DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"

#include "jit/AtomicOperations.h"
#include "jsapi-tests/tests.h"
#include "vm/ArrayBufferObject.h"
#include "vm/SharedMem.h"
#include "wasm/WasmJS.h"

using namespace js;

// Machinery to disguise pointer addresses to the C++ compiler -- quite possibly
// not thread-safe.

extern void setHiddenPointer(void* p);
extern void* getHiddenPointer();

void* hidePointerValue(void* p) {
  setHiddenPointer(p);
  return getHiddenPointer();
}

//////////////////////////////////////////////////////////////////////
//
// Lock-freedom predicates

BEGIN_TEST(testAtomicLockFree8) {
  // isLockfree8() must not return true if there are no 8-byte atomics

  CHECK(!jit::AtomicOperations::isLockfree8() ||
        jit::AtomicOperations::hasAtomic8());

  // We must have lock-free 8-byte atomics on every platform where we support
  // wasm, but we don't care otherwise.

  CHECK(!wasm::HasSupport(cx) || jit::AtomicOperations::isLockfree8());
  return true;
}
END_TEST(testAtomicLockFree8)

// The JS spec requires specific behavior for all but 1 and 2.

BEGIN_TEST(testAtomicLockFreeJS) {
  CHECK(jit::AtomicOperations::isLockfreeJS(1) ==
        true);  // false is allowed by spec but not in SpiderMonkey
  CHECK(jit::AtomicOperations::isLockfreeJS(2) == true);   // ditto
  CHECK(jit::AtomicOperations::isLockfreeJS(3) == false);  // required
  CHECK(jit::AtomicOperations::isLockfreeJS(4) == true);   // required
  CHECK(jit::AtomicOperations::isLockfreeJS(5) == false);  // required
  CHECK(jit::AtomicOperations::isLockfreeJS(6) == false);  // required
  CHECK(jit::AtomicOperations::isLockfreeJS(7) == false);  // required
  CHECK(jit::AtomicOperations::isLockfreeJS(8) == false);  // required
  return true;
}
END_TEST(testAtomicLockFreeJS)

//////////////////////////////////////////////////////////////////////
//
// Fence

// This only tests that fenceSeqCst is defined and that it doesn't crash if we
// call it, but it has no return value and its effect is not observable here.

BEGIN_TEST(testAtomicFence) {
  jit::AtomicOperations::fenceSeqCst();
  return true;
}
END_TEST(testAtomicFence)

//////////////////////////////////////////////////////////////////////
//
// Memory access primitives

// These tests for the atomic load and store primitives ascertain that the
// primitives are defined and that they load and store the values they should,
// but not that the primitives are actually atomic wrt to the memory subsystem.

// Memory for testing atomics.  This must be aligned to the natural alignment of
// the type we're testing; for now, use 8-byte alignment for all.

MOZ_ALIGNED_DECL(static uint8_t atomicMem[8], 8);
MOZ_ALIGNED_DECL(static uint8_t atomicMem2[8], 8);

// T is the primitive type we're testing, and A and B are references to constant
// bindings holding values of that type.
//
// No bytes of A and B should be 0 or FF.  A+B and A-B must not overflow.

#define ATOMIC_TESTS(T, A, B)                                           \
  T* q = (T*)hidePointerValue((void*)atomicMem);                        \
  *q = A;                                                               \
  SharedMem<T*> p =                                                     \
      SharedMem<T*>::shared((T*)hidePointerValue((T*)atomicMem));       \
  CHECK(*q == A);                                                       \
  CHECK(jit::AtomicOperations::loadSeqCst(p) == A);                     \
  CHECK(*q == A);                                                       \
  jit::AtomicOperations::storeSeqCst(p, B);                             \
  CHECK(*q == B);                                                       \
  CHECK(jit::AtomicOperations::exchangeSeqCst(p, A) == B);              \
  CHECK(*q == A);                                                       \
  CHECK(jit::AtomicOperations::compareExchangeSeqCst(p, (T)0, (T)1) ==  \
        A); /*failure*/                                                 \
  CHECK(*q == A);                                                       \
  CHECK(jit::AtomicOperations::compareExchangeSeqCst(p, A, B) ==        \
        A); /*success*/                                                 \
  CHECK(*q == B);                                                       \
  *q = A;                                                               \
  CHECK(jit::AtomicOperations::fetchAddSeqCst(p, B) == A);              \
  CHECK(*q == A + B);                                                   \
  *q = A;                                                               \
  CHECK(jit::AtomicOperations::fetchSubSeqCst(p, B) == A);              \
  CHECK(*q == A - B);                                                   \
  *q = A;                                                               \
  CHECK(jit::AtomicOperations::fetchAndSeqCst(p, B) == A);              \
  CHECK(*q == (A & B));                                                 \
  *q = A;                                                               \
  CHECK(jit::AtomicOperations::fetchOrSeqCst(p, B) == A);               \
  CHECK(*q == (A | B));                                                 \
  *q = A;                                                               \
  CHECK(jit::AtomicOperations::fetchXorSeqCst(p, B) == A);              \
  CHECK(*q == (A ^ B));                                                 \
  *q = A;                                                               \
  CHECK(jit::AtomicOperations::loadSafeWhenRacy(p) == A);               \
  jit::AtomicOperations::storeSafeWhenRacy(p, B);                       \
  CHECK(*q == B);                                                       \
  T* q2 = (T*)hidePointerValue((void*)atomicMem2);                      \
  SharedMem<T*> p2 =                                                    \
      SharedMem<T*>::shared((T*)hidePointerValue((void*)atomicMem2));   \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::memcpySafeWhenRacy(p2, p, sizeof(T));          \
  CHECK(*q2 == A);                                                      \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::memcpySafeWhenRacy(p2, p.unwrap(), sizeof(T)); \
  CHECK(*q2 == A);                                                      \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::memcpySafeWhenRacy(p2.unwrap(), p, sizeof(T)); \
  CHECK(*q2 == A);                                                      \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::memmoveSafeWhenRacy(p2, p, sizeof(T));         \
  CHECK(*q2 == A);                                                      \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::podCopySafeWhenRacy(p2, p, 1);                 \
  CHECK(*q2 == A);                                                      \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::podMoveSafeWhenRacy(p2, p, 1);                 \
  CHECK(*q2 == A);                                                      \
  return true

BEGIN_TEST(testAtomicOperationsU8) {
  const uint8_t A = 0xab;
  const uint8_t B = 0x37;
  ATOMIC_TESTS(uint8_t, A, B);
}
END_TEST(testAtomicOperationsU8)

BEGIN_TEST(testAtomicOperationsI8) {
  const int8_t A = 0x3b;
  const int8_t B = 0x27;
  ATOMIC_TESTS(int8_t, A, B);
}
END_TEST(testAtomicOperationsI8)

BEGIN_TEST(testAtomicOperationsU16) {
  const uint16_t A = 0xabdc;
  const uint16_t B = 0x3789;
  ATOMIC_TESTS(uint16_t, A, B);
}
END_TEST(testAtomicOperationsU16)

BEGIN_TEST(testAtomicOperationsI16) {
  const int16_t A = 0x3bdc;
  const int16_t B = 0x2737;
  ATOMIC_TESTS(int16_t, A, B);
}
END_TEST(testAtomicOperationsI16)

BEGIN_TEST(testAtomicOperationsU32) {
  const uint32_t A = 0xabdc0588;
  const uint32_t B = 0x37891942;
  ATOMIC_TESTS(uint32_t, A, B);
}
END_TEST(testAtomicOperationsU32)

BEGIN_TEST(testAtomicOperationsI32) {
  const int32_t A = 0x3bdc0588;
  const int32_t B = 0x27371843;
  ATOMIC_TESTS(int32_t, A, B);
}
END_TEST(testAtomicOperationsI32)

BEGIN_TEST(testAtomicOperationsU64) {
  if (!jit::AtomicOperations::hasAtomic8()) {
    return true;
  }

  const uint64_t A(0x9aadf00ddeadbeef);
  const uint64_t B(0x4eedbead1337f001);
  ATOMIC_TESTS(uint64_t, A, B);
}
END_TEST(testAtomicOperationsU64)

BEGIN_TEST(testAtomicOperationsI64) {
  if (!jit::AtomicOperations::hasAtomic8()) {
    return true;
  }

  const int64_t A(0x2aadf00ddeadbeef);
  const int64_t B(0x4eedbead1337f001);
  ATOMIC_TESTS(int64_t, A, B);
}
END_TEST(testAtomicOperationsI64)

// T is the primitive float type we're testing, and A and B are references to
// constant bindings holding values of that type.
//
// Stay away from 0, NaN, infinities, and denormals.

#define ATOMIC_FLOAT_TESTS(T, A, B)                                     \
  T* q = (T*)hidePointerValue((void*)atomicMem);                        \
  *q = A;                                                               \
  SharedMem<T*> p =                                                     \
      SharedMem<T*>::shared((T*)hidePointerValue((T*)atomicMem));       \
  CHECK(*q == A);                                                       \
  CHECK(jit::AtomicOperations::loadSafeWhenRacy(p) == A);               \
  jit::AtomicOperations::storeSafeWhenRacy(p, B);                       \
  CHECK(*q == B);                                                       \
  T* q2 = (T*)hidePointerValue((void*)atomicMem2);                      \
  SharedMem<T*> p2 =                                                    \
      SharedMem<T*>::shared((T*)hidePointerValue((void*)atomicMem2));   \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::memcpySafeWhenRacy(p2, p, sizeof(T));          \
  CHECK(*q2 == A);                                                      \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::memcpySafeWhenRacy(p2, p.unwrap(), sizeof(T)); \
  CHECK(*q2 == A);                                                      \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::memcpySafeWhenRacy(p2.unwrap(), p, sizeof(T)); \
  CHECK(*q2 == A);                                                      \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::memmoveSafeWhenRacy(p2, p, sizeof(T));         \
  CHECK(*q2 == A);                                                      \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::podCopySafeWhenRacy(p2, p, 1);                 \
  CHECK(*q2 == A);                                                      \
  *q = A;                                                               \
  *q2 = B;                                                              \
  jit::AtomicOperations::podMoveSafeWhenRacy(p2, p, 1);                 \
  CHECK(*q2 == A);                                                      \
  return true

BEGIN_TEST(testAtomicOperationsF32) {
  const float A(123.25);
  const float B(-987.75);
  ATOMIC_FLOAT_TESTS(float, A, B);
}
END_TEST(testAtomicOperationsF32)

BEGIN_TEST(testAtomicOperationsF64) {
  const double A(123.25);
  const double B(-987.75);
  ATOMIC_FLOAT_TESTS(double, A, B);
}
END_TEST(testAtomicOperationsF64)

#define ATOMIC_CLAMPED_TESTS(T, A, B)                             \
  T* q = (T*)hidePointerValue((void*)atomicMem);                  \
  *q = A;                                                         \
  SharedMem<T*> p =                                               \
      SharedMem<T*>::shared((T*)hidePointerValue((T*)atomicMem)); \
  CHECK(*q == A);                                                 \
  CHECK(jit::AtomicOperations::loadSafeWhenRacy(p) == A);         \
  jit::AtomicOperations::storeSafeWhenRacy(p, B);                 \
  CHECK(*q == B);                                                 \
  return true

BEGIN_TEST(testAtomicOperationsU8Clamped) {
  const uint8_clamped A(0xab);
  const uint8_clamped B(0x37);
  ATOMIC_CLAMPED_TESTS(uint8_clamped, A, B);
}
END_TEST(testAtomicOperationsU8Clamped)

#undef ATOMIC_TESTS
#undef ATOMIC_FLOAT_TESTS
#undef ATOMIC_CLAMPED_TESTS