load(src++)));
        }
        break;
      }
      case Scalar::Float32: {
        SharedMem<float*> src = data.cast<float*>();
        for (uint32_t i = 0; i < count; ++i) {
          Ops::store(dest++, ConvertNumber<T>(Ops::load(src++)));
        }
        break;
      }
      case Scalar::Float64: {
        SharedMem<double*> src = data.cast<double*>();
        for (uint32_t i = 0; i < count; ++i) {
          Ops::store(dest++, ConvertNumber<T>(Ops::load(src++)));
        }
        break;
      }
      default:
        MOZ_CRASH("setFromTypedArray with a typed array with bogus type");
    }

    return true;
  }

  /*
   * Copy |source[0]| to |source[len]| (exclusive) elements into the typed
   * array |target|, starting at index |offset|.  |source| must not be a
   * typed array.
   */
  static bool setFromNonTypedArray(JSContext* cx,
                                   Handle<TypedArrayObject*> target,
                                   HandleObject source, uint32_t len,
                                   uint32_t offset = 0) {
    MOZ_ASSERT(target->type() == TypeIDOfType<T>::id,
               "target type and NativeType must match");
    MOZ_ASSERT(!target->hasDetachedBuffer(), "target isn't detached");
    MOZ_ASSERT(!source->is<TypedArrayObject>(),
               "use setFromTypedArray instead of this method");

    uint32_t i = 0;
    if (source->isNative()) {
      // Attempt fast-path infallible conversion of dense elements up to
      // the first potentially side-effectful lookup or conversion.
      uint32_t bound =
          Min(source->as<NativeObject>().getDenseInitializedLength(), len);

      SharedMem<T*> dest =
          target->dataPointerEither().template cast<T*>() + offset;

      MOZ_ASSERT(!canConvertInfallibly(MagicValue(JS_ELEMENTS_HOLE)),
                 "the following loop must abort on holes");

      const Value* srcValues = source->as<NativeObject>().getDenseElements();
      for (; i < bound; i++) {
        if (!canConvertInfallibly(srcValues[i])) {
          break;
        }
        Ops::store(dest + i, infallibleValueToNative(srcValues[i]));
      }
      if (i == len) {
        return true;
      }
    }

    // Convert and copy any remaining elements generically.
    RootedValue v(cx);
    for (; i < len; i++) {
      if (!GetElement(cx, source, source, i, &v)) {
        return false;
      }

      T n;
      if (!valueToNative(cx, v, &n)) {
        return false;
      }

      len = Min(len, target->length());
      if (i >= len) {
        break;
      }

      // Compute every iteration in case getElement/valueToNative
      // detaches the underlying array buffer or GC moves the data.
      SharedMem<T*> dest =
          target->dataPointerEither().template cast<T*>() + offset + i;
      Ops::store(dest, n);
    }

    return true;
  }

  /*
   * Copy |source| into the typed array |target|.
   */
  static bool initFromIterablePackedArray(JSContext* cx,
                                          Handle<TypedArrayObject*> target,
                                          HandleArrayObject source) {
    MOZ_ASSERT(target->type() == TypeIDOfType<T>::id,
               "target type and NativeType must match");
    MOZ_ASSERT(!target->hasDetachedBuffer(), "target isn't detached");
    MOZ_ASSERT(IsPackedArray(source), "source array must be packed");
    MOZ_ASSERT(source->getDenseInitializedLength() <= target->length());

    uint32_t len = source->getDenseInitializedLength();
    uint32_t i = 0;

    // Attempt fast-path infallible conversion of dense elements up to the
    // first potentially side-effectful conversion.

    SharedMem<T*> dest = target->dataPointerEither().template cast<T*>();

    const Value* srcValues = source->getDenseElements();
    for (; i < len; i++) {
      if (!canConvertInfallibly(srcValues[i])) {
        break;
      }
      Ops::store(dest + i, infallibleValueToNative(srcValues[i]));
    }
    if (i == len) {
      return true;
    }

    // Convert any remaining elements by first collecting them into a
    // temporary list, and then copying them into the typed array.
    RootedValueVector values(cx);
    if (!values.append(srcValues + i, len - i)) {
      return false;
    }

    RootedValue v(cx);
    for (uint32_t j = 0; j < values.length(); i++, j++) {
      v = values[j];

      T n;
      if (!valueToNative(cx, v, &n)) {
        return false;
      }

      // |target| is a newly allocated typed array and not yet visible to
      // content script, so valueToNative can't detach the underlying
      // buffer.
      MOZ_ASSERT(i < target->length());

      // Compute every iteration in case GC moves the data.
      SharedMem<T*> newDest = target->dataPointerEither().template cast<T*>();
      Ops::store(newDest + i, n);
    }

    return true;
  }

 private:
  static bool setFromOverlappingTypedArray(Handle<TypedArrayObject*> target,
                                           Handle<TypedArrayObject*> source,
                                           uint32_t offset) {
    // WARNING: |source| may be an unwrapped typed array from a different
    // compartment. Proceed with caution!

    MOZ_ASSERT(TypeIDOfType<T>::id == target->type(),
               "calling wrong setFromTypedArray specialization");
    MOZ_ASSERT(!target->hasDetachedBuffer(), "target isn't detached");
    MOZ_ASSERT(!source->hasDetachedBuffer(), "source isn't detached");
    MOZ_ASSERT(TypedArrayObject::sameBuffer(target, source),
               "the provided arrays don't actually overlap, so it's "
               "undesirable to use this method");

    MOZ_ASSERT(offset <= target->length());
    MOZ_ASSERT(source->length() <= target->length() - offset);

    SharedMem<T*> dest =
        target->dataPointerEither().template cast<T*>() + offset;
    uint32_t len = source->length();

    if (source->type() == target->type()) {
      SharedMem<T*> src = source->dataPointerEither().template cast<T*>();
      Ops::podMove(dest, src, len);
      return true;
    }

    // Copy |source| in case it overlaps the target elements being set.
    size_t sourceByteLen = len * source->bytesPerElement();
    void* data = target->zone()->template pod_malloc<uint8_t>(sourceByteLen);
    if (!data) {
      return false;
    }
    Ops::memcpy(SharedMem<void*>::unshared(data), source->dataPointerEither(),
                sourceByteLen);

    switch (source->type()) {
      case Scalar::Int8: {
        int8_t* src = static_cast<int8_t*>(data);
        for (uint32_t i = 0; i < len; ++i) {
          Ops::store(dest++, ConvertNumber<T>(*src++));
        }
        break;
      }
      case Scalar::Uint8:
      case Scalar::Uint8Clamped: {
        uint8_t* src = static_cast<uint8_t*>(data);
        for (uint32_t i = 0; i < len; ++i) {
          Ops::store(dest++, ConvertNumber<T>(*src++));
        }
        break;
      }
      case Scalar::Int16: {
        int16_t* src = static_cast<int16_t*>(data);
        for (uint32_t i = 0; i < len; ++i) {
          Ops::store(dest++, ConvertNumber<T>(*src++));
        }
        break;
      }
      case Scalar::Uint16: {
        uint16_t* src = static_cast<uint16_t*>(data);
        for (uint32_t i = 0; i < len; ++i) {
          Ops::store(dest++, ConvertNumber<T>(*src++));
        }
        break;
      }
      case Scalar::Int32: {
        int32_t* src = static_cast<int32_t*>(data);
        for (uint32_t i = 0; i < len; ++i) {
          Ops::store(dest++, ConvertNumber<T>(*src++));
        }
        break;
      }
      case Scalar::Uint32: {
        uint32_t* src = static_cast<uint32_t*>(data);
        for (uint32_t i = 0; i < len; ++i) {
          Ops::store(dest++, ConvertNumber<T>(*src++));
        }
        break;
      }
      case Scalar::BigInt64: {
        int64_t* src = static_cast<int64_t*>(data);
        for (uint32_t i = 0; i < len; ++i) {
          Ops::store(dest++, ConvertNumber<T>(*src++));
        }
        break;
      }
      case Scalar::BigUint64: {
        uint64_t* src = static_cast<uint64_t*>(data);
        for (uint32_t i = 0; i < len; ++i) {
          Ops::store(dest++, ConvertNumber<T>(*src++));
        }
        break;
      }
      case Scalar::Float32: {
        float* src = static_cast<float*>(data);
        for (uint32_t i = 0; i < len; ++i) {
          Ops::store(dest++, ConvertNumber<T>(*src++));
        }
        break;
      }
      case Scalar::Float64: {
        double* src = static_cast<double*>(data);
        for (uint32_t i = 0; i < len; ++i) {
          Ops::store(dest++, ConvertNumber<T>(*src++));
        }
        break;
      }
      default:
        MOZ_CRASH(
            "setFromOverlappingTypedArray with a typed array with bogus type");
    }

    js_free(data);
    return true;
  }

  static bool canConvertInfallibly(const Value& v) {
    if (TypeIDOfType<T>::id == Scalar::BigInt64 ||
        TypeIDOfType<T>::id == Scalar::BigUint64) {
      // Numbers, Null, Undefined, and Symbols throw a TypeError. Strings may
      // OOM and Objects may have side-effects.
      return v.isBigInt() || v.isBoolean();
    }
    // BigInts and Symbols throw a TypeError. Strings may OOM and Objects may
    // have side-effects.
    return v.isNumber() || v.isBoolean() || v.isNull() || v.isUndefined();
  }

  static T infallibleValueToNative(const Value& v) {
    if (TypeIDOfType<T>::id == Scalar::BigInt64) {
      if (v.isBigInt()) {
        return T(BigInt::toInt64(v.toBigInt()));
      }
      return T(v.toBoolean());
    }
    if (TypeIDOfType<T>::id == Scalar::BigUint64) {
      if (v.isBigInt()) {
        return T(BigInt::toUint64(v.toBigInt()));
      }
      return T(v.toBoolean());
    }
    if (v.isInt32()) {
      return T(v.toInt32());
    }
    if (v.isDouble()) {
      return doubleToNative(v.toDouble());
    }
    if (v.isBoolean()) {
      return T(v.toBoolean());
    }
    if (v.isNull()) {
      return T(0);
    }

    MOZ_ASSERT(v.isUndefined());
    return TypeIsFloatingPoint<T>() ? T(JS::GenericNaN()) : T(0);
  }

  static bool valueToNative(JSContext* cx, HandleValue v, T* result) {
    MOZ_ASSERT(!v.isMagic());

    if (MOZ_LIKELY(canConvertInfallibly(v))) {
      *result = infallibleValueToNative(v);
      return true;
    }

    if (std::is_same<T, int64_t>::value) {
      JS_TRY_VAR_OR_RETURN_FALSE(cx, *result, ToBigInt64(cx, v));
      return true;
    }

    if (std::is_same<T, uint64_t>::value) {
      JS_TRY_VAR_OR_RETURN_FALSE(cx, *result, ToBigUint64(cx, v));
      return true;
    }

    double d;
    MOZ_ASSERT(v.isString() || v.isObject() || v.isSymbol() || v.isBigInt());
    if (!(v.isString() ? StringToNumber(cx, v.toString(), &d)
                       : ToNumber(cx, v, &d))) {
      return false;
    }

    *result = doubleToNative(d);
    return true;
  }

  static T doubleToNative(double d) {
    if (TypeIsFloatingPoint<T>()) {
#ifdef JS_MORE_DETERMINISTIC
      // The JS spec doesn't distinguish among different NaN values, and
      // it deliberately doesn't specify the bit pattern written to a
      // typed array when NaN is written into it.  This bit-pattern
      // inconsistency could confuse deterministic testing, so always
      // canonicalize NaN values in more-deterministic builds.
      d = JS::CanonicalizeNaN(d);
#endif
      return T(d);
    }
    if (MOZ_UNLIKELY(mozilla::IsNaN(d))) {
      return T(0);
    }
    if (TypeIDOfType<T>::id == Scalar::Uint8Clamped) {
      return T(d);
    }
    if (TypeIsUnsigned<T>()) {
      return T(JS::ToUint32(d));
    }
    return T(JS::ToInt32(d));
  }
};

/* static */ gc::AllocKind js::TypedArrayObject::AllocKindForLazyBuffer(
    size_t nbytes) {
  MOZ_ASSERT(nbytes <= INLINE_BUFFER_LIMIT);
  if (nbytes == 0) {
    nbytes += sizeof(uint8_t);
  }
  size_t dataSlots = AlignBytes(nbytes, sizeof(Value)) / sizeof(Value);
  MOZ_ASSERT(nbytes <= dataSlots * sizeof(Value));
  return gc::GetGCObjectKind(FIXED_DATA_START + dataSlots);
}

}  // namespace js

#endif  // vm_TypedArrayObject_inl_h