DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef vm_Interpreter_h
#define vm_Interpreter_h

/*
 * JS interpreter interface.
 */

#include "jspubtd.h"

#include "vm/Iteration.h"
#include "vm/Stack.h"

namespace js {

class EnvironmentIter;

/*
 * Convert null/undefined |thisv| into the current global object for the
 * compartment, and replace other primitives with boxed versions.
 */
extern bool BoxNonStrictThis(JSContext* cx, HandleValue thisv,
                             MutableHandleValue vp);

extern bool GetFunctionThis(JSContext* cx, AbstractFramePtr frame,
                            MutableHandleValue res);

extern void GetNonSyntacticGlobalThis(JSContext* cx, HandleObject envChain,
                                      MutableHandleValue res);

/*
 * numToSkip is the number of stack values the expression decompiler should skip
 * before it reaches |v|. If it's -1, the decompiler will search the stack.
 */
extern bool ReportIsNotFunction(JSContext* cx, HandleValue v, int numToSkip,
                                MaybeConstruct construct = NO_CONSTRUCT);

/* See ReportIsNotFunction comment for the meaning of numToSkip. */
extern JSObject* ValueToCallable(JSContext* cx, HandleValue v,
                                 int numToSkip = -1,
                                 MaybeConstruct construct = NO_CONSTRUCT);

/*
 * Call or construct arguments that are stored in rooted memory.
 *
 * NOTE: Any necessary |GetThisValue| computation must have been performed on
 *       |args.thisv()|, likely by the interpreter when pushing |this| onto the
 *       stack.  If you're not sure whether |GetThisValue| processing has been
 *       performed, use |Invoke|.
 */
extern bool InternalCallOrConstruct(JSContext* cx, const CallArgs& args,
                                    MaybeConstruct construct);

/*
 * These helpers take care of the infinite-recursion check necessary for
 * getter/setter calls.
 */
extern bool CallGetter(JSContext* cx, HandleValue thisv, HandleValue getter,
                       MutableHandleValue rval);

extern bool CallSetter(JSContext* cx, HandleValue thisv, HandleValue setter,
                       HandleValue rval);

// ES7 rev 0c1bd3004329336774cbc90de727cd0cf5f11e93
// 7.3.12 Call(F, V, argumentsList).
// All parameters are required, hopefully forcing callers to be careful not to
// (say) blindly pass callee as |newTarget| when a different value should have
// been passed.  Behavior is unspecified if any element of |args| isn't
// initialized.
//
// |rval| is written to *only* after |fval| and |thisv| have been consumed, so
// |rval| *may* alias either argument.
extern bool Call(JSContext* cx, HandleValue fval, HandleValue thisv,
                 const AnyInvokeArgs& args, MutableHandleValue rval);

inline bool Call(JSContext* cx, HandleValue fval, HandleValue thisv,
                 MutableHandleValue rval) {
  FixedInvokeArgs<0> args(cx);
  return Call(cx, fval, thisv, args, rval);
}

inline bool Call(JSContext* cx, HandleValue fval, JSObject* thisObj,
                 MutableHandleValue rval) {
  RootedValue thisv(cx, ObjectOrNullValue(thisObj));
  FixedInvokeArgs<0> args(cx);
  return Call(cx, fval, thisv, args, rval);
}

inline bool Call(JSContext* cx, HandleValue fval, HandleValue thisv,
                 HandleValue arg0, MutableHandleValue rval) {
  FixedInvokeArgs<1> args(cx);
  args[0].set(arg0);
  return Call(cx, fval, thisv, args, rval);
}

inline bool Call(JSContext* cx, HandleValue fval, JSObject* thisObj,
                 HandleValue arg0, MutableHandleValue rval) {
  RootedValue thisv(cx, ObjectOrNullValue(thisObj));
  FixedInvokeArgs<1> args(cx);
  args[0].set(arg0);
  return Call(cx, fval, thisv, args, rval);
}

inline bool Call(JSContext* cx, HandleValue fval, HandleValue thisv,
                 HandleValue arg0, HandleValue arg1, MutableHandleValue rval) {
  FixedInvokeArgs<2> args(cx);
  args[0].set(arg0);
  args[1].set(arg1);
  return Call(cx, fval, thisv, args, rval);
}

inline bool Call(JSContext* cx, HandleValue fval, JSObject* thisObj,
                 HandleValue arg0, HandleValue arg1, MutableHandleValue rval) {
  RootedValue thisv(cx, ObjectOrNullValue(thisObj));
  FixedInvokeArgs<2> args(cx);
  args[0].set(arg0);
  args[1].set(arg1);
  return Call(cx, fval, thisv, args, rval);
}

// Perform the above Call() operation using the given arguments.  Similar to
// ConstructFromStack() below, this handles |!IsCallable(args.calleev())|.
//
// This internal operation is intended only for use with arguments known to be
// on the JS stack, or at least in carefully-rooted memory. The vast majority of
// potential users should instead use InvokeArgs in concert with Call().
extern bool CallFromStack(JSContext* cx, const CallArgs& args);

// ES6 7.3.13 Construct(F, argumentsList, newTarget).  All parameters are
// required, hopefully forcing callers to be careful not to (say) blindly pass
// callee as |newTarget| when a different value should have been passed.
// Behavior is unspecified if any element of |args| isn't initialized.
//
// |rval| is written to *only* after |fval| and |newTarget| have been consumed,
// so |rval| *may* alias either argument.
//
// NOTE: As with the ES6 spec operation, it's the caller's responsibility to
//       ensure |fval| and |newTarget| are both |IsConstructor|.
extern bool Construct(JSContext* cx, HandleValue fval,
                      const AnyConstructArgs& args, HandleValue newTarget,
                      MutableHandleObject objp);

// Check that in the given |args|, which must be |args.isConstructing()|, that
// |IsConstructor(args.callee())|. If this is not the case, throw a TypeError.
// Otherwise, the user must ensure that, additionally,
// |IsConstructor(args.newTarget())|. (If |args| comes directly from the
// interpreter stack, as set up by JSOP_NEW, this comes for free.) Then perform
// a Construct() operation using |args|.
//
// This internal operation is intended only for use with arguments known to be
// on the JS stack, or at least in carefully-rooted memory. The vast majority of
// potential users should instead use ConstructArgs in concert with Construct().
extern bool ConstructFromStack(JSContext* cx, const CallArgs& args);

// Call Construct(fval, args, newTarget), but use the given |thisv| as |this|
// during construction of |fval|.
//
// |rval| is written to *only* after |fval|, |thisv|, and |newTarget| have been
// consumed, so |rval| *may* alias any of these arguments.
//
// This method exists only for very rare cases where a |this| was created
// caller-side for construction of |fval|: basically only for JITs using
// |CreateThis|.  If that's not you, use Construct()!
extern bool InternalConstructWithProvidedThis(JSContext* cx, HandleValue fval,
                                              HandleValue thisv,
                                              const AnyConstructArgs& args,
                                              HandleValue newTarget,
                                              MutableHandleValue rval);

/*
 * Executes a script with the given scopeChain/this. The 'type' indicates
 * whether this is eval code or global code. To support debugging, the
 * evalFrame parameter can point to an arbitrary frame in the context's call
 * stack to simulate executing an eval in that frame.
 */
extern bool ExecuteKernel(JSContext* cx, HandleScript script,
                          JSObject& scopeChain, const Value& newTargetVal,
                          AbstractFramePtr evalInFrame, Value* result);

/* Execute a script with the given scopeChain as global code. */
extern bool Execute(JSContext* cx, HandleScript script, JSObject& scopeChain,
                    Value* rval);

class ExecuteState;
class InvokeState;

// RunState is passed to RunScript and RunScript then either passes it to the
// interpreter or to the JITs. RunState contains all information we need to
// construct an interpreter or JIT frame.
class RunState {
 protected:
  enum Kind { Execute, Invoke };
  Kind kind_;

  RootedScript script_;

  explicit RunState(JSContext* cx, Kind kind, JSScript* script)
      : kind_(kind), script_(cx, script) {}

 public:
  bool isExecute() const { return kind_ == Execute; }
  bool isInvoke() const { return kind_ == Invoke; }

  ExecuteState* asExecute() const {
    MOZ_ASSERT(isExecute());
    return (ExecuteState*)this;
  }
  InvokeState* asInvoke() const {
    MOZ_ASSERT(isInvoke());
    return (InvokeState*)this;
  }

  JS::HandleScript script() const { return script_; }

  InterpreterFrame* pushInterpreterFrame(JSContext* cx);
  inline void setReturnValue(const Value& v);

 private:
  RunState(const RunState& other) = delete;
  RunState(const ExecuteState& other) = delete;
  RunState(const InvokeState& other) = delete;
  void operator=(const RunState& other) = delete;
};

// Eval or global script.
class ExecuteState : public RunState {
  RootedValue newTargetValue_;
  RootedObject envChain_;

  AbstractFramePtr evalInFrame_;
  Value* result_;

 public:
  ExecuteState(JSContext* cx, JSScript* script, const Value& newTargetValue,
               JSObject& envChain, AbstractFramePtr evalInFrame, Value* result)
      : RunState(cx, Execute, script),
        newTargetValue_(cx, newTargetValue),
        envChain_(cx, &envChain),
        evalInFrame_(evalInFrame),
        result_(result) {}

  Value newTarget() const { return newTargetValue_; }
  void setNewTarget(const Value& v) { newTargetValue_ = v; }
  Value* addressOfNewTarget() { return newTargetValue_.address(); }

  JSObject* environmentChain() const { return envChain_; }
  bool isDebuggerEval() const { return !!evalInFrame_; }

  InterpreterFrame* pushInterpreterFrame(JSContext* cx);

  void setReturnValue(const Value& v) {
    if (result_) {
      *result_ = v;
    }
  }
};

// Data to invoke a function.
class InvokeState final : public RunState {
  const CallArgs& args_;
  MaybeConstruct construct_;

 public:
  InvokeState(JSContext* cx, const CallArgs& args, MaybeConstruct construct)
      : RunState(cx, Invoke, args.callee().as<JSFunction>().nonLazyScript()),
        args_(args),
        construct_(construct) {}

  bool constructing() const { return construct_; }
  const CallArgs& args() const { return args_; }

  InterpreterFrame* pushInterpreterFrame(JSContext* cx);

  void setReturnValue(const Value& v) { args_.rval().set(v); }
};

inline void RunState::setReturnValue(const Value& v) {
  if (isInvoke()) {
    asInvoke()->setReturnValue(v);
  } else {
    asExecute()->setReturnValue(v);
  }
}

extern bool RunScript(JSContext* cx, RunState& state);

extern JSType TypeOfObject(JSObject* obj);

extern JSType TypeOfValue(const Value& v);

extern bool HasInstance(JSContext* cx, HandleObject obj, HandleValue v,
                        bool* bp);

// Unwind environment chain and iterator to match the scope corresponding to
// the given bytecode position.
extern void UnwindEnvironment(JSContext* cx, EnvironmentIter& ei,
                              jsbytecode* pc);

// Unwind all environments.
extern void UnwindAllEnvironmentsInFrame(JSContext* cx, EnvironmentIter& ei);

// Compute the pc needed to unwind the scope to the beginning of the block
// pointed to by the try note.
extern jsbytecode* UnwindEnvironmentToTryPc(JSScript* script,
                                            const JSTryNote* tn);

template <class TryNoteFilter>
class MOZ_STACK_CLASS TryNoteIter {
  RootedScript script_;
  uint32_t pcOffset_;
  TryNoteFilter isTryNoteValid_;

  const JSTryNote* tn_;
  const JSTryNote* tnEnd_;

  void settle() {
    for (; tn_ != tnEnd_; ++tn_) {
      if (!pcInRange()) {
        continue;
      }

      /*  Try notes cannot be disjoint. That is, we can't have
       *  multiple notes with disjoint pc ranges jumping to the same
       *  catch block. This interacts awkwardly with for-of loops, in
       *  which calls to IteratorClose emitted due to abnormal
       *  completion (break, throw, return) are emitted inline, at the
       *  source location of the break, throw, or return
       *  statement. For example:
       *
       *      for (x of iter) {
       *        try { return; } catch (e) { }
       *      }
       *
       *  From the try-note nesting's perspective, the IteratorClose
       *  resulting from |return| is covered by the inner try, when it
       *  should not be. If IteratorClose throws, we don't want to
       *  catch it here.
       *
       *  To make this work, we use JSTRY_FOR_OF_ITERCLOSE try-notes,
       *  which cover the range of the abnormal completion. When
       *  looking up trynotes, a for-of iterclose note indicates that
       *  the enclosing for-of has just been terminated. As a result,
       *  trynotes within that for-of are no longer active. When we
       *  see a for-of-iterclose, we skip ahead in the trynotes list
       *  until we see the matching for-of.
       *
       *  Breaking out of multiple levels of for-of at once is handled
       *  using nested FOR_OF_ITERCLOSE try-notes. Consider this code:
       *
       *  try {
       *    loop: for (i of first) {
       *      <A>
       *      for (j of second) {
       *        <B>
       *        break loop; // <C1/2>
       *      }
       *    }
       *  } catch {...}
       *
       *  Here is the mapping from various PCs to try-notes that we
       *  want to return:
       *
       *        A     B     C1     C2
       *        |     |     |      |
       *        |     |     |  [---|---]     ForOfIterClose (outer)
       *        |     | [---|------|---]     ForOfIterClose (inner)
       *        |  [--X-----|------|----]    ForOf (inner)
       *    [---X-----------X------|-----]   ForOf (outer)
       *  [------------------------X------]  TryCatch
       *
       *  - At A, we find the outer for-of.
       *  - At B, we find the inner for-of.
       *  - At C1, we find one FOR_OF_ITERCLOSE, skip past one FOR_OF, and find
       *    the outer for-of. (This occurs if an exception is thrown while
       *    closing the inner iterator.)
       *  - At C2, we find two FOR_OF_ITERCLOSE, skip past two FOR_OF, and reach
       *    the outer try-catch. (This occurs if an exception is thrown while
       *    closing the outer iterator.)
       */
      if (tn_->kind == JSTRY_FOR_OF_ITERCLOSE) {
        uint32_t iterCloseDepth = 1;
        do {
          ++tn_;
          MOZ_ASSERT(tn_ != tnEnd_);
          if (pcInRange()) {
            if (tn_->kind == JSTRY_FOR_OF_ITERCLOSE) {
              iterCloseDepth++;
            } else if (tn_->kind == JSTRY_FOR_OF) {
              iterCloseDepth--;
            }
          }
        } while (iterCloseDepth > 0);

        // Advance to trynote following the enclosing for-of.
        continue;
      }

      /*
       * We have a note that covers the exception pc but we must check
       * whether the interpreter has already executed the corresponding
       * handler. This is possible when the executed bytecode implements
       * break or return from inside a for-in loop.
       *
       * In this case the emitter generates additional [enditer] and [gosub]
       * opcodes to close all outstanding iterators and execute the finally
       * blocks. If such an [enditer] throws an exception, its pc can still
       * be inside several nested for-in loops and try-finally statements
       * even if we have already closed the corresponding iterators and
       * invoked the finally blocks.
       *
       * To address this, we make [enditer] always decrease the stack even
       * when its implementation throws an exception. Thus already executed
       * [enditer] and [gosub] opcodes will have try notes with the stack
       * depth exceeding the current one and this condition is what we use to
       * filter them out.
       */
      if (tn_ == tnEnd_ || isTryNoteValid_(tn_)) {
        return;
      }
    }
  }

 public:
  TryNoteIter(JSContext* cx, JSScript* script, jsbytecode* pc,
              TryNoteFilter isTryNoteValid)
      : script_(cx, script),
        pcOffset_(script->pcToOffset(pc)),
        isTryNoteValid_(isTryNoteValid) {
    // NOTE: The Span is a temporary so we can't use begin()/end()
    // here or the iterator will outlive the span.
    auto trynotes = script->trynotes();
    tn_ = trynotes.data();
    tnEnd_ = tn_ + trynotes.size();

    settle();
  }

  void operator++() {
    ++tn_;
    settle();
  }

  bool pcInRange() const {
    // This checks both ends of the range at once
    // because unsigned integers wrap on underflow.
    uint32_t offset = pcOffset_;
    uint32_t start = tn_->start;
    uint32_t length = tn_->length;
    return offset - start < length;
  }
  bool done() const { return tn_ == tnEnd_; }
  const JSTryNote* operator*() const { return tn_; }
};

bool HandleClosingGeneratorReturn(JSContext* cx, AbstractFramePtr frame,
                                  bool ok);

/************************************************************************/

bool ThrowOperation(JSContext* cx, HandleValue v);

bool GetProperty(JSContext* cx, HandleValue value, HandlePropertyName name,
                 MutableHandleValue vp);

bool GetValueProperty(JSContext* cx, HandleValue value, HandlePropertyName name,
                      MutableHandleValue vp);

JSObject* Lambda(JSContext* cx, HandleFunction fun, HandleObject parent);

JSObject* LambdaArrow(JSContext* cx, HandleFunction fun, HandleObject parent,
                      HandleValue newTargetv);

bool SetObjectElement(JSContext* cx, HandleObject obj, HandleValue index,
                      HandleValue value, bool strict);
bool SetObjectElement(JSContext* cx, HandleObject obj, HandleValue index,
                      HandleValue value, bool strict, HandleScript script,
                      jsbytecode* pc);

bool SetObjectElementWithReceiver(JSContext* cx, HandleObject obj,
                                  HandleValue index, HandleValue value,
                                  HandleValue receiver, bool strict);
bool SetObjectElement(JSContext* cx, HandleObject obj, HandleValue index,
                      HandleValue value, HandleValue receiver, bool strict,
                      HandleScript script, jsbytecode* pc);

bool InitElementArray(JSContext* cx, jsbytecode* pc, HandleObject obj,
                      uint32_t index, HandleValue value);

bool AddValues(JSContext* cx, MutableHandleValue lhs, MutableHandleValue rhs,
               MutableHandleValue res);

bool SubValues(JSContext* cx, MutableHandleValue lhs, MutableHandleValue rhs,
               MutableHandleValue res);

bool MulValues(JSContext* cx, MutableHandleValue lhs, MutableHandleValue rhs,
               MutableHandleValue res);

bool DivValues(JSContext* cx, MutableHandleValue lhs, MutableHandleValue rhs,
               MutableHandleValue res);

bool ModValues(JSContext* cx, MutableHandleValue lhs, MutableHandleValue rhs,
               MutableHandleValue res);

bool PowValues(JSContext* cx, MutableHandleValue lhs, MutableHandleValue rhs,
               MutableHandleValue res);

bool UrshValues(JSContext* cx, MutableHandleValue lhs, MutableHandleValue rhs,
                MutableHandleValue res);

bool AtomicIsLockFree(JSContext* cx, HandleValue in, int* out);

template <bool strict>
bool DeletePropertyJit(JSContext* ctx, HandleValue val, HandlePropertyName name,
                       bool* bv);

template <bool strict>
bool DeleteElementJit(JSContext* cx, HandleValue val, HandleValue index,
                      bool* bv);

JSObject* BindVarOperation(JSContext* cx, JSObject* envChain);

bool DefVarOperation(JSContext* cx, HandleObject envChain, HandleScript script,
                     jsbytecode* pc);

bool DefLexicalOperation(JSContext* cx, HandleObject envChain,
                         HandleScript script, jsbytecode* pc);

bool DefFunOperation(JSContext* cx, HandleScript script, HandleObject envChain,
                     HandleFunction funArg);

JSObject* SingletonObjectLiteralOperation(JSContext* cx, HandleScript script,
                                          jsbytecode* pc);

JSObject* ImportMetaOperation(JSContext* cx, HandleScript script);

JSObject* BuiltinProtoOperation(JSContext* cx, jsbytecode* pc);

bool ThrowMsgOperation(JSContext* cx, const unsigned errorNum);

bool GetAndClearException(JSContext* cx, MutableHandleValue res);

bool GetAndClearExceptionAndStack(JSContext* cx, MutableHandleValue res,
                                  MutableHandleSavedFrame stack);

bool DeleteNameOperation(JSContext* cx, HandlePropertyName name,
                         HandleObject scopeObj, MutableHandleValue res);

bool ImplicitThisOperation(JSContext* cx, HandleObject scopeObj,
                           HandlePropertyName name, MutableHandleValue res);

bool InitPropGetterSetterOperation(JSContext* cx, jsbytecode* pc,
                                   HandleObject obj, HandlePropertyName name,
                                   HandleObject val);

unsigned GetInitDataPropAttrs(JSOp op);

bool EnterWithOperation(JSContext* cx, AbstractFramePtr frame, HandleValue val,
                        Handle<WithScope*> scope);

bool InitElemGetterSetterOperation(JSContext* cx, jsbytecode* pc,
                                   HandleObject obj, HandleValue idval,
                                   HandleObject val);

bool SpreadCallOperation(JSContext* cx, HandleScript script, jsbytecode* pc,
                         HandleValue thisv, HandleValue callee, HandleValue arr,
                         HandleValue newTarget, MutableHandleValue res);

bool OptimizeSpreadCall(JSContext* cx, HandleValue arg, bool* optimized);

JSObject* NewObjectOperation(JSContext* cx, HandleScript script, jsbytecode* pc,
                             NewObjectKind newKind = GenericObject);

JSObject* NewObjectOperationWithTemplate(JSContext* cx,
                                         HandleObject templateObject);
JSObject* CreateThisWithTemplate(JSContext* cx, HandleObject templateObject);

JSObject* NewArrayOperation(JSContext* cx, HandleScript script, jsbytecode* pc,
                            uint32_t length,
                            NewObjectKind newKind = GenericObject);

JSObject* NewArrayOperationWithTemplate(JSContext* cx,
                                        HandleObject templateObject);

ArrayObject* NewArrayCopyOnWriteOperation(JSContext* cx, HandleScript script,
                                          jsbytecode* pc);

MOZ_MUST_USE bool GetImportOperation(JSContext* cx, HandleObject envChain,
                                     HandleScript script, jsbytecode* pc,
                                     MutableHandleValue vp);

void ReportRuntimeLexicalError(JSContext* cx, unsigned errorNumber,
                               HandleId id);

void ReportRuntimeLexicalError(JSContext* cx, unsigned errorNumber,
                               HandlePropertyName name);

void ReportRuntimeLexicalError(JSContext* cx, unsigned errorNumber,
                               HandleScript script, jsbytecode* pc);

void ReportInNotObjectError(JSContext* cx, HandleValue lref, int lindex,
                            HandleValue rref, int rindex);

// The parser only reports redeclarations that occurs within a single
// script. Due to the extensibility of the global lexical scope, we also check
// for redeclarations during runtime in JSOP_DEF{VAR,LET,CONST}.
void ReportRuntimeRedeclaration(JSContext* cx, HandlePropertyName name,
                                const char* redeclKind);

enum class CheckIsObjectKind : uint8_t {
  IteratorNext,
  IteratorReturn,
  IteratorThrow,
  GetIterator,
  GetAsyncIterator
};

bool ThrowCheckIsObject(JSContext* cx, CheckIsObjectKind kind);

enum class CheckIsCallableKind : uint8_t { IteratorReturn };

bool ThrowCheckIsCallable(JSContext* cx, CheckIsCallableKind kind);

bool ThrowUninitializedThis(JSContext* cx, AbstractFramePtr frame);

bool ThrowInitializedThis(JSContext* cx);

bool DefaultClassConstructor(JSContext* cx, unsigned argc, Value* vp);

bool Debug_CheckSelfHosted(JSContext* cx, HandleValue v);

bool CheckClassHeritageOperation(JSContext* cx, HandleValue heritage);

JSObject* ObjectWithProtoOperation(JSContext* cx, HandleValue proto);

JSObject* FunWithProtoOperation(JSContext* cx, HandleFunction fun,
                                HandleObject parent, HandleObject proto);

JSFunction* MakeDefaultConstructor(JSContext* cx, HandleScript script,
                                   jsbytecode* pc, HandleObject proto);

JSObject* HomeObjectSuperBase(JSContext* cx, HandleObject homeObj);

JSObject* SuperFunOperation(JSContext* cx, HandleObject callee);

bool SetPropertySuper(JSContext* cx, HandleObject obj, HandleValue receiver,
                      HandlePropertyName id, HandleValue rval, bool strict);

} /* namespace js */

#endif /* vm_Interpreter_h */