DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* PR time code. */

#include "vm/Time.h"

#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"

#ifdef SOLARIS
#  define _REENTRANT 1
#endif
#include <string.h>
#include <time.h>

#include "jstypes.h"
#include "jsutil.h"

#ifdef XP_WIN
#  include <windef.h>
#  include <winbase.h>
#  include <crtdbg.h>   /* for _CrtSetReportMode */
#  include <mmsystem.h> /* for timeBegin/EndPeriod */
#  include <stdlib.h>   /* for _set_invalid_parameter_handler */
#endif

#ifdef XP_UNIX

#  ifdef _SVID_GETTOD /* Defined only on Solaris, see Solaris <sys/types.h> */
extern int gettimeofday(struct timeval* tv);
#  endif

#  include <sys/time.h>

#endif /* XP_UNIX */

using mozilla::DebugOnly;

// Forward declare the function
static int64_t PRMJ_NowImpl();

int64_t PRMJ_Now() {
  if (mozilla::TimeStamp::GetFuzzyfoxEnabled()) {
    return mozilla::TimeStamp::NowFuzzyTime();
  }

  // We check the FuzzyFox clock in case it was recently disabled, to prevent
  // time from going backwards.
  return js::Max(PRMJ_NowImpl(), mozilla::TimeStamp::NowFuzzyTime());
}

#if defined(XP_UNIX)
static int64_t PRMJ_NowImpl() {
  struct timeval tv;

#  ifdef _SVID_GETTOD /* Defined only on Solaris, see Solaris <sys/types.h> */
  gettimeofday(&tv);
#  else
  gettimeofday(&tv, 0);
#  endif /* _SVID_GETTOD */

  return int64_t(tv.tv_sec) * PRMJ_USEC_PER_SEC + int64_t(tv.tv_usec);
}

#else

// Returns the number of microseconds since the Unix epoch.
static double FileTimeToUnixMicroseconds(const FILETIME& ft) {
  // Get the time in 100ns intervals.
  int64_t t = (int64_t(ft.dwHighDateTime) << 32) | int64_t(ft.dwLowDateTime);

  // The Windows epoch is around 1600. The Unix epoch is around 1970.
  // Subtract the difference.
  static const int64_t TimeToEpochIn100ns = 0x19DB1DED53E8000;
  t -= TimeToEpochIn100ns;

  // Divide by 10 to convert to microseconds.
  return double(t) * 0.1;
}

struct CalibrationData {
  double freq;         /* The performance counter frequency */
  double offset;       /* The low res 'epoch' */
  double timer_offset; /* The high res 'epoch' */

  bool calibrated;

  CRITICAL_SECTION data_lock;
};

static CalibrationData calibration = {0};

static void NowCalibrate() {
  MOZ_ASSERT(calibration.freq > 0);

  // By wrapping a timeBegin/EndPeriod pair of calls around this loop,
  // the loop seems to take much less time (1 ms vs 15ms) on Vista.
  timeBeginPeriod(1);
  FILETIME ft, ftStart;
  GetSystemTimeAsFileTime(&ftStart);
  do {
    GetSystemTimeAsFileTime(&ft);
  } while (memcmp(&ftStart, &ft, sizeof(ft)) == 0);
  timeEndPeriod(1);

  LARGE_INTEGER now;
  QueryPerformanceCounter(&now);

  calibration.offset = FileTimeToUnixMicroseconds(ft);
  calibration.timer_offset = double(now.QuadPart);
  calibration.calibrated = true;
}

static const unsigned DataLockSpinCount = 4096;

static void(WINAPI* pGetSystemTimePreciseAsFileTime)(LPFILETIME) = nullptr;

void PRMJ_NowInit() {
  memset(&calibration, 0, sizeof(calibration));

  // According to the documentation, QueryPerformanceFrequency will never
  // return false or return a non-zero frequency on systems that run
  // Windows XP or later. Also, the frequency is fixed so we only have to
  // query it once.
  LARGE_INTEGER liFreq;
  DebugOnly<BOOL> res = QueryPerformanceFrequency(&liFreq);
  MOZ_ASSERT(res);
  calibration.freq = double(liFreq.QuadPart);
  MOZ_ASSERT(calibration.freq > 0.0);

  InitializeCriticalSectionAndSpinCount(&calibration.data_lock,
                                        DataLockSpinCount);

  // Windows 8 has a new API function we can use.
  if (HMODULE h = GetModuleHandle("kernel32.dll")) {
    pGetSystemTimePreciseAsFileTime = (void(WINAPI*)(LPFILETIME))GetProcAddress(
        h, "GetSystemTimePreciseAsFileTime");
  }
}

void PRMJ_NowShutdown() { DeleteCriticalSection(&calibration.data_lock); }

#  define MUTEX_LOCK(m) EnterCriticalSection(m)
#  define MUTEX_UNLOCK(m) LeaveCriticalSection(m)
#  define MUTEX_SETSPINCOUNT(m, c) SetCriticalSectionSpinCount((m), (c))

// Please see bug 363258 for why the win32 timing code is so complex.
static int64_t PRMJ_NowImpl() {
  if (pGetSystemTimePreciseAsFileTime) {
    // Windows 8 has a new API function that does all the work.
    FILETIME ft;
    pGetSystemTimePreciseAsFileTime(&ft);
    return int64_t(FileTimeToUnixMicroseconds(ft));
  }

  bool calibrated = false;
  bool needsCalibration = !calibration.calibrated;
  double cachedOffset = 0.0;
  while (true) {
    if (needsCalibration) {
      MUTEX_LOCK(&calibration.data_lock);

      // Recalibrate only if no one else did before us.
      if (calibration.offset == cachedOffset) {
        // Since calibration can take a while, make any other
        // threads immediately wait.
        MUTEX_SETSPINCOUNT(&calibration.data_lock, 0);

        NowCalibrate();

        calibrated = true;

        // Restore spin count.
        MUTEX_SETSPINCOUNT(&calibration.data_lock, DataLockSpinCount);
      }

      MUTEX_UNLOCK(&calibration.data_lock);
    }

    // Calculate a low resolution time.
    FILETIME ft;
    GetSystemTimeAsFileTime(&ft);
    double lowresTime = FileTimeToUnixMicroseconds(ft);

    // Grab high resolution time.
    LARGE_INTEGER now;
    QueryPerformanceCounter(&now);
    double highresTimerValue = double(now.QuadPart);

    MUTEX_LOCK(&calibration.data_lock);
    double highresTime = calibration.offset +
                         PRMJ_USEC_PER_SEC *
                             (highresTimerValue - calibration.timer_offset) /
                             calibration.freq;
    cachedOffset = calibration.offset;
    MUTEX_UNLOCK(&calibration.data_lock);

    // Assume the NT kernel ticks every 15.6 ms. Unfortunately there's no
    // good way to determine this (NtQueryTimerResolution is an undocumented
    // API), but 15.6 ms seems to be the max possible value. Hardcoding 15.6
    // means we'll recalibrate if the highres and lowres timers diverge by
    // more than 30 ms.
    static const double KernelTickInMicroseconds = 15625.25;

    // Check for clock skew.
    double diff = lowresTime - highresTime;

    // For some reason that I have not determined, the skew can be
    // up to twice a kernel tick. This does not seem to happen by
    // itself, but I have only seen it triggered by another program
    // doing some kind of file I/O. The symptoms are a negative diff
    // followed by an equally large positive diff.
    if (mozilla::Abs(diff) <= 2 * KernelTickInMicroseconds) {
      // No detectable clock skew.
      return int64_t(highresTime);
    }

    if (calibrated) {
      // If we already calibrated once this instance, and the
      // clock is still skewed, then either the processor(s) are
      // wildly changing clockspeed or the system is so busy that
      // we get switched out for long periods of time. In either
      // case, it would be infeasible to make use of high
      // resolution results for anything, so let's resort to old
      // behavior for this call. It's possible that in the
      // future, the user will want the high resolution timer, so
      // we don't disable it entirely.
      return int64_t(lowresTime);
    }

    // It is possible that when we recalibrate, we will return a
    // value less than what we have returned before; this is
    // unavoidable. We cannot tell the different between a
    // faulty QueryPerformanceCounter implementation and user
    // changes to the operating system time. Since we must
    // respect user changes to the operating system time, we
    // cannot maintain the invariant that Date.now() never
    // decreases; the old implementation has this behavior as
    // well.
    needsCalibration = true;
  }
}
#endif

#if !ENABLE_INTL_API || MOZ_SYSTEM_ICU
#  ifdef XP_WIN
static void PRMJ_InvalidParameterHandler(const wchar_t* expression,
                                         const wchar_t* function,
                                         const wchar_t* file, unsigned int line,
                                         uintptr_t pReserved) {
  /* empty */
}
#  endif

/* Format a time value into a buffer. Same semantics as strftime() */
size_t PRMJ_FormatTime(char* buf, size_t buflen, const char* fmt,
                       const PRMJTime* prtm, int timeZoneYear,
                       int offsetInSeconds) {
  size_t result = 0;
#  if defined(XP_UNIX) || defined(XP_WIN)
  struct tm a;
#    ifdef XP_WIN
  _invalid_parameter_handler oldHandler;
#      ifndef __MINGW32__
  int oldReportMode;
#      endif  // __MINGW32__
#    endif    // XP_WIN

  memset(&a, 0, sizeof(struct tm));

  a.tm_sec = prtm->tm_sec;
  a.tm_min = prtm->tm_min;
  a.tm_hour = prtm->tm_hour;
  a.tm_mday = prtm->tm_mday;
  a.tm_mon = prtm->tm_mon;
  a.tm_wday = prtm->tm_wday;

  /*
   * On systems where |struct tm| has members tm_gmtoff and tm_zone, we
   * must fill in those values, or else strftime will return wrong results
   * (e.g., bug 511726, bug 554338).
   */
#    if defined(HAVE_LOCALTIME_R) && defined(HAVE_TM_ZONE_TM_GMTOFF)
  char emptyTimeZoneId[] = "";
  {
    /*
     * Fill out |td| to the time represented by |prtm|, leaving the
     * timezone fields zeroed out. localtime_r will then fill in the
     * timezone fields for that local time according to the system's
     * timezone parameters. Use |timeZoneYear| for the year to ensure the
     * time zone name matches the time zone offset used by the caller.
     */
    struct tm td;
    memset(&td, 0, sizeof(td));
    td.tm_sec = prtm->tm_sec;
    td.tm_min = prtm->tm_min;
    td.tm_hour = prtm->tm_hour;
    td.tm_mday = prtm->tm_mday;
    td.tm_mon = prtm->tm_mon;
    td.tm_wday = prtm->tm_wday;
    td.tm_year = timeZoneYear - 1900;
    td.tm_yday = prtm->tm_yday;
    td.tm_isdst = prtm->tm_isdst;

    time_t t = mktime(&td);

    // If either mktime or localtime_r failed, fill in the fallback time
    // zone offset |offsetInSeconds| and set the time zone identifier to
    // the empty string.
    if (t != static_cast<time_t>(-1) && localtime_r(&t, &td)) {
      a.tm_gmtoff = td.tm_gmtoff;
      a.tm_zone = td.tm_zone;
    } else {
      a.tm_gmtoff = offsetInSeconds;
      a.tm_zone = emptyTimeZoneId;
    }
  }
#    endif

  /*
   * Years before 1900 and after 9999 cause strftime() to abort on Windows.
   * To avoid that we replace it with FAKE_YEAR_BASE + year % 100 and then
   * replace matching substrings in the strftime() result with the real year.
   * Note that FAKE_YEAR_BASE should be a multiple of 100 to make 2-digit
   * year formats (%y) work correctly (since we won't find the fake year
   * in that case).
   */
  constexpr int FAKE_YEAR_BASE = 9900;
  int fake_tm_year = 0;
  if (prtm->tm_year < 1900 || prtm->tm_year > 9999) {
    fake_tm_year = FAKE_YEAR_BASE + prtm->tm_year % 100;
    a.tm_year = fake_tm_year - 1900;
  } else {
    a.tm_year = prtm->tm_year - 1900;
  }
  a.tm_yday = prtm->tm_yday;
  a.tm_isdst = prtm->tm_isdst;

  /*
   * Even with the above, SunOS 4 seems to detonate if tm_zone and tm_gmtoff
   * are null.  This doesn't quite work, though - the timezone is off by
   * tzoff + dst.  (And mktime seems to return -1 for the exact dst
   * changeover time.)
   */

#    ifdef XP_WIN
  oldHandler = _set_invalid_parameter_handler(PRMJ_InvalidParameterHandler);
#      ifndef __MINGW32__
  /*
   * MinGW doesn't have _CrtSetReportMode and defines it to be a no-op.
   * We ifdef it off to avoid warnings about unused variables
   */
  oldReportMode = _CrtSetReportMode(_CRT_ASSERT, 0);
#      endif  // __MINGW32__
#    endif    // XP_WIN

  result = strftime(buf, buflen, fmt, &a);

#    ifdef XP_WIN
  _set_invalid_parameter_handler(oldHandler);
#      ifndef __MINGW32__
  _CrtSetReportMode(_CRT_ASSERT, oldReportMode);
#      endif  // __MINGW32__
#    endif    // XP_WIN

  if (fake_tm_year && result) {
    char real_year[16];
    char fake_year[16];
    size_t real_year_len;
    size_t fake_year_len;
    char* p;

    sprintf(real_year, "%d", prtm->tm_year);
    real_year_len = strlen(real_year);
    sprintf(fake_year, "%d", fake_tm_year);
    fake_year_len = strlen(fake_year);

    /* Replace the fake year in the result with the real year. */
    for (p = buf; (p = strstr(p, fake_year)); p += real_year_len) {
      size_t new_result = result + real_year_len - fake_year_len;
      if (new_result >= buflen) {
        return 0;
      }
      memmove(p + real_year_len, p + fake_year_len, strlen(p + fake_year_len));
      memcpy(p, real_year, real_year_len);
      result = new_result;
      *(buf + result) = '\0';
    }
  }
#  endif
  return result;
}
#endif /* !ENABLE_INTL_API || MOZ_SYSTEM_ICU */