DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef vm_SavedStacks_h
#define vm_SavedStacks_h

#include "mozilla/Attributes.h"
#include "mozilla/FastBernoulliTrial.h"
#include "mozilla/Maybe.h"

#include "js/HashTable.h"
#include "js/Wrapper.h"
#include "vm/JSContext.h"
#include "vm/SavedFrame.h"
#include "vm/Stack.h"

namespace js {

// # Saved Stacks
//
// The `SavedStacks` class provides a compact way to capture and save JS stacks
// as `SavedFrame` `JSObject` subclasses. A single `SavedFrame` object
// represents one frame that was on the stack, and has a strong reference to its
// parent `SavedFrame` (the next youngest frame). This reference is null when
// the `SavedFrame` object is the oldest frame that was on the stack.
//
// This comment documents implementation. For usage documentation, see the
// `js/src/doc/SavedFrame/SavedFrame.md` file and relevant `SavedFrame`
// functions in `js/src/jsapi.h`.
//
// ## Compact
//
// Older saved stack frame tails are shared via hash consing, to deduplicate
// structurally identical data. `SavedStacks` contains a hash table of weakly
// held `SavedFrame` objects, and when the owning compartment is swept, it
// removes entries from this table that aren't held alive in any other way. When
// saving new stacks, we use this table to find pre-existing `SavedFrame`
// objects. If such an object is already extant, it is reused; otherwise a new
// `SavedFrame` is allocated and inserted into the table.
//
//    Naive         |   Hash Consing
//    --------------+------------------
//    c -> b -> a   |   c -> b -> a
//                  |        ^
//    d -> b -> a   |   d ---|
//                  |        |
//    e -> b -> a   |   e ---'
//
// This technique is effective because of the nature of the events that trigger
// capturing the stack. Currently, these events consist primarily of `JSObject`
// allocation (when an observing `Debugger` has such tracking), `Promise`
// settlement, and `Error` object creation. While these events may occur many
// times, they tend to occur only at a few locations in the JS source. For
// example, if we enable Object allocation tracking and run the esprima
// JavaScript parser on its own JavaScript source, there are approximately 54700
// total `Object` allocations, but just ~1400 unique JS stacks at allocation
// time. There's only ~200 allocation sites if we capture only the youngest
// stack frame.
//
// ## Security and Wrappers
//
// We save every frame on the stack, regardless of whether the `SavedStack`'s
// compartment's principals subsume the frame's compartment's principals or
// not. This gives us maximum flexibility down the line when accessing and
// presenting captured stacks, but at the price of some complication involved in
// preventing the leakage of privileged stack frames to unprivileged callers.
//
// When a `SavedFrame` method or accessor is called, we compare the caller's
// compartment's principals to each `SavedFrame`'s captured principals. We avoid
// using the usual `CallNonGenericMethod` and `nativeCall` machinery which
// enters the `SavedFrame` object's compartment before we can check these
// principals, because we need access to the original caller's compartment's
// principals (unlike other `CallNonGenericMethod` users) to determine what view
// of the stack to present. Instead, we take a similar approach to that used by
// DOM methods, and manually unwrap wrappers until we get the underlying
// `SavedFrame` object, find the first `SavedFrame` in its stack whose captured
// principals are subsumed by the caller's principals, access the reserved slots
// we care about, and then rewrap return values as necessary.
//
// Consider the following diagram:
//
//                                              Content Compartment
//                                    +---------------------------------------+
//                                    |                                       |
//                                    |           +------------------------+  |
//      Chrome Compartment            |           |                        |  |
//    +--------------------+          |           | SavedFrame C (content) |  |
//    |                    |          |           |                        |  |
//    |                  +--------------+         +------------------------+  |
//    |                  |              |                    ^                |
//    |     var x -----> | Xray Wrapper |-----.              |                |
//    |                  |              |     |              |                |
//    |                  +--------------+     |   +------------------------+  |
//    |                    |          |       |   |                        |  |
//    |                  +--------------+     |   | SavedFrame B (content) |  |
//    |                  |              |     |   |                        |  |
//    |     var y -----> | CCW (waived) |--.  |   +------------------------+  |
//    |                  |              |  |  |              ^                |
//    |                  +--------------+  |  |              |                |
//    |                    |          |    |  |              |                |
//    +--------------------+          |    |  |   +------------------------+  |
//                                    |    |  '-> |                        |  |
//                                    |    |      | SavedFrame A (chrome)  |  |
//                                    |    '----> |                        |  |
//                                    |           +------------------------+  |
//                                    |                      ^                |
//                                    |                      |                |
//                                    |           var z -----'                |
//                                    |                                       |
//                                    +---------------------------------------+
//
// CCW is a plain cross-compartment wrapper, yielded by waiving Xray vision. A
// is the youngest `SavedFrame` and represents a frame that was from the chrome
// compartment, while B and C are from frames from the content compartment. C is
// the oldest frame.
//
// Note that it is always safe to waive an Xray around a SavedFrame object,
// because SavedFrame objects and the SavedFrame prototype are always frozen you
// will never run untrusted code.
//
// Depending on who the caller is, the view of the stack will be different, and
// is summarized in the table below.
//
//    Var  | View
//    -----+------------
//    x    | A -> B -> C
//    y, z | B -> C
//
// In the case of x, the `SavedFrame` accessors are called with an Xray wrapper
// around the `SavedFrame` object as the `this` value, and the chrome
// compartment as the cx's current principals. Because the chrome compartment's
// principals subsume both itself and the content compartment's principals, x
// has the complete view of the stack.
//
// In the case of y, the cross-compartment machinery automatically enters the
// content compartment, and calls the `SavedFrame` accessors with the wrapped
// `SavedFrame` object as the `this` value. Because the cx's current compartment
// is the content compartment, and the content compartment's principals do not
// subsume the chrome compartment's principals, it can only see the B and C
// frames.
//
// In the case of z, the `SavedFrame` accessors are called with the `SavedFrame`
// object in the `this` value, and the content compartment as the cx's current
// compartment. Similar to the case of y, only the B and C frames are exposed
// because the cx's current compartment's principals do not subsume A's captured
// principals.

class SavedStacks {
  friend class SavedFrame;
  friend bool JS::ubi::ConstructSavedFrameStackSlow(
      JSContext* cx, JS::ubi::StackFrame& ubiFrame,
      MutableHandleObject outSavedFrameStack);

 public:
  SavedStacks()
      : frames(),
        bernoulliSeeded(false),
        bernoulli(1.0, 0x59fdad7f6b4cc573, 0x91adf38db96a9354),
        creatingSavedFrame(false) {}

  MOZ_MUST_USE bool saveCurrentStack(
      JSContext* cx, MutableHandleSavedFrame frame,
      JS::StackCapture&& capture = JS::StackCapture(JS::AllFrames()));
  MOZ_MUST_USE bool copyAsyncStack(JSContext* cx, HandleObject asyncStack,
                                   HandleString asyncCause,
                                   MutableHandleSavedFrame adoptedStack,
                                   const mozilla::Maybe<size_t>& maxFrameCount);
  void sweep();
  void trace(JSTracer* trc);
  uint32_t count();
  void clear();
  void chooseSamplingProbability(JS::Realm* realm);

  // Set the sampling random number generator's state to |state0| and
  // |state1|. One or the other must be non-zero. See the comments for
  // mozilla::non_crypto::XorShift128PlusRNG::setState for details.
  void setRNGState(uint64_t state0, uint64_t state1) {
    bernoulli.setRandomState(state0, state1);
  }

  size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf);

  // An alloction metadata builder that marks cells with the JavaScript stack
  // at which they were allocated.
  struct MetadataBuilder : public AllocationMetadataBuilder {
    MetadataBuilder() : AllocationMetadataBuilder() {}
    virtual JSObject* build(JSContext* cx, HandleObject obj,
                            AutoEnterOOMUnsafeRegion& oomUnsafe) const override;
  };

  static const MetadataBuilder metadataBuilder;

 private:
  SavedFrame::Set frames;
  bool bernoulliSeeded;
  mozilla::FastBernoulliTrial bernoulli;
  bool creatingSavedFrame;

  // Similar to mozilla::ReentrancyGuard, but instead of asserting against
  // reentrancy, just change the behavior of SavedStacks::saveCurrentStack to
  // return a nullptr SavedFrame.
  struct MOZ_RAII AutoReentrancyGuard {
    MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER;
    SavedStacks& stacks;

    explicit AutoReentrancyGuard(
        SavedStacks& stacks MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
        : stacks(stacks) {
      MOZ_GUARD_OBJECT_NOTIFIER_INIT;
      stacks.creatingSavedFrame = true;
    }

    ~AutoReentrancyGuard() { stacks.creatingSavedFrame = false; }
  };

  MOZ_MUST_USE bool insertFrames(JSContext* cx, MutableHandleSavedFrame frame,
                                 JS::StackCapture&& capture);
  MOZ_MUST_USE bool adoptAsyncStack(
      JSContext* cx, MutableHandleSavedFrame asyncStack, HandleAtom asyncCause,
      const mozilla::Maybe<size_t>& maxFrameCount);
  MOZ_MUST_USE bool checkForEvalInFramePrev(
      JSContext* cx, MutableHandle<SavedFrame::Lookup> lookup);
  SavedFrame* getOrCreateSavedFrame(JSContext* cx,
                                    Handle<SavedFrame::Lookup> lookup);
  SavedFrame* createFrameFromLookup(JSContext* cx,
                                    Handle<SavedFrame::Lookup> lookup);
  void setSamplingProbability(double probability);

  // Cache for memoizing PCToLineNumber lookups.

  struct PCKey {
    PCKey(JSScript* script, jsbytecode* pc) : script(script), pc(pc) {}

    HeapPtr<JSScript*> script;
    jsbytecode* pc;

    void trace(JSTracer* trc) { /* PCKey is weak. */
    }
    bool needsSweep() { return IsAboutToBeFinalized(&script); }
  };

 public:
  struct LocationValue {
    LocationValue() : source(nullptr), sourceId(0), line(0), column(0) {}
    LocationValue(JSAtom* source, uint32_t sourceId, size_t line,
                  uint32_t column)
        : source(source), sourceId(sourceId), line(line), column(column) {}

    void trace(JSTracer* trc) {
      TraceNullableEdge(trc, &source, "SavedStacks::LocationValue::source");
    }

    bool needsSweep() {
      // LocationValue is always held strongly, but in a weak map.
      // Assert that it has been marked already, but allow it to be
      // ejected from the map when the key dies.
      MOZ_ASSERT(source);
      MOZ_ASSERT(!IsAboutToBeFinalized(&source));
      return true;
    }

    HeapPtr<JSAtom*> source;
    uint32_t sourceId;
    size_t line;
    uint32_t column;
  };

 private:
  struct PCLocationHasher : public DefaultHasher<PCKey> {
    using ScriptPtrHasher = DefaultHasher<JSScript*>;
    using BytecodePtrHasher = DefaultHasher<jsbytecode*>;

    static HashNumber hash(const PCKey& key) {
      return mozilla::AddToHash(ScriptPtrHasher::hash(key.script),
                                BytecodePtrHasher::hash(key.pc));
    }

    static bool match(const PCKey& l, const PCKey& k) {
      return ScriptPtrHasher::match(l.script, k.script) &&
             BytecodePtrHasher::match(l.pc, k.pc);
    }
  };

  // We eagerly Atomize the script source stored in LocationValue because
  // wasm does not always have a JSScript and the source might not be
  // available when we need it later. However, since the JSScript does not
  // actually hold this atom, we have to trace it strongly to keep it alive.
  // Thus, it takes two GC passes to fully clean up this table: the first GC
  // removes the dead script; the second will clear out the source atom since
  // it is no longer held by the table.
  using PCLocationMap =
      GCHashMap<PCKey, LocationValue, PCLocationHasher, SystemAllocPolicy>;
  PCLocationMap pcLocationMap;

  MOZ_MUST_USE bool getLocation(JSContext* cx, const FrameIter& iter,
                                MutableHandle<LocationValue> locationp);
};

template <typename Wrapper>
struct WrappedPtrOperations<SavedStacks::LocationValue, Wrapper> {
  JSAtom* source() const { return loc().source; }
  uint32_t sourceId() const { return loc().sourceId; }
  size_t line() const { return loc().line; }
  uint32_t column() const { return loc().column; }

 private:
  const SavedStacks::LocationValue& loc() const {
    return static_cast<const Wrapper*>(this)->get();
  }
};

template <typename Wrapper>
struct MutableWrappedPtrOperations<SavedStacks::LocationValue, Wrapper>
    : public WrappedPtrOperations<SavedStacks::LocationValue, Wrapper> {
  void setSource(JSAtom* v) { loc().source = v; }
  void setSourceId(uint32_t v) { loc().sourceId = v; }
  void setLine(size_t v) { loc().line = v; }
  void setColumn(uint32_t v) { loc().column = v; }

 private:
  SavedStacks::LocationValue& loc() {
    return static_cast<Wrapper*>(this)->get();
  }
};

JS::UniqueChars BuildUTF8StackString(JSContext* cx, JSPrincipals* principals,
                                     HandleObject stack);

uint32_t FixupColumnForDisplay(uint32_t column);

} /* namespace js */

#endif /* vm_SavedStacks_h */