DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef vm_EnvironmentObject_h
#define vm_EnvironmentObject_h

#include "builtin/ModuleObject.h"
#include "frontend/NameAnalysisTypes.h"
#include "gc/Barrier.h"
#include "gc/WeakMap.h"
#include "js/GCHashTable.h"
#include "vm/ArgumentsObject.h"
#include "vm/GlobalObject.h"
#include "vm/JSContext.h"
#include "vm/JSObject.h"
#include "vm/ProxyObject.h"
#include "vm/Scope.h"

namespace js {

class ModuleObject;
typedef Handle<ModuleObject*> HandleModuleObject;

/*
 * Return a shape representing the static scope containing the variable
 * accessed by the ALIASEDVAR op at 'pc'.
 */
extern Shape* EnvironmentCoordinateToEnvironmentShape(JSScript* script,
                                                      jsbytecode* pc);

// Return the name being accessed by the given ALIASEDVAR op. This function is
// relatively slow so it should not be used on hot paths.
extern PropertyName* EnvironmentCoordinateNameSlow(JSScript* script,
                                                   jsbytecode* pc);

/*** Environment objects ****************************************************/

// clang-format off
/*
 * [SMDOC] Environment Objects
 *
 * About environments
 * ------------------
 *
 * (See also: ecma262 rev c7952de (19 Aug 2016) 8.1 "Lexical Environments".)
 *
 * Scoping in ES is specified in terms of "Environment Records". There's a
 * global Environment Record per realm, and a new Environment Record is created
 * whenever control enters a function, block, or other scope.
 *
 * A "Lexical Environment" is a list of nested Environment Records, innermost
 * first: everything that's in scope. Throughout SpiderMonkey, "environment"
 * means a Lexical Environment.
 *
 * N.B.: "Scope" means something different: a static scope, the compile-time
 * analogue of an environment. See Scope.h.
 *
 * How SpiderMonkey represents environments
 * ----------------------------------------
 *
 * Some environments are stored as JSObjects. Several kinds of objects
 * represent environments:
 *
 *   JSObject
 *    |
 *    +--NativeObject
 *    |   |
 *    |   +--EnvironmentObject             Engine-internal environment
 *    |   |   |
 *    |   |   +--CallObject                    Environment of entire function
 *    |   |   |
 *    |   |   +--ModuleEnvironmentObject       Module top-level environment
 *    |   |   |
 *    |   |   +--LexicalEnvironmentObject      Lexical (block) environment
 *    |   |   |   |
 *    |   |   |   +--NamedLambdaObject             Environment for `(function f(){...})`
 *    |   |   |                                        containing only a binding for `f`
 *    |   |   +--VarEnvironmentObject          See VarScope in Scope.h.
 *    |   |   |
 *    |   |   +--WithEnvironmentObject         Presents object properties as bindings
 *    |   |   |
 *    |   |   +--NonSyntacticVariablesObject   See "Non-syntactic environments" below
 *    |   |
 *    |   +--GlobalObject                  The global environment
 *    |
 *    +--ProxyObject
 *        |
 *        +--DebugEnvironmentProxy         Environment for debugger eval-in-frame
 *
 * EnvironmentObjects are technically real JSObjects but only belong on the
 * environment chain (that is, fp->environmentChain() or fun->environment()).
 * They are never exposed to scripts.
 *
 * Note that reserved slots in any base classes shown above are fixed for all
 * derived classes. So e.g. EnvironmentObject::enclosingEnvironment() can
 * simply access a fixed slot without further dynamic type information.
 *
 * When the current environment is represented by an object, the stack frame
 * has a pointer to that object (see AbstractFramePtr::environmentChain()).
 * However, that isn't always the case. Where possible, we store binding values
 * in JS stack slots. For block and function scopes where all bindings can be
 * stored in stack slots, nothing is allocated in the heap; there is no
 * environment object.
 *
 * Full information about the environment chain is always recoverable:
 * EnvironmentIter can do it, and we construct a fake environment for debugger
 * eval-in-frame (see "Debug environment objects" below).
 *
 * Syntactic Environments
 * ----------------------
 *
 * Environments may be syntactic, i.e., corresponding to source text, or
 * non-syntactic, i.e., specially created by embedding. The distinction is
 * necessary to maintain invariants about the environment chain: non-syntactic
 * environments may not occur in arbitrary positions in the chain.
 *
 * CallObject, ModuleEnvironmentObject, and LexicalEnvironmentObject always
 * represent syntactic environments. (CallObject is considered syntactic even
 * when it's used as the scope of strict eval code.) WithEnvironmentObject is
 * syntactic when it's used to represent the scope of a `with` block.
 *
 *
 * Non-syntactic Environments
 * --------------------------
 *
 * A non-syntactic environment is one that was not created due to JS source
 * code. On the scope chain, a single NonSyntactic GlobalScope maps to 0+
 * non-syntactic environment objects. This is contrasted with syntactic
 * environments, where each scope corresponds to 0 or 1 environment object.
 *
 * There are 3 kinds of dynamic environment objects:
 *
 * 1. WithEnvironmentObject
 *
 *    When the embedding compiles or executes a script, it has the option to
 *    pass in a vector of objects to be used as the initial env chain, ordered
 *    from outermost env to innermost env. Each of those objects is wrapped by
 *    a WithEnvironmentObject.
 *
 *    The innermost object passed in by the embedding becomes a qualified
 *    variables object that captures 'var' bindings. That is, it wraps the
 *    holder object of 'var' bindings.
 *
 *    Does not hold 'let' or 'const' bindings.
 *
 * 2. NonSyntacticVariablesObject
 *
 *    When the embedding wants qualified 'var' bindings and unqualified
 *    bareword assignments to go on a different object than the global
 *    object. While any object can be made into a qualified variables object,
 *    only the GlobalObject and NonSyntacticVariablesObject are considered
 *    unqualified variables objects.
 *
 *    Unlike WithEnvironmentObjects that delegate to the object they wrap,
 *    this object is itself the holder of 'var' bindings.
 *
 *    Does not hold 'let' or 'const' bindings.
 *
 * 3. LexicalEnvironmentObject
 *
 *    Each non-syntactic object used as a qualified variables object needs to
 *    enclose a non-syntactic LexicalEnvironmentObject to hold 'let' and
 *    'const' bindings. There is a bijection per realm between the non-syntactic
 *    variables objects and their non-syntactic LexicalEnvironmentObjects.
 *
 *    Does not hold 'var' bindings.
 *
 * The embedding (Gecko) uses non-syntactic envs for various things, some of
 * which are detailed below. All env chain listings below are, from top to
 * bottom, outermost to innermost.
 *
 * A. Component loading
 *
 * Components may be loaded in a shared global mode where most JSMs share a
 * single global in order to save on memory and avoid CCWs. To support this, a
 * NonSyntacticVariablesObject is used for each JSM to provide a basic form of
 * isolation. They have the following env chain:
 *
 *   BackstagePass global
 *       |
 *   LexicalEnvironmentObject[this=global]
 *       |
 *   NonSyntacticVariablesObject
 *       |
 *   LexicalEnvironmentObject[this=nsvo]
 *
 * B.1 Subscript loading
 *
 * Subscripts may be loaded into a target object and it's associated global.
 * They have the following env chain:
 *
 *   Target object's global
 *       |
 *   LexicalEnvironmentObject[this=global]
 *       |
 *   WithEnvironmentObject wrapping target
 *       |
 *   LexicalEnvironmentObject[this=target]
 *
 * B.2 Subscript loading (Shared-global JSM)
 *
 * The target object of a subscript load may be in a JSM with a shared global,
 * in which case we will also have the NonSyntacticVariablesObject on the
 * chain.
 *
 *   Target object's global
 *       |
 *   LexicalEnvironmentObject[this=global]
 *       |
 *   NonSyntacticVariablesObject
 *       |
 *   LexicalEnvironmentObject[this=nsvo]
 *       |
 *   WithEnvironmentObject wrapping target
 *       |
 *   LexicalEnvironmentObject[this=target]
 *
 * D. Frame scripts
 *
 * XUL frame scripts are loaded in the same global as components, with a
 * NonSyntacticVariablesObject as a "polluting global", and a with environment
 * wrapping a message manager object. This is done exclusively in
 * js::ExecuteInScopeChainAndReturnNewScope.
 *
 *   BackstagePass global
 *       |
 *   LexicalEnvironmentObject[this=global]
 *       |
 *   NonSyntacticVariablesObject
 *       |
 *   WithEnvironmentObject wrapping messageManager
 *       |
 *   LexicalEnvironmentObject[this=messageManager]
 *
 * D. XBL and DOM event handlers
 *
 * XBL methods are compiled as functions with XUL elements on the env chain,
 * and DOM event handlers are compiled as functions with HTML elements on the
 * env chain. For a chain of elements e0,e1,...:
 *
 *      ...
 *       |
 *   WithEnvironmentObject wrapping e1
 *       |
 *   WithEnvironmentObject wrapping e0
 *       |
 *   LexicalEnvironmentObject
 *
 */
// clang-format on

class EnvironmentObject : public NativeObject {
 protected:
  // The enclosing environment. Either another EnvironmentObject, a
  // GlobalObject, or a non-syntactic environment object.
  static const uint32_t ENCLOSING_ENV_SLOT = 0;

  inline void setAliasedBinding(JSContext* cx, uint32_t slot, const Value& v);

  void setEnclosingEnvironment(JSObject* enclosing) {
    setReservedSlot(ENCLOSING_ENV_SLOT, ObjectOrNullValue(enclosing));
  }

 public:
  // Since every env chain terminates with a global object, whether
  // GlobalObject or a non-syntactic one, and since those objects do not
  // derive EnvironmentObject (they have completely different layouts), the
  // enclosing environment of an EnvironmentObject is necessarily non-null.
  JSObject& enclosingEnvironment() const {
    return getReservedSlot(ENCLOSING_ENV_SLOT).toObject();
  }

  void initEnclosingEnvironment(JSObject* enclosing) {
    initReservedSlot(ENCLOSING_ENV_SLOT, ObjectOrNullValue(enclosing));
  }

  static bool nonExtensibleIsFixedSlot(EnvironmentCoordinate ec) {
    // For non-extensible environment objects isFixedSlot(slot) is equivalent to
    // slot < MAX_FIXED_SLOTS.
    return ec.slot() < MAX_FIXED_SLOTS;
  }
  static size_t nonExtensibleDynamicSlotIndex(EnvironmentCoordinate ec) {
    MOZ_ASSERT(!nonExtensibleIsFixedSlot(ec));
    return ec.slot() - MAX_FIXED_SLOTS;
  }

  // Get or set a name contained in this environment.
  inline const Value& aliasedBinding(EnvironmentCoordinate ec);

  const Value& aliasedBinding(const BindingIter& bi) {
    MOZ_ASSERT(bi.location().kind() == BindingLocation::Kind::Environment);
    return getSlot(bi.location().slot());
  }

  inline void setAliasedBinding(JSContext* cx, EnvironmentCoordinate ec,
                                const Value& v);

  inline void setAliasedBinding(JSContext* cx, const BindingIter& bi,
                                const Value& v);

  // For JITs.
  static size_t offsetOfEnclosingEnvironment() {
    return getFixedSlotOffset(ENCLOSING_ENV_SLOT);
  }

  static uint32_t enclosingEnvironmentSlot() { return ENCLOSING_ENV_SLOT; }
};

class CallObject : public EnvironmentObject {
 protected:
  static const uint32_t CALLEE_SLOT = 1;

  static CallObject* create(JSContext* cx, HandleScript script,
                            HandleFunction callee, HandleObject enclosing);

 public:
  static const uint32_t RESERVED_SLOTS = 2;
  static const JSClass class_;

  /* These functions are internal and are exposed only for JITs. */

  /*
   * Construct a bare-bones call object given a shape and a group.
   * The call object must be further initialized to be usable.
   */
  static CallObject* create(JSContext* cx, HandleShape shape,
                            HandleObjectGroup group);

  static CallObject* createTemplateObject(JSContext* cx, HandleScript script,
                                          HandleObject enclosing,
                                          gc::InitialHeap heap);

  static CallObject* create(JSContext* cx, HandleFunction callee,
                            HandleObject enclosing);
  static CallObject* create(JSContext* cx, AbstractFramePtr frame);

  static CallObject* createHollowForDebug(JSContext* cx, HandleFunction callee);

  /*
   * When an aliased formal (var accessed by nested closures) is also
   * aliased by the arguments object, it must of course exist in one
   * canonical location and that location is always the CallObject. For this
   * to work, the ArgumentsObject stores special MagicValue in its array for
   * forwarded-to-CallObject variables. This MagicValue's payload is the
   * slot of the CallObject to access.
   */
  const Value& aliasedFormalFromArguments(const Value& argsValue) {
    return getSlot(ArgumentsObject::SlotFromMagicScopeSlotValue(argsValue));
  }
  inline void setAliasedFormalFromArguments(JSContext* cx,
                                            const Value& argsValue, jsid id,
                                            const Value& v);

  JSFunction& callee() const {
    return getReservedSlot(CALLEE_SLOT).toObject().as<JSFunction>();
  }

  /* For jit access. */
  static size_t offsetOfCallee() { return getFixedSlotOffset(CALLEE_SLOT); }

  static size_t calleeSlot() { return CALLEE_SLOT; }
};

class VarEnvironmentObject : public EnvironmentObject {
  static const uint32_t SCOPE_SLOT = 1;

  static VarEnvironmentObject* create(JSContext* cx, HandleShape shape,
                                      HandleObject enclosing,
                                      gc::InitialHeap heap);

  void initScope(Scope* scope) {
    initReservedSlot(SCOPE_SLOT, PrivateGCThingValue(scope));
  }

 public:
  static const uint32_t RESERVED_SLOTS = 2;
  static const JSClass class_;

  static VarEnvironmentObject* create(JSContext* cx, HandleScope scope,
                                      AbstractFramePtr frame);
  static VarEnvironmentObject* createHollowForDebug(JSContext* cx,
                                                    Handle<VarScope*> scope);

  Scope& scope() const {
    Value v = getReservedSlot(SCOPE_SLOT);
    MOZ_ASSERT(v.isPrivateGCThing());
    Scope& s = *static_cast<Scope*>(v.toGCThing());
    MOZ_ASSERT(s.is<VarScope>() || s.is<EvalScope>());
    return s;
  }

  bool isForEval() const { return scope().is<EvalScope>(); }
};

class ModuleEnvironmentObject : public EnvironmentObject {
  static const uint32_t MODULE_SLOT = 1;

  static const ObjectOps objectOps_;
  static const JSClassOps classOps_;

 public:
  static const JSClass class_;

  static const uint32_t RESERVED_SLOTS = 2;

  static ModuleEnvironmentObject* create(JSContext* cx,
                                         HandleModuleObject module);
  ModuleObject& module() const;
  IndirectBindingMap& importBindings() const;

  bool createImportBinding(JSContext* cx, HandleAtom importName,
                           HandleModuleObject module, HandleAtom exportName);

  bool hasImportBinding(HandlePropertyName name);

  bool lookupImport(jsid name, ModuleEnvironmentObject** envOut,
                    Shape** shapeOut);

  void fixEnclosingEnvironmentAfterRealmMerge(GlobalObject& global);

 private:
  static bool lookupProperty(JSContext* cx, HandleObject obj, HandleId id,
                             MutableHandleObject objp,
                             MutableHandle<PropertyResult> propp);
  static bool hasProperty(JSContext* cx, HandleObject obj, HandleId id,
                          bool* foundp);
  static bool getProperty(JSContext* cx, HandleObject obj, HandleValue receiver,
                          HandleId id, MutableHandleValue vp);
  static bool setProperty(JSContext* cx, HandleObject obj, HandleId id,
                          HandleValue v, HandleValue receiver,
                          JS::ObjectOpResult& result);
  static bool getOwnPropertyDescriptor(JSContext* cx, HandleObject obj,
                                       HandleId id,
                                       MutableHandle<PropertyDescriptor> desc);
  static bool deleteProperty(JSContext* cx, HandleObject obj, HandleId id,
                             ObjectOpResult& result);
  static bool newEnumerate(JSContext* cx, HandleObject obj,
                           MutableHandleIdVector properties,
                           bool enumerableOnly);
};

typedef Rooted<ModuleEnvironmentObject*> RootedModuleEnvironmentObject;
typedef Handle<ModuleEnvironmentObject*> HandleModuleEnvironmentObject;
typedef MutableHandle<ModuleEnvironmentObject*>
    MutableHandleModuleEnvironmentObject;

class WasmInstanceEnvironmentObject : public EnvironmentObject {
  // Currently WasmInstanceScopes do not use their scopes in a
  // meaningful way. However, it is an invariant of DebugEnvironments that
  // environments kept in those maps have live scopes, thus this strong
  // reference.
  static const uint32_t SCOPE_SLOT = 1;

 public:
  static const JSClass class_;

  static const uint32_t RESERVED_SLOTS = 2;

  static WasmInstanceEnvironmentObject* createHollowForDebug(
      JSContext* cx, Handle<WasmInstanceScope*> scope);
  WasmInstanceScope& scope() const {
    Value v = getReservedSlot(SCOPE_SLOT);
    MOZ_ASSERT(v.isPrivateGCThing());
    return *static_cast<WasmInstanceScope*>(v.toGCThing());
  }
};

class WasmFunctionCallObject : public EnvironmentObject {
  // Currently WasmFunctionCallObjects do not use their scopes in a
  // meaningful way. However, it is an invariant of DebugEnvironments that
  // environments kept in those maps have live scopes, thus this strong
  // reference.
  static const uint32_t SCOPE_SLOT = 1;

 public:
  static const JSClass class_;

  static const uint32_t RESERVED_SLOTS = 2;

  static WasmFunctionCallObject* createHollowForDebug(
      JSContext* cx, HandleObject enclosing, Handle<WasmFunctionScope*> scope);
  WasmFunctionScope& scope() const {
    Value v = getReservedSlot(SCOPE_SLOT);
    MOZ_ASSERT(v.isPrivateGCThing());
    return *static_cast<WasmFunctionScope*>(v.toGCThing());
  }
};

class LexicalEnvironmentObject : public EnvironmentObject {
  // Global and non-syntactic lexical environments need to store a 'this'
  // value and all other lexical environments have a fixed shape and store a
  // backpointer to the LexicalScope.
  //
  // Since the two sets are disjoint, we only use one slot to save space.
  static const unsigned THIS_VALUE_OR_SCOPE_SLOT = 1;

 public:
  static const unsigned RESERVED_SLOTS = 2;
  static const JSClass class_;

 private:
  static LexicalEnvironmentObject* createTemplateObject(JSContext* cx,
                                                        HandleShape shape,
                                                        HandleObject enclosing,
                                                        gc::InitialHeap heap);

  void initThisValue(JSObject* obj) {
    MOZ_ASSERT(isGlobal() || !isSyntactic());
    initReservedSlot(THIS_VALUE_OR_SCOPE_SLOT, GetThisValue(obj));
  }

  void initScopeUnchecked(LexicalScope* scope) {
    initReservedSlot(THIS_VALUE_OR_SCOPE_SLOT, PrivateGCThingValue(scope));
  }

  void initScope(LexicalScope* scope) {
    MOZ_ASSERT(!isGlobal());
    MOZ_ASSERT(isSyntactic());
    initScopeUnchecked(scope);
  }

 public:
  static LexicalEnvironmentObject* create(JSContext* cx,
                                          Handle<LexicalScope*> scope,
                                          HandleObject enclosing,
                                          gc::InitialHeap heap);
  static LexicalEnvironmentObject* createForFrame(JSContext* cx,
                                                  Handle<LexicalScope*> scope,
                                                  AbstractFramePtr frame);
  static LexicalEnvironmentObject* createGlobal(JSContext* cx,
                                                Handle<GlobalObject*> global);
  static LexicalEnvironmentObject* createNonSyntactic(JSContext* cx,
                                                      HandleObject enclosing,
                                                      HandleObject thisv);
  static LexicalEnvironmentObject* createHollowForDebug(
      JSContext* cx, Handle<LexicalScope*> scope);

  // Create a new LexicalEnvironmentObject with the same enclosing env and
  // variable values as this.
  static LexicalEnvironmentObject* clone(JSContext* cx,
                                         Handle<LexicalEnvironmentObject*> env);

  // Create a new LexicalEnvironmentObject with the same enclosing env as
  // this, with all variables uninitialized.
  static LexicalEnvironmentObject* recreate(
      JSContext* cx, Handle<LexicalEnvironmentObject*> env);

  // For non-extensible lexical environments, the LexicalScope that created
  // this environment. Otherwise asserts.
  LexicalScope& scope() const {
    Value v = getReservedSlot(THIS_VALUE_OR_SCOPE_SLOT);
    MOZ_ASSERT(!isExtensible() && v.isPrivateGCThing());
    return *static_cast<LexicalScope*>(v.toGCThing());
  }

  // Is this the global lexical scope?
  bool isGlobal() const { return enclosingEnvironment().is<GlobalObject>(); }

  GlobalObject& global() const {
    return enclosingEnvironment().as<GlobalObject>();
  }

  void setWindowProxyThisValue(JSObject* obj);

  // Global and non-syntactic lexical scopes are extensible. All other
  // lexical scopes are not.
  bool isExtensible() const;

  // Is this a syntactic (i.e. corresponds to a source text) lexical
  // environment?
  bool isSyntactic() const { return !isExtensible() || isGlobal(); }

  // For extensible lexical environments, the 'this' value for its
  // scope. Otherwise asserts.
  Value thisValue() const;

  static constexpr size_t offsetOfThisValueOrScopeSlot() {
    return getFixedSlotOffset(THIS_VALUE_OR_SCOPE_SLOT);
  }
};

class NamedLambdaObject : public LexicalEnvironmentObject {
  static NamedLambdaObject* create(JSContext* cx, HandleFunction callee,
                                   HandleFunction replacement,
                                   HandleObject enclosing,
                                   gc::InitialHeap heap);

 public:
  static NamedLambdaObject* createTemplateObject(JSContext* cx,
                                                 HandleFunction callee,
                                                 gc::InitialHeap heap);

  static NamedLambdaObject* create(JSContext* cx, AbstractFramePtr frame);

  // For JITs.
  static size_t lambdaSlot();
};

// A non-syntactic dynamic scope object that captures non-lexical
// bindings. That is, a scope object that captures both qualified var
// assignments and unqualified bareword assignments. Its parent is always the
// global lexical environment.
//
// This is used in ExecuteInGlobalAndReturnScope and sits in front of the
// global scope to store 'var' bindings, and to store fresh properties created
// by assignments to undeclared variables that otherwise would have gone on
// the global object.
class NonSyntacticVariablesObject : public EnvironmentObject {
 public:
  static const unsigned RESERVED_SLOTS = 1;
  static const JSClass class_;

  static NonSyntacticVariablesObject* create(JSContext* cx);
};

extern bool CreateNonSyntacticEnvironmentChain(JSContext* cx,
                                               JS::HandleObjectVector envChain,
                                               MutableHandleObject env,
                                               MutableHandleScope scope);

// With environment objects on the run-time environment chain.
class WithEnvironmentObject : public EnvironmentObject {
  static const unsigned OBJECT_SLOT = 1;
  static const unsigned THIS_SLOT = 2;
  static const unsigned SCOPE_SLOT = 3;

 public:
  static const unsigned RESERVED_SLOTS = 4;
  static const JSClass class_;

  static WithEnvironmentObject* create(JSContext* cx, HandleObject object,
                                       HandleObject enclosing,
                                       Handle<WithScope*> scope);
  static WithEnvironmentObject* createNonSyntactic(JSContext* cx,
                                                   HandleObject object,
                                                   HandleObject enclosing);

  /* Return the 'o' in 'with (o)'. */
  JSObject& object() const;

  /* Return object for GetThisValue. */
  JSObject* withThis() const;

  /*
   * Return whether this object is a syntactic with object.  If not, this is
   * a With object we inserted between the outermost syntactic scope and the
   * global object to wrap the environment chain someone explicitly passed
   * via JSAPI to CompileFunction or script evaluation.
   */
  bool isSyntactic() const;

  // For syntactic with environment objects, the with scope.
  WithScope& scope() const;

  static inline size_t objectSlot() { return OBJECT_SLOT; }

  static inline size_t thisSlot() { return THIS_SLOT; }
};

// Internal scope object used by JSOP_BINDNAME upon encountering an
// uninitialized lexical slot or an assignment to a 'const' binding.
//
// ES6 lexical bindings cannot be accessed in any way (throwing
// ReferenceErrors) until initialized. Normally, NAME operations
// unconditionally check for uninitialized lexical slots. When getting or
// looking up names, this can be done without slowing down normal operations
// on the return value. When setting names, however, we do not want to pollute
// all set-property paths with uninitialized lexical checks. For setting names
// (i.e. JSOP_SETNAME), we emit an accompanying, preceding JSOP_BINDNAME which
// finds the right scope on which to set the name. Moreover, when the name on
// the scope is an uninitialized lexical, we cannot throw eagerly, as the spec
// demands that the error be thrown after evaluating the RHS of
// assignments. Instead, this sentinel scope object is pushed on the stack.
// Attempting to access anything on this scope throws the appropriate
// ReferenceError.
//
// ES6 'const' bindings induce a runtime error when assigned to outside
// of initialization, regardless of strictness.
class RuntimeLexicalErrorObject : public EnvironmentObject {
  static const unsigned ERROR_SLOT = 1;

 public:
  static const unsigned RESERVED_SLOTS = 2;
  static const JSClass class_;

  static RuntimeLexicalErrorObject* create(JSContext* cx,
                                           HandleObject enclosing,
                                           unsigned errorNumber);

  unsigned errorNumber() { return getReservedSlot(ERROR_SLOT).toInt32(); }
};

/****************************************************************************/

// A environment iterator describes the active environments starting from an
// environment, scope pair. This pair may be derived from the current point of
// execution in a frame. If derived in such a fashion, the EnvironmentIter
// tracks whether the current scope is within the extent of this initial
// frame.  Here, "frame" means a single activation of: a function, eval, or
// global code.
class MOZ_RAII EnvironmentIter {
  Rooted<ScopeIter> si_;
  RootedObject env_;
  AbstractFramePtr frame_;

  void incrementScopeIter();
  void settle();

  // No value semantics.
  EnvironmentIter(const EnvironmentIter& ei) = delete;

 public:
  // Constructing from a copy of an existing EnvironmentIter.
  EnvironmentIter(JSContext* cx,
                  const EnvironmentIter& ei MOZ_GUARD_OBJECT_NOTIFIER_PARAM);

  // Constructing from an environment, scope pair. All environments
  // considered not to be withinInitialFrame, since no frame is given.
  EnvironmentIter(JSContext* cx, JSObject* env,
                  Scope* scope MOZ_GUARD_OBJECT_NOTIFIER_PARAM);

  // Constructing from a frame. Places the EnvironmentIter on the innermost
  // environment at pc.
  EnvironmentIter(JSContext* cx, AbstractFramePtr frame,
                  jsbytecode* pc MOZ_GUARD_OBJECT_NOTIFIER_PARAM);

  // Constructing from an environment, scope and frame. The frame is given
  // to initialize to proper enclosing environment/scope.
  EnvironmentIter(JSContext* cx, JSObject* env, Scope* scope,
                  AbstractFramePtr frame MOZ_GUARD_OBJECT_NOTIFIER_PARAM);

  bool done() const { return si_.done(); }

  explicit operator bool() const { return !done(); }

  void operator++(int) {
    if (hasAnyEnvironmentObject()) {
      env_ = &env_->as<EnvironmentObject>().enclosingEnvironment();
    }
    incrementScopeIter();
    settle();
  }

  EnvironmentIter& operator++() {
    operator++(1);
    return *this;
  }

  // If done():
  JSObject& enclosingEnvironment() const;

  // If !done():
  bool hasNonSyntacticEnvironmentObject() const;

  bool hasSyntacticEnvironment() const { return si_.hasSyntacticEnvironment(); }

  bool hasAnyEnvironmentObject() const {
    return hasNonSyntacticEnvironmentObject() || hasSyntacticEnvironment();
  }

  EnvironmentObject& environment() const {
    MOZ_ASSERT(hasAnyEnvironmentObject());
    return env_->as<EnvironmentObject>();
  }

  Scope& scope() const { return *si_.scope(); }

  Scope* maybeScope() const {
    if (si_) {
      return si_.scope();
    }
    return nullptr;
  }

  JSFunction& callee() const { return env_->as<CallObject>().callee(); }

  bool withinInitialFrame() const { return !!frame_; }

  AbstractFramePtr initialFrame() const {
    MOZ_ASSERT(withinInitialFrame());
    return frame_;
  }

  AbstractFramePtr maybeInitialFrame() const { return frame_; }

  MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
};

// The key in MissingEnvironmentMap. For live frames, maps live frames to
// their synthesized environments. For completely optimized-out environments,
// maps the Scope to their synthesized environments. The env we synthesize for
// Scopes are read-only, and we never use their parent links, so they don't
// need to be distinct.
//
// That is, completely optimized out environments can't be distinguished by
// frame. Note that even if the frame corresponding to the Scope is live on
// the stack, it is unsound to synthesize an environment from that live
// frame. In other words, the provenance of the environment chain is from
// allocated closures (i.e., allocation sites) and is irrecoverable from
// simple stack inspection (i.e., call sites).
class MissingEnvironmentKey {
  friend class LiveEnvironmentVal;

  AbstractFramePtr frame_;
  Scope* scope_;

 public:
  explicit MissingEnvironmentKey(const EnvironmentIter& ei)
      : frame_(ei.maybeInitialFrame()), scope_(ei.maybeScope()) {}

  MissingEnvironmentKey(AbstractFramePtr frame, Scope* scope)
      : frame_(frame), scope_(scope) {}

  AbstractFramePtr frame() const { return frame_; }
  Scope* scope() const { return scope_; }

  void updateScope(Scope* scope) { scope_ = scope; }
  void updateFrame(AbstractFramePtr frame) { frame_ = frame; }

  // For use as hash policy.
  typedef MissingEnvironmentKey Lookup;
  static HashNumber hash(MissingEnvironmentKey sk);
  static bool match(MissingEnvironmentKey sk1, MissingEnvironmentKey sk2);
  bool operator!=(const MissingEnvironmentKey& other) const {
    return frame_ != other.frame_ || scope_ != other.scope_;
  }
  static void rekey(MissingEnvironmentKey& k,
                    const MissingEnvironmentKey& newKey) {
    k = newKey;
  }
};

// The value in LiveEnvironmentMap, mapped from by live environment objects.
class LiveEnvironmentVal {
  friend class DebugEnvironments;
  friend class MissingEnvironmentKey;

  AbstractFramePtr frame_;
  HeapPtr<Scope*> scope_;

  static void staticAsserts();

 public:
  explicit LiveEnvironmentVal(const EnvironmentIter& ei)
      : frame_(ei.initialFrame()), scope_(ei.maybeScope()) {}

  AbstractFramePtr frame() const { return frame_; }
  Scope* scope() const { return scope_; }

  void updateFrame(AbstractFramePtr frame) { frame_ = frame; }

  bool needsSweep();
};

/****************************************************************************/

/*
 * Debug environment objects
 *
 * The debugger effectively turns every opcode into a potential direct eval.
 * Naively, this would require creating a EnvironmentObject for every
 * call/block scope and using JSOP_GETALIASEDVAR for every access. To optimize
 * this, the engine assumes there is no debugger and optimizes scope access
 * and creation accordingly. When the debugger wants to perform an unexpected
 * eval-in-frame (or other, similar environment-requiring operations),
 * fp->environmentChain is now incomplete.
 *
 * To resolve this, the debugger first calls GetDebugEnvironmentFor* to
 * synthesize a "debug env chain". A debug env chain is just a chain of
 * objects that fill in missing environments and protect the engine from
 * unexpected access. (The latter means that some debugger operations, like
 * redefining a lexical binding, can fail when a true eval would succeed.) To
 * do both of these things, GetDebugEnvironmentFor* creates a new proxy
 * DebugEnvironmentProxy to sit in front of every existing EnvironmentObject.
 *
 * GetDebugEnvironmentFor* ensures the invariant that the same
 * DebugEnvironmentProxy is always produced for the same underlying
 * environment (optimized or not!). This is maintained by some bookkeeping
 * information stored in DebugEnvironments.
 */

extern JSObject* GetDebugEnvironmentForFunction(JSContext* cx,
                                                HandleFunction fun);

extern JSObject* GetDebugEnvironmentForFrame(JSContext* cx,
                                             AbstractFramePtr frame,
                                             jsbytecode* pc);

extern JSObject* GetDebugEnvironmentForGlobalLexicalEnvironment(JSContext* cx);
extern Scope* GetEnvironmentScope(const JSObject& env);

/* Provides debugger access to a environment. */
class DebugEnvironmentProxy : public ProxyObject {
  /*
   * The enclosing environment on the dynamic environment chain. This slot is
   * analogous to the ENCLOSING_ENV_SLOT of a EnvironmentObject.
   */
  static const unsigned ENCLOSING_SLOT = 0;

  /*
   * NullValue or a dense array holding the unaliased variables of a function
   * frame that has been popped.
   */
  static const unsigned SNAPSHOT_SLOT = 1;

 public:
  static DebugEnvironmentProxy* create(JSContext* cx, EnvironmentObject& env,
                                       HandleObject enclosing);

  // NOTE: The environment may be a debug hollow with invalid
  // enclosingEnvironment. Always use the enclosingEnvironment accessor on
  // the DebugEnvironmentProxy in order to walk the environment chain.
  EnvironmentObject& environment() const;
  JSObject& enclosingEnvironment() const;

  /* May only be called for proxies to function call objects. */
  ArrayObject* maybeSnapshot() const;
  void initSnapshot(ArrayObject& snapshot);

  // Currently, the 'declarative' environments are function, module, and
  // lexical environments.
  bool isForDeclarative() const;

  // Get a property by 'id', but returns sentinel values instead of throwing
  // on exceptional cases.
  static bool getMaybeSentinelValue(JSContext* cx,
                                    Handle<DebugEnvironmentProxy*> env,
                                    HandleId id, MutableHandleValue vp);

  // Returns true iff this is a function environment with its own this-binding
  // (all functions except arrow functions).
  bool isFunctionEnvironmentWithThis();

  // Does this debug environment not have a real counterpart or was never
  // live (and thus does not have a synthesized EnvironmentObject or a
  // snapshot)?
  bool isOptimizedOut() const;
};

/* Maintains per-realm debug environment bookkeeping information. */
class DebugEnvironments {
  Zone* zone_;

  /* The map from (non-debug) environments to debug environments. */
  ObjectWeakMap proxiedEnvs;

  /*
   * The map from live frames which have optimized-away environments to the
   * corresponding debug environments.
   */
  typedef HashMap<MissingEnvironmentKey, WeakHeapPtrDebugEnvironmentProxy,
                  MissingEnvironmentKey, ZoneAllocPolicy>
      MissingEnvironmentMap;
  MissingEnvironmentMap missingEnvs;

  /*
   * The map from environment objects of live frames to the live frame. This
   * map updated lazily whenever the debugger needs the information. In
   * between two lazy updates, liveEnvs becomes incomplete (but not invalid,
   * onPop* removes environments as they are popped). Thus, two consecutive
   * debugger lazy updates of liveEnvs need only fill in the new
   * environments.
   */
  typedef GCHashMap<WeakHeapPtr<JSObject*>, LiveEnvironmentVal,
                    MovableCellHasher<WeakHeapPtr<JSObject*>>, ZoneAllocPolicy>
      LiveEnvironmentMap;
  LiveEnvironmentMap liveEnvs;

 public:
  DebugEnvironments(JSContext* cx, Zone* zone);
  ~DebugEnvironments();

  Zone* zone() const { return zone_; }

 private:
  static DebugEnvironments* ensureRealmData(JSContext* cx);

  template <typename Environment, typename Scope>
  static void onPopGeneric(JSContext* cx, const EnvironmentIter& ei);

 public:
  void trace(JSTracer* trc);
  void sweep();
  void finish();
#ifdef JS_GC_ZEAL
  void checkHashTablesAfterMovingGC();
#endif

  // If a live frame has a synthesized entry in missingEnvs, make sure it's not
  // collected.
  void traceLiveFrame(JSTracer* trc, AbstractFramePtr frame);

  static DebugEnvironmentProxy* hasDebugEnvironment(JSContext* cx,
                                                    EnvironmentObject& env);
  static bool addDebugEnvironment(JSContext* cx, Handle<EnvironmentObject*> env,
                                  Handle<DebugEnvironmentProxy*> debugEnv);

  static DebugEnvironmentProxy* hasDebugEnvironment(JSContext* cx,
                                                    const EnvironmentIter& ei);
  static bool addDebugEnvironment(JSContext* cx, const EnvironmentIter& ei,
                                  Handle<DebugEnvironmentProxy*> debugEnv);

  static bool updateLiveEnvironments(JSContext* cx);
  static LiveEnvironmentVal* hasLiveEnvironment(EnvironmentObject& env);
  static void unsetPrevUpToDateUntil(JSContext* cx, AbstractFramePtr frame);

  // When a frame bails out from Ion to Baseline, there might be missing
  // envs keyed on, and live envs containing, the old
  // RematerializedFrame. Forward those values to the new BaselineFrame.
  static void forwardLiveFrame(JSContext* cx, AbstractFramePtr from,
                               AbstractFramePtr to);

  // When an environment is popped, we store a snapshot of its bindings that
  // live on the frame.
  //
  // This is done during frame unwinding, which cannot handle errors
  // gracefully. Errors result in no snapshot being set on the
  // DebugEnvironmentProxy.
  static void takeFrameSnapshot(JSContext* cx,
                                Handle<DebugEnvironmentProxy*> debugEnv,
                                AbstractFramePtr frame);

  // In debug-mode, these must be called whenever exiting a scope that might
  // have stack-allocated locals.
  static void onPopCall(JSContext* cx, AbstractFramePtr frame);
  static void onPopVar(JSContext* cx, const EnvironmentIter& ei);
  static void onPopVar(JSContext* cx, AbstractFramePtr frame, jsbytecode* pc);
  static void onPopLexical(JSContext* cx, const EnvironmentIter& ei);
  static void onPopLexical(JSContext* cx, AbstractFramePtr frame,
                           jsbytecode* pc);
  static void onPopWith(AbstractFramePtr frame);
  static void onPopModule(JSContext* cx, const EnvironmentIter& ei);
  static void onRealmUnsetIsDebuggee(Realm* realm);
};

} /* namespace js */

template <>
inline bool JSObject::is<js::EnvironmentObject>() const {
  return is<js::CallObject>() || is<js::VarEnvironmentObject>() ||
         is<js::ModuleEnvironmentObject>() ||
         is<js::WasmInstanceEnvironmentObject>() ||
         is<js::WasmFunctionCallObject>() ||
         is<js::LexicalEnvironmentObject>() ||
         is<js::WithEnvironmentObject>() ||
         is<js::NonSyntacticVariablesObject>() ||
         is<js::RuntimeLexicalErrorObject>();
}

template <>
bool JSObject::is<js::DebugEnvironmentProxy>() const;

namespace js {

inline bool IsSyntacticEnvironment(JSObject* env) {
  if (!env->is<EnvironmentObject>()) {
    return false;
  }

  if (env->is<WithEnvironmentObject>()) {
    return env->as<WithEnvironmentObject>().isSyntactic();
  }

  if (env->is<LexicalEnvironmentObject>()) {
    return env->as<LexicalEnvironmentObject>().isSyntactic();
  }

  if (env->is<NonSyntacticVariablesObject>()) {
    return false;
  }

  return true;
}

inline bool IsExtensibleLexicalEnvironment(JSObject* env) {
  return env->is<LexicalEnvironmentObject>() &&
         env->as<LexicalEnvironmentObject>().isExtensible();
}

inline bool IsGlobalLexicalEnvironment(JSObject* env) {
  return env->is<LexicalEnvironmentObject>() &&
         env->as<LexicalEnvironmentObject>().isGlobal();
}

inline bool IsNSVOLexicalEnvironment(JSObject* env) {
  return env->is<LexicalEnvironmentObject>() &&
         env->as<LexicalEnvironmentObject>()
             .enclosingEnvironment()
             .is<NonSyntacticVariablesObject>();
}

inline JSObject* MaybeUnwrapWithEnvironment(JSObject* env) {
  if (env->is<WithEnvironmentObject>()) {
    return &env->as<WithEnvironmentObject>().object();
  }
  return env;
}

template <typename SpecificEnvironment>
inline bool IsFrameInitialEnvironment(AbstractFramePtr frame,
                                      SpecificEnvironment& env) {
  // A frame's initial environment is the innermost environment
  // corresponding to the scope chain from frame.script()->bodyScope() to
  // frame.script()->outermostScope(). This environment must be on the chain
  // for the frame to be considered initialized. That is, it must be on the
  // chain for the environment chain to fully match the scope chain at the
  // start of execution in the frame.
  //
  // This logic must be in sync with the HAS_INITIAL_ENV logic in
  // InitFromBailout.

  // A function frame's CallObject, if present, is always the initial
  // environment.
  if (mozilla::IsSame<SpecificEnvironment, CallObject>::value) {
    return true;
  }

  // For an eval frame, the VarEnvironmentObject, if present, is always the
  // initial environment.
  if (mozilla::IsSame<SpecificEnvironment, VarEnvironmentObject>::value &&
      frame.isEvalFrame()) {
    return true;
  }

  // For named lambda frames without CallObjects (i.e., no binding in the
  // body of the function was closed over), the LexicalEnvironmentObject
  // corresponding to the named lambda scope is the initial environment.
  if (mozilla::IsSame<SpecificEnvironment, NamedLambdaObject>::value &&
      frame.isFunctionFrame() &&
      frame.callee()->needsNamedLambdaEnvironment() &&
      !frame.callee()->needsCallObject()) {
    LexicalScope* namedLambdaScope = frame.script()->maybeNamedLambdaScope();
    return &env.template as<LexicalEnvironmentObject>().scope() ==
           namedLambdaScope;
  }

  return false;
}

extern bool CreateObjectsForEnvironmentChain(JSContext* cx,
                                             HandleObjectVector chain,
                                             HandleObject terminatingEnv,
                                             MutableHandleObject envObj);

ModuleObject* GetModuleObjectForScript(JSScript* script);

ModuleEnvironmentObject* GetModuleEnvironmentForScript(JSScript* script);

MOZ_MUST_USE bool GetThisValueForDebuggerMaybeOptimizedOut(
    JSContext* cx, AbstractFramePtr frame, jsbytecode* pc,
    MutableHandleValue res);

MOZ_MUST_USE bool CheckVarNameConflict(
    JSContext* cx, Handle<LexicalEnvironmentObject*> lexicalEnv,
    HandlePropertyName name);

MOZ_MUST_USE bool CheckCanDeclareGlobalBinding(JSContext* cx,
                                               Handle<GlobalObject*> global,
                                               HandlePropertyName name,
                                               bool isFunction);

MOZ_MUST_USE bool CheckLexicalNameConflict(
    JSContext* cx, Handle<LexicalEnvironmentObject*> lexicalEnv,
    HandleObject varObj, HandlePropertyName name);

MOZ_MUST_USE bool CheckGlobalDeclarationConflicts(
    JSContext* cx, HandleScript script,
    Handle<LexicalEnvironmentObject*> lexicalEnv, HandleObject varObj);

MOZ_MUST_USE bool CheckGlobalOrEvalDeclarationConflicts(JSContext* cx,
                                                        HandleObject envChain,
                                                        HandleScript script);

MOZ_MUST_USE bool InitFunctionEnvironmentObjects(JSContext* cx,
                                                 AbstractFramePtr frame);

MOZ_MUST_USE bool PushVarEnvironmentObject(JSContext* cx, HandleScope scope,
                                           AbstractFramePtr frame);

MOZ_MUST_USE bool GetFrameEnvironmentAndScope(JSContext* cx,
                                              AbstractFramePtr frame,
                                              jsbytecode* pc,
                                              MutableHandleObject env,
                                              MutableHandleScope scope);

#ifdef DEBUG
bool AnalyzeEntrainedVariables(JSContext* cx, HandleScript script);
#endif

}  // namespace js

#endif /* vm_EnvironmentObject_h */