DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef vm_BytecodeUtil_h
#define vm_BytecodeUtil_h

/*
 * JS bytecode definitions.
 */

#include "mozilla/Attributes.h"
#include "mozilla/EndianUtils.h"

#include <algorithm>

#include "jstypes.h"
#include "NamespaceImports.h"

#include "frontend/SourceNotes.h"
#include "js/TypeDecls.h"
#include "js/UniquePtr.h"
#include "vm/Opcodes.h"
#include "vm/Printer.h"

/*
 * JS operation bytecodes.
 */
typedef enum JSOp {
#define ENUMERATE_OPCODE(op, val, ...) op = val,
  FOR_EACH_OPCODE(ENUMERATE_OPCODE)
#undef ENUMERATE_OPCODE

      JSOP_LIMIT
} JSOp;

/*
 * [SMDOC] Bytecode Format flags (JOF_*)
 */
enum {
  JOF_BYTE = 0,         /* single bytecode, no immediates */
  JOF_UINT8 = 1,        /* unspecified uint8_t argument */
  JOF_UINT16 = 2,       /* unspecified uint16_t argument */
  JOF_UINT24 = 3,       /* unspecified uint24_t argument */
  JOF_UINT32 = 4,       /* unspecified uint32_t argument */
  JOF_INT8 = 5,         /* int8_t literal */
  JOF_INT32 = 6,        /* int32_t literal */
  JOF_JUMP = 7,         /* int32_t jump offset */
  JOF_TABLESWITCH = 8,  /* table switch */
  JOF_ENVCOORD = 9,     /* embedded ScopeCoordinate immediate */
  JOF_ARGC = 10,        /* uint16_t argument count */
  JOF_QARG = 11,        /* function argument index */
  JOF_LOCAL = 12,       /* var or block-local variable */
  JOF_RESUMEINDEX = 13, /* yield, await, or gosub resume index */
  JOF_ATOM = 14,        /* uint32_t constant index */
  JOF_OBJECT = 15,      /* uint32_t object index */
  JOF_REGEXP = 16,      /* uint32_t regexp index */
  JOF_DOUBLE = 17,      /* inline DoubleValue */
  JOF_SCOPE = 18,       /* uint32_t scope index */
  JOF_CODE_OFFSET = 19, /* int32_t bytecode offset */
  JOF_ICINDEX = 20,     /* uint32_t IC index */
  JOF_LOOPENTRY = 21,   /* JSOP_LOOPENTRY, combines JOF_ICINDEX and JOF_UINT8 */
  JOF_BIGINT = 22,      /* uint32_t index for BigInt value */
  JOF_TYPEMASK = 0x001f, /* mask for above immediate types */

  JOF_NAME = 1 << 5,     /* name operation */
  JOF_PROP = 2 << 5,     /* obj.prop operation */
  JOF_ELEM = 3 << 5,     /* obj[index] operation */
  JOF_MODEMASK = 3 << 5, /* mask for above addressing modes */

  JOF_PROPSET = 1 << 7,      /* property/element/name set operation */
  JOF_PROPINIT = 1 << 8,     /* property/element/name init operation */
  JOF_DETECTING = 1 << 9,    /* object detection for warning-quelling */
  JOF_CHECKSLOPPY = 1 << 10, /* Op can only be generated in sloppy mode */
  JOF_CHECKSTRICT = 1 << 11, /* Op can only be generated in strict mode */
  JOF_INVOKE = 1 << 12,      /* JSOP_CALL, JSOP_FUNCALL, JSOP_FUNAPPLY,
                                JSOP_NEW, JSOP_EVAL, JSOP_CALLITER */
  JOF_GNAME = 1 << 13,       /* predicted global name */
  JOF_TYPESET = 1 << 14,     /* has an entry in a script's type sets */
  JOF_IC = 1 << 15,          /* Baseline may use an IC for this op */
};

/* Shorthand for type from format. */

static inline uint32_t JOF_TYPE(uint32_t fmt) { return fmt & JOF_TYPEMASK; }

/* Shorthand for mode from format. */

static inline uint32_t JOF_MODE(uint32_t fmt) { return fmt & JOF_MODEMASK; }

/*
 * Immediate operand getters, setters, and bounds.
 */

static MOZ_ALWAYS_INLINE uint8_t GET_UINT8(jsbytecode* pc) {
  return uint8_t(pc[1]);
}

static MOZ_ALWAYS_INLINE void SET_UINT8(jsbytecode* pc, uint8_t u) {
  pc[1] = jsbytecode(u);
}

/* Common uint16_t immediate format helpers. */

static inline jsbytecode UINT16_HI(uint16_t i) { return jsbytecode(i >> 8); }

static inline jsbytecode UINT16_LO(uint16_t i) { return jsbytecode(i); }

static MOZ_ALWAYS_INLINE uint16_t GET_UINT16(const jsbytecode* pc) {
  uint16_t result;
  mozilla::NativeEndian::copyAndSwapFromLittleEndian(&result, pc + 1, 1);
  return result;
}

static MOZ_ALWAYS_INLINE void SET_UINT16(jsbytecode* pc, uint16_t i) {
  mozilla::NativeEndian::copyAndSwapToLittleEndian(pc + 1, &i, 1);
}

static const unsigned UINT16_LIMIT = 1 << 16;

/* Helpers for accessing the offsets of jump opcodes. */
static const unsigned JUMP_OFFSET_LEN = 4;
static const int32_t JUMP_OFFSET_MIN = INT32_MIN;
static const int32_t JUMP_OFFSET_MAX = INT32_MAX;

static MOZ_ALWAYS_INLINE uint32_t GET_UINT24(const jsbytecode* pc) {
#if MOZ_LITTLE_ENDIAN
  // Do a single 32-bit load (for opcode and operand), then shift off the
  // opcode.
  uint32_t result;
  memcpy(&result, pc, 4);
  return result >> 8;
#else
  return uint32_t((pc[3] << 16) | (pc[2] << 8) | pc[1]);
#endif
}

static MOZ_ALWAYS_INLINE void SET_UINT24(jsbytecode* pc, uint32_t i) {
  MOZ_ASSERT(i < (1 << 24));

#if MOZ_LITTLE_ENDIAN
  memcpy(pc + 1, &i, 3);
#else
  pc[1] = jsbytecode(i);
  pc[2] = jsbytecode(i >> 8);
  pc[3] = jsbytecode(i >> 16);
#endif
}

static MOZ_ALWAYS_INLINE int8_t GET_INT8(const jsbytecode* pc) {
  return int8_t(pc[1]);
}

static MOZ_ALWAYS_INLINE uint32_t GET_UINT32(const jsbytecode* pc) {
  uint32_t result;
  mozilla::NativeEndian::copyAndSwapFromLittleEndian(&result, pc + 1, 1);
  return result;
}

static MOZ_ALWAYS_INLINE void SET_UINT32(jsbytecode* pc, uint32_t u) {
  mozilla::NativeEndian::copyAndSwapToLittleEndian(pc + 1, &u, 1);
}

static MOZ_ALWAYS_INLINE JS::Value GET_INLINE_VALUE(const jsbytecode* pc) {
  uint64_t raw;
  mozilla::NativeEndian::copyAndSwapFromLittleEndian(&raw, pc + 1, 1);
  return JS::Value::fromRawBits(raw);
}

static MOZ_ALWAYS_INLINE void SET_INLINE_VALUE(jsbytecode* pc,
                                               const JS::Value& v) {
  uint64_t raw = v.asRawBits();
  mozilla::NativeEndian::copyAndSwapToLittleEndian(pc + 1, &raw, 1);
}

static MOZ_ALWAYS_INLINE int32_t GET_INT32(const jsbytecode* pc) {
  return static_cast<int32_t>(GET_UINT32(pc));
}

static MOZ_ALWAYS_INLINE void SET_INT32(jsbytecode* pc, int32_t i) {
  SET_UINT32(pc, static_cast<uint32_t>(i));
}

static MOZ_ALWAYS_INLINE int32_t GET_JUMP_OFFSET(jsbytecode* pc) {
  return GET_INT32(pc);
}

static MOZ_ALWAYS_INLINE void SET_JUMP_OFFSET(jsbytecode* pc, int32_t off) {
  SET_INT32(pc, off);
}

static MOZ_ALWAYS_INLINE int32_t GET_CODE_OFFSET(jsbytecode* pc) {
  return GET_INT32(pc);
}

static MOZ_ALWAYS_INLINE void SET_CODE_OFFSET(jsbytecode* pc, int32_t off) {
  SET_INT32(pc, off);
}

static const unsigned UINT32_INDEX_LEN = 4;

static MOZ_ALWAYS_INLINE uint32_t GET_UINT32_INDEX(const jsbytecode* pc) {
  return GET_UINT32(pc);
}

static MOZ_ALWAYS_INLINE void SET_UINT32_INDEX(jsbytecode* pc, uint32_t index) {
  SET_UINT32(pc, index);
}

// Index limit is determined by SN_4BYTE_OFFSET_FLAG, see
// frontend/BytecodeEmitter.h.
static const unsigned INDEX_LIMIT_LOG2 = 31;
static const uint32_t INDEX_LIMIT = uint32_t(1) << INDEX_LIMIT_LOG2;

static inline jsbytecode ARGC_HI(uint16_t argc) { return UINT16_HI(argc); }

static inline jsbytecode ARGC_LO(uint16_t argc) { return UINT16_LO(argc); }

static inline uint16_t GET_ARGC(const jsbytecode* pc) { return GET_UINT16(pc); }

static const unsigned ARGC_LIMIT = UINT16_LIMIT;

static inline uint16_t GET_ARGNO(const jsbytecode* pc) {
  return GET_UINT16(pc);
}

static inline void SET_ARGNO(jsbytecode* pc, uint16_t argno) {
  SET_UINT16(pc, argno);
}

static const unsigned ARGNO_LEN = 2;
static const unsigned ARGNO_LIMIT = UINT16_LIMIT;

static inline uint32_t GET_LOCALNO(const jsbytecode* pc) {
  return GET_UINT24(pc);
}

static inline void SET_LOCALNO(jsbytecode* pc, uint32_t varno) {
  SET_UINT24(pc, varno);
}

static const unsigned LOCALNO_LEN = 3;
static const unsigned LOCALNO_BITS = 24;
static const uint32_t LOCALNO_LIMIT = 1 << LOCALNO_BITS;

static inline uint32_t GET_RESUMEINDEX(const jsbytecode* pc) {
  return GET_UINT24(pc);
}

static inline void SET_RESUMEINDEX(jsbytecode* pc, uint32_t resumeIndex) {
  SET_UINT24(pc, resumeIndex);
}

static inline uint32_t GET_ICINDEX(const jsbytecode* pc) {
  return GET_UINT32(pc);
}

static inline void SET_ICINDEX(jsbytecode* pc, uint32_t icIndex) {
  SET_UINT32(pc, icIndex);
}

static inline unsigned LoopEntryDepthHint(jsbytecode* pc) {
  MOZ_ASSERT(*pc == JSOP_LOOPENTRY);
  return GET_UINT8(pc + 4) & 0x7f;
}

static inline bool LoopEntryCanIonOsr(jsbytecode* pc) {
  MOZ_ASSERT(*pc == JSOP_LOOPENTRY);
  return GET_UINT8(pc + 4) & 0x80;
}

static inline void SetLoopEntryDepthHintAndFlags(jsbytecode* pc,
                                                 unsigned loopDepth,
                                                 bool canIonOsr) {
  MOZ_ASSERT(*pc == JSOP_LOOPENTRY);
  uint8_t data = std::min(loopDepth, unsigned(0x7f)) | (canIonOsr ? 0x80 : 0);
  SET_UINT8(pc + 4, data);
}

/*
 * Describes the 'hops' component of a JOF_ENVCOORD opcode.
 *
 * Note: this component is only 8 bits wide, limiting the maximum number of
 * scopes between a use and def to roughly 255. This is a pretty small limit but
 * note that SpiderMonkey's recursive descent parser can only parse about this
 * many functions before hitting the C-stack recursion limit so this shouldn't
 * be a significant limitation in practice.
 */

static inline uint8_t GET_ENVCOORD_HOPS(jsbytecode* pc) {
  return GET_UINT8(pc);
}

static inline void SET_ENVCOORD_HOPS(jsbytecode* pc, uint8_t hops) {
  SET_UINT8(pc, hops);
}

static const unsigned ENVCOORD_HOPS_LEN = 1;
static const unsigned ENVCOORD_HOPS_BITS = 8;
static const unsigned ENVCOORD_HOPS_LIMIT = 1 << ENVCOORD_HOPS_BITS;

/* Describes the 'slot' component of a JOF_ENVCOORD opcode. */
static inline uint32_t GET_ENVCOORD_SLOT(const jsbytecode* pc) {
  return GET_UINT24(pc);
}

static inline void SET_ENVCOORD_SLOT(jsbytecode* pc, uint32_t slot) {
  SET_UINT24(pc, slot);
}

static const unsigned ENVCOORD_SLOT_LEN = 3;
static const unsigned ENVCOORD_SLOT_BITS = 24;
static const uint32_t ENVCOORD_SLOT_LIMIT = 1 << ENVCOORD_SLOT_BITS;

struct JSCodeSpec {
  uint8_t length;  /* length including opcode byte */
  int8_t nuses;    /* arity, -1 if variadic */
  int8_t ndefs;    /* number of stack results */
  uint32_t format; /* immediate operand format */

  uint32_t type() const { return JOF_TYPE(format); }
};

namespace js {

extern const JSCodeSpec CodeSpec[];
extern const char* const CodeName[];

/* Shorthand for type from opcode. */

static inline uint32_t JOF_OPTYPE(JSOp op) {
  return JOF_TYPE(CodeSpec[op].format);
}

static inline bool IsJumpOpcode(JSOp op) { return JOF_OPTYPE(op) == JOF_JUMP; }

static inline bool BytecodeFallsThrough(JSOp op) {
  switch (op) {
    case JSOP_GOTO:
    case JSOP_DEFAULT:
    case JSOP_RETURN:
    case JSOP_RETRVAL:
    case JSOP_FINALYIELDRVAL:
    case JSOP_THROW:
    case JSOP_THROWMSG:
    case JSOP_TABLESWITCH:
      return false;
    case JSOP_GOSUB:
      /* These fall through indirectly, after executing a 'finally'. */
      return true;
    default:
      return true;
  }
}

static inline bool BytecodeIsJumpTarget(JSOp op) {
  switch (op) {
    case JSOP_JUMPTARGET:
    case JSOP_LOOPHEAD:
    case JSOP_LOOPENTRY:
    case JSOP_AFTERYIELD:
      return true;
    default:
      return false;
  }
}

MOZ_ALWAYS_INLINE unsigned StackUses(jsbytecode* pc) {
  JSOp op = JSOp(*pc);
  int nuses = CodeSpec[op].nuses;
  if (nuses >= 0) {
    return nuses;
  }

  MOZ_ASSERT(nuses == -1);
  switch (op) {
    case JSOP_POPN:
      return GET_UINT16(pc);
    case JSOP_NEW:
    case JSOP_SUPERCALL:
      return 2 + GET_ARGC(pc) + 1;
    default:
      /* stack: fun, this, [argc arguments] */
      MOZ_ASSERT(op == JSOP_CALL || op == JSOP_CALL_IGNORES_RV ||
                 op == JSOP_EVAL || op == JSOP_CALLITER ||
                 op == JSOP_STRICTEVAL || op == JSOP_FUNCALL ||
                 op == JSOP_FUNAPPLY);
      return 2 + GET_ARGC(pc);
  }
}

MOZ_ALWAYS_INLINE unsigned StackDefs(jsbytecode* pc) {
  int ndefs = CodeSpec[*pc].ndefs;
  MOZ_ASSERT(ndefs >= 0);
  return ndefs;
}

#if defined(DEBUG) || defined(JS_JITSPEW)
/*
 * Given bytecode address pc in script's main program code, compute the operand
 * stack depth just before (JSOp) *pc executes.  If *pc is not reachable, return
 * false.
 */
extern bool ReconstructStackDepth(JSContext* cx, JSScript* script,
                                  jsbytecode* pc, uint32_t* depth,
                                  bool* reachablePC);
#endif

} /* namespace js */

#define JSDVG_IGNORE_STACK 0
#define JSDVG_SEARCH_STACK 1

namespace js {

/*
 * Find the source expression that resulted in v, and return a newly allocated
 * C-string containing it.  Fall back on v's string conversion (fallback) if we
 * can't find the bytecode that generated and pushed v on the operand stack.
 *
 * Search the current stack frame if spindex is JSDVG_SEARCH_STACK.  Don't
 * look for v on the stack if spindex is JSDVG_IGNORE_STACK.  Otherwise,
 * spindex is the negative index of v, measured from cx->fp->sp, or from a
 * lower frame's sp if cx->fp is native.
 *
 * The optional argument skipStackHits can be used to skip a hit in the stack
 * frame. This can be useful in self-hosted code that wants to report value
 * errors containing decompiled values that are useful for the user, instead of
 * values used internally by the self-hosted code.
 *
 * The caller must call JS_free on the result after a successful call.
 */
UniqueChars DecompileValueGenerator(JSContext* cx, int spindex, HandleValue v,
                                    HandleString fallback,
                                    int skipStackHits = 0);

/*
 * Decompile the formal argument at formalIndex in the nearest non-builtin
 * stack frame, falling back with converting v to source.
 */
JSString* DecompileArgument(JSContext* cx, int formalIndex, HandleValue v);

static inline unsigned GetBytecodeLength(jsbytecode* pc) {
  JSOp op = (JSOp)*pc;
  MOZ_ASSERT(op < JSOP_LIMIT);
  MOZ_ASSERT(CodeSpec[op].length > 0);
  return CodeSpec[op].length;
}

static inline bool BytecodeIsPopped(jsbytecode* pc) {
  jsbytecode* next = pc + GetBytecodeLength(pc);
  return JSOp(*next) == JSOP_POP;
}

static inline bool BytecodeFlowsToBitop(jsbytecode* pc) {
  // Look for simple bytecode for integer conversions like (x | 0) or (x & -1).
  jsbytecode* next = pc + GetBytecodeLength(pc);
  if (*next == JSOP_BITOR || *next == JSOP_BITAND) {
    return true;
  }
  if (*next == JSOP_INT8 && GET_INT8(next) == -1) {
    next += GetBytecodeLength(next);
    if (*next == JSOP_BITAND) {
      return true;
    }
    return false;
  }
  if (*next == JSOP_ONE) {
    next += GetBytecodeLength(next);
    if (*next == JSOP_NEG) {
      next += GetBytecodeLength(next);
      if (*next == JSOP_BITAND) {
        return true;
      }
    }
    return false;
  }
  if (*next == JSOP_ZERO) {
    next += GetBytecodeLength(next);
    if (*next == JSOP_BITOR) {
      return true;
    }
    return false;
  }
  return false;
}

extern bool IsValidBytecodeOffset(JSContext* cx, JSScript* script,
                                  size_t offset);

inline bool FlowsIntoNext(JSOp op) {
  // JSOP_YIELD/JSOP_AWAIT is considered to flow into the next instruction,
  // like JSOP_CALL.
  switch (op) {
    case JSOP_RETRVAL:
    case JSOP_RETURN:
    case JSOP_THROW:
    case JSOP_GOTO:
    case JSOP_RETSUB:
    case JSOP_FINALYIELDRVAL:
      return false;
    default:
      return true;
  }
}

inline bool IsArgOp(JSOp op) { return JOF_OPTYPE(op) == JOF_QARG; }

inline bool IsLocalOp(JSOp op) { return JOF_OPTYPE(op) == JOF_LOCAL; }

inline bool IsAliasedVarOp(JSOp op) { return JOF_OPTYPE(op) == JOF_ENVCOORD; }

inline bool IsGlobalOp(JSOp op) { return CodeSpec[op].format & JOF_GNAME; }

inline bool IsPropertySetOp(JSOp op) {
  return CodeSpec[op].format & JOF_PROPSET;
}

inline bool IsPropertyInitOp(JSOp op) {
  return CodeSpec[op].format & JOF_PROPINIT;
}

inline bool IsEqualityOp(JSOp op) {
  return op == JSOP_EQ || op == JSOP_NE || op == JSOP_STRICTEQ ||
         op == JSOP_STRICTNE;
}

inline bool IsRelationalOp(JSOp op) {
  return op == JSOP_LT || op == JSOP_LE || op == JSOP_GT || op == JSOP_GE;
}

inline bool IsCheckStrictOp(JSOp op) {
  return CodeSpec[op].format & JOF_CHECKSTRICT;
}

#ifdef DEBUG
inline bool IsCheckSloppyOp(JSOp op) {
  return CodeSpec[op].format & JOF_CHECKSLOPPY;
}
#endif

inline bool IsAtomOp(JSOp op) { return JOF_OPTYPE(op) == JOF_ATOM; }

inline bool IsGetPropOp(JSOp op) {
  return op == JSOP_LENGTH || op == JSOP_GETPROP || op == JSOP_CALLPROP;
}

inline bool IsGetPropPC(const jsbytecode* pc) { return IsGetPropOp(JSOp(*pc)); }

inline bool IsHiddenInitOp(JSOp op) {
  return op == JSOP_INITHIDDENPROP || op == JSOP_INITHIDDENELEM ||
         op == JSOP_INITHIDDENPROP_GETTER || op == JSOP_INITHIDDENELEM_GETTER ||
         op == JSOP_INITHIDDENPROP_SETTER || op == JSOP_INITHIDDENELEM_SETTER;
}

inline bool IsStrictSetPC(jsbytecode* pc) {
  JSOp op = JSOp(*pc);
  return op == JSOP_STRICTSETPROP || op == JSOP_STRICTSETNAME ||
         op == JSOP_STRICTSETGNAME || op == JSOP_STRICTSETELEM;
}

inline bool IsSetPropOp(JSOp op) {
  return op == JSOP_SETPROP || op == JSOP_STRICTSETPROP || op == JSOP_SETNAME ||
         op == JSOP_STRICTSETNAME || op == JSOP_SETGNAME ||
         op == JSOP_STRICTSETGNAME;
}

inline bool IsSetPropPC(const jsbytecode* pc) { return IsSetPropOp(JSOp(*pc)); }

inline bool IsGetElemOp(JSOp op) {
  return op == JSOP_GETELEM || op == JSOP_CALLELEM;
}

inline bool IsGetElemPC(const jsbytecode* pc) { return IsGetElemOp(JSOp(*pc)); }

inline bool IsSetElemOp(JSOp op) {
  return op == JSOP_SETELEM || op == JSOP_STRICTSETELEM;
}

inline bool IsSetElemPC(const jsbytecode* pc) { return IsSetElemOp(JSOp(*pc)); }

inline bool IsElemPC(const jsbytecode* pc) {
  return CodeSpec[*pc].format & JOF_ELEM;
}

inline bool IsCallOp(JSOp op) { return CodeSpec[op].format & JOF_INVOKE; }

inline bool IsCallPC(jsbytecode* pc) { return IsCallOp(JSOp(*pc)); }

inline bool IsStrictEvalPC(jsbytecode* pc) {
  JSOp op = JSOp(*pc);
  return op == JSOP_STRICTEVAL || op == JSOP_STRICTSPREADEVAL;
}

inline bool IsConstructorCallOp(JSOp op) {
  return op == JSOP_NEW || op == JSOP_SUPERCALL || op == JSOP_SPREADNEW ||
         op == JSOP_SPREADSUPERCALL;
}
inline bool IsConstructorCallPC(const jsbytecode* pc) {
  return IsConstructorCallOp(JSOp(*pc));
}

inline bool IsSpreadCallOp(JSOp op) {
  return op == JSOP_SPREADCALL || op == JSOP_SPREADNEW ||
         op == JSOP_SPREADSUPERCALL || op == JSOP_SPREADEVAL ||
         op == JSOP_STRICTSPREADEVAL;
}

inline bool IsSpreadCallPC(const jsbytecode* pc) {
  return IsSpreadCallOp(JSOp(*pc));
}

static inline int32_t GetBytecodeInteger(jsbytecode* pc) {
  switch (JSOp(*pc)) {
    case JSOP_ZERO:
      return 0;
    case JSOP_ONE:
      return 1;
    case JSOP_UINT16:
      return GET_UINT16(pc);
    case JSOP_UINT24:
      return GET_UINT24(pc);
    case JSOP_INT8:
      return GET_INT8(pc);
    case JSOP_INT32:
      return GET_INT32(pc);
    default:
      MOZ_CRASH("Bad op");
  }
}

inline bool BytecodeOpHasIC(JSOp op) { return CodeSpec[op].format & JOF_IC; }

inline bool BytecodeOpHasTypeSet(JSOp op) {
  return CodeSpec[op].format & JOF_TYPESET;
}

/*
 * Counts accumulated for a single opcode in a script. The counts tracked vary
 * between opcodes, and this structure ensures that counts are accessed in a
 * coherent fashion.
 */
class PCCounts {
  /*
   * Offset of the pc inside the script. This fields is used to lookup opcode
   * which have annotations.
   */
  size_t pcOffset_;

  /*
   * Record the number of execution of one instruction, or the number of
   * throws executed.
   */
  uint64_t numExec_;

 public:
  explicit PCCounts(size_t off) : pcOffset_(off), numExec_(0) {}

  size_t pcOffset() const { return pcOffset_; }

  // Used for sorting and searching.
  bool operator<(const PCCounts& rhs) const {
    return pcOffset_ < rhs.pcOffset_;
  }

  uint64_t& numExec() { return numExec_; }
  uint64_t numExec() const { return numExec_; }

  static const char numExecName[];
};

static inline jsbytecode* GetNextPc(jsbytecode* pc) {
  return pc + GetBytecodeLength(pc);
}

typedef Vector<jsbytecode*, 4, SystemAllocPolicy> PcVector;

bool GetSuccessorBytecodes(JSScript* script, jsbytecode* pc,
                           PcVector& successors);
bool GetPredecessorBytecodes(JSScript* script, jsbytecode* pc,
                             PcVector& predecessors);

#if defined(DEBUG) || defined(JS_JITSPEW)
/*
 * Disassemblers, for debugging only.
 */
extern MOZ_MUST_USE bool Disassemble(JSContext* cx,
                                     JS::Handle<JSScript*> script, bool lines,
                                     Sprinter* sp);

unsigned Disassemble1(JSContext* cx, JS::Handle<JSScript*> script,
                      jsbytecode* pc, unsigned loc, bool lines, Sprinter* sp);

#endif

extern MOZ_MUST_USE bool DumpRealmPCCounts(JSContext* cx);

}  // namespace js

#endif /* vm_BytecodeUtil_h */