DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/StupidAllocator.h"

#include "jstypes.h"

using namespace js;
using namespace js::jit;

static inline uint32_t DefaultStackSlot(uint32_t vreg) {
  // On x86/x64, we have to keep the stack aligned on 16 bytes for spilling
  // SIMD registers.  To avoid complexity in this stupid allocator, we just
  // allocate 16 bytes stack slot for all vreg.
  return vreg * 2 * sizeof(Value);
}

LAllocation* StupidAllocator::stackLocation(uint32_t vreg) {
  LDefinition* def = virtualRegisters[vreg];
  if (def->policy() == LDefinition::FIXED && def->output()->isArgument()) {
    return def->output();
  }

  return new (alloc()) LStackSlot(DefaultStackSlot(vreg));
}

StupidAllocator::RegisterIndex StupidAllocator::registerIndex(AnyRegister reg) {
  for (size_t i = 0; i < registerCount; i++) {
    if (reg == registers[i].reg) {
      return i;
    }
  }
  MOZ_CRASH("Bad register");
}

bool StupidAllocator::init() {
  if (!RegisterAllocator::init()) {
    return false;
  }

  if (!virtualRegisters.appendN((LDefinition*)nullptr,
                                graph.numVirtualRegisters())) {
    return false;
  }

  for (size_t i = 0; i < graph.numBlocks(); i++) {
    LBlock* block = graph.getBlock(i);
    for (LInstructionIterator ins = block->begin(); ins != block->end();
         ins++) {
      for (size_t j = 0; j < ins->numDefs(); j++) {
        LDefinition* def = ins->getDef(j);
        virtualRegisters[def->virtualRegister()] = def;
      }

      for (size_t j = 0; j < ins->numTemps(); j++) {
        LDefinition* def = ins->getTemp(j);
        if (def->isBogusTemp()) {
          continue;
        }
        virtualRegisters[def->virtualRegister()] = def;
      }
    }
    for (size_t j = 0; j < block->numPhis(); j++) {
      LPhi* phi = block->getPhi(j);
      LDefinition* def = phi->getDef(0);
      uint32_t vreg = def->virtualRegister();

      virtualRegisters[vreg] = def;
    }
  }

  // Assign physical registers to the tracked allocation.
  {
    registerCount = 0;
    LiveRegisterSet remainingRegisters(allRegisters_.asLiveSet());
    while (!remainingRegisters.emptyGeneral()) {
      registers[registerCount++].reg =
          AnyRegister(remainingRegisters.takeAnyGeneral());
    }

    while (!remainingRegisters.emptyFloat()) {
      registers[registerCount++].reg =
          AnyRegister(remainingRegisters.takeAnyFloat<RegTypeName::Any>());
    }

    MOZ_ASSERT(registerCount <= MAX_REGISTERS);
  }

  return true;
}

bool StupidAllocator::allocationRequiresRegister(const LAllocation* alloc,
                                                 AnyRegister reg) {
  if (alloc->isRegister() && alloc->toRegister() == reg) {
    return true;
  }
  if (alloc->isUse()) {
    const LUse* use = alloc->toUse();
    if (use->policy() == LUse::FIXED) {
      AnyRegister usedReg =
          GetFixedRegister(virtualRegisters[use->virtualRegister()], use);
      if (usedReg.aliases(reg)) {
        return true;
      }
    }
  }
  return false;
}

bool StupidAllocator::registerIsReserved(LInstruction* ins, AnyRegister reg) {
  // Whether reg is already reserved for an input or output of ins.
  for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) {
    if (allocationRequiresRegister(*alloc, reg)) {
      return true;
    }
  }
  for (size_t i = 0; i < ins->numTemps(); i++) {
    if (allocationRequiresRegister(ins->getTemp(i)->output(), reg)) {
      return true;
    }
  }
  for (size_t i = 0; i < ins->numDefs(); i++) {
    if (allocationRequiresRegister(ins->getDef(i)->output(), reg)) {
      return true;
    }
  }
  return false;
}

AnyRegister StupidAllocator::ensureHasRegister(LInstruction* ins,
                                               uint32_t vreg) {
  // Ensure that vreg is held in a register before ins.

  // Check if the virtual register is already held in a physical register.
  RegisterIndex existing = findExistingRegister(vreg);
  if (existing != UINT32_MAX) {
    if (registerIsReserved(ins, registers[existing].reg)) {
      evictAliasedRegister(ins, existing);
    } else {
      registers[existing].age = ins->id();
      return registers[existing].reg;
    }
  }

  RegisterIndex best = allocateRegister(ins, vreg);
  loadRegister(ins, vreg, best, virtualRegisters[vreg]->type());

  return registers[best].reg;
}

StupidAllocator::RegisterIndex StupidAllocator::allocateRegister(
    LInstruction* ins, uint32_t vreg) {
  // Pick a register for vreg, evicting an existing register if necessary.
  // Spill code will be placed before ins, and no existing allocated input
  // for ins will be touched.
  MOZ_ASSERT(ins);

  LDefinition* def = virtualRegisters[vreg];
  MOZ_ASSERT(def);

  RegisterIndex best = UINT32_MAX;

  for (size_t i = 0; i < registerCount; i++) {
    AnyRegister reg = registers[i].reg;

    if (!def->isCompatibleReg(reg)) {
      continue;
    }

    // Skip the register if it is in use for an allocated input or output.
    if (registerIsReserved(ins, reg)) {
      continue;
    }

    if (registers[i].vreg == MISSING_ALLOCATION || best == UINT32_MAX ||
        registers[best].age > registers[i].age) {
      best = i;
    }
  }

  evictAliasedRegister(ins, best);
  return best;
}

void StupidAllocator::syncRegister(LInstruction* ins, RegisterIndex index) {
  if (registers[index].dirty) {
    LMoveGroup* input = getInputMoveGroup(ins);
    LAllocation source(registers[index].reg);

    uint32_t existing = registers[index].vreg;
    LAllocation* dest = stackLocation(existing);
    input->addAfter(source, *dest, registers[index].type);

    registers[index].dirty = false;
  }
}

void StupidAllocator::evictRegister(LInstruction* ins, RegisterIndex index) {
  syncRegister(ins, index);
  registers[index].set(MISSING_ALLOCATION);
}

void StupidAllocator::evictAliasedRegister(LInstruction* ins,
                                           RegisterIndex index) {
  for (size_t i = 0; i < registers[index].reg.numAliased(); i++) {
    uint32_t aindex = registerIndex(registers[index].reg.aliased(i));
    syncRegister(ins, aindex);
    registers[aindex].set(MISSING_ALLOCATION);
  }
}

void StupidAllocator::loadRegister(LInstruction* ins, uint32_t vreg,
                                   RegisterIndex index,
                                   LDefinition::Type type) {
  // Load a vreg from its stack location to a register.
  LMoveGroup* input = getInputMoveGroup(ins);
  LAllocation* source = stackLocation(vreg);
  LAllocation dest(registers[index].reg);
  input->addAfter(*source, dest, type);
  registers[index].set(vreg, ins);
  registers[index].type = type;
}

StupidAllocator::RegisterIndex StupidAllocator::findExistingRegister(
    uint32_t vreg) {
  for (size_t i = 0; i < registerCount; i++) {
    if (registers[i].vreg == vreg) {
      return i;
    }
  }
  return UINT32_MAX;
}

bool StupidAllocator::go() {
  // This register allocator is intended to be as simple as possible, while
  // still being complicated enough to share properties with more complicated
  // allocators. Namely, physical registers may be used to carry virtual
  // registers across LIR instructions, but not across basic blocks.
  //
  // This algorithm does not pay any attention to liveness. It is performed
  // as a single forward pass through the basic blocks in the program. As
  // virtual registers and temporaries are defined they are assigned physical
  // registers, evicting existing allocations in an LRU fashion.

  // For virtual registers not carried in a register, a canonical spill
  // location is used. Each vreg has a different spill location; since we do
  // not track liveness we cannot determine that two vregs have disjoint
  // lifetimes. Thus, the maximum stack height is the number of vregs (scaled
  // by two on 32 bit platforms to allow storing double values).
  graph.setLocalSlotCount(DefaultStackSlot(graph.numVirtualRegisters()));

  if (!init()) {
    return false;
  }

  for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
    LBlock* block = graph.getBlock(blockIndex);
    MOZ_ASSERT(block->mir()->id() == blockIndex);

    for (size_t i = 0; i < registerCount; i++) {
      registers[i].set(MISSING_ALLOCATION);
    }

    for (LInstructionIterator iter = block->begin(); iter != block->end();
         iter++) {
      LInstruction* ins = *iter;

      if (ins == *block->rbegin()) {
        syncForBlockEnd(block, ins);
      }

      allocateForInstruction(ins);
    }
  }

  return true;
}

void StupidAllocator::syncForBlockEnd(LBlock* block, LInstruction* ins) {
  // Sync any dirty registers, and update the synced state for phi nodes at
  // each successor of a block. We cannot conflate the storage for phis with
  // that of their inputs, as we cannot prove the live ranges of the phi and
  // its input do not overlap. The values for the two may additionally be
  // different, as the phi could be for the value of the input in a previous
  // loop iteration.

  for (size_t i = 0; i < registerCount; i++) {
    syncRegister(ins, i);
  }

  LMoveGroup* group = nullptr;

  MBasicBlock* successor = block->mir()->successorWithPhis();
  if (successor) {
    uint32_t position = block->mir()->positionInPhiSuccessor();
    LBlock* lirsuccessor = successor->lir();
    for (size_t i = 0; i < lirsuccessor->numPhis(); i++) {
      LPhi* phi = lirsuccessor->getPhi(i);

      uint32_t sourcevreg =
          phi->getOperand(position)->toUse()->virtualRegister();
      uint32_t destvreg = phi->getDef(0)->virtualRegister();

      if (sourcevreg == destvreg) {
        continue;
      }

      LAllocation* source = stackLocation(sourcevreg);
      LAllocation* dest = stackLocation(destvreg);

      if (!group) {
        // The moves we insert here need to happen simultaneously with
        // each other, yet after any existing moves before the instruction.
        LMoveGroup* input = getInputMoveGroup(ins);
        if (input->numMoves() == 0) {
          group = input;
        } else {
          group = LMoveGroup::New(alloc());
          block->insertAfter(input, group);
        }
      }

      group->add(*source, *dest, phi->getDef(0)->type());
    }
  }
}

void StupidAllocator::allocateForInstruction(LInstruction* ins) {
  // Sync all registers before making a call.
  if (ins->isCall()) {
    for (size_t i = 0; i < registerCount; i++) {
      syncRegister(ins, i);
    }
  }

  // Allocate for inputs which are required to be in registers.
  for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) {
    if (!alloc->isUse()) {
      continue;
    }
    LUse* use = alloc->toUse();
    uint32_t vreg = use->virtualRegister();
    if (use->policy() == LUse::REGISTER) {
      AnyRegister reg = ensureHasRegister(ins, vreg);
      alloc.replace(LAllocation(reg));
    } else if (use->policy() == LUse::FIXED) {
      AnyRegister reg = GetFixedRegister(virtualRegisters[vreg], use);
      RegisterIndex index = registerIndex(reg);
      if (registers[index].vreg != vreg) {
        // Need to evict multiple registers
        evictAliasedRegister(ins, registerIndex(reg));
        // If this vreg is already assigned to an incorrect register
        RegisterIndex existing = findExistingRegister(vreg);
        if (existing != UINT32_MAX) {
          evictRegister(ins, existing);
        }
        loadRegister(ins, vreg, index, virtualRegisters[vreg]->type());
      }
      alloc.replace(LAllocation(reg));
    } else {
      // Inputs which are not required to be in a register are not
      // allocated until after temps/definitions, as the latter may need
      // to evict registers which hold these inputs.
    }
  }

  // Find registers to hold all temporaries and outputs of the instruction.
  for (size_t i = 0; i < ins->numTemps(); i++) {
    LDefinition* def = ins->getTemp(i);
    if (!def->isBogusTemp()) {
      allocateForDefinition(ins, def);
    }
  }
  for (size_t i = 0; i < ins->numDefs(); i++) {
    LDefinition* def = ins->getDef(i);
    allocateForDefinition(ins, def);
  }

  // Allocate for remaining inputs which do not need to be in registers.
  for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) {
    if (!alloc->isUse()) {
      continue;
    }
    LUse* use = alloc->toUse();
    uint32_t vreg = use->virtualRegister();
    MOZ_ASSERT(use->policy() != LUse::REGISTER && use->policy() != LUse::FIXED);

    RegisterIndex index = findExistingRegister(vreg);
    if (index == UINT32_MAX) {
      LAllocation* stack = stackLocation(use->virtualRegister());
      alloc.replace(*stack);
    } else {
      registers[index].age = ins->id();
      alloc.replace(LAllocation(registers[index].reg));
    }
  }

  // If this is a call, evict all registers except for those holding outputs.
  if (ins->isCall()) {
    for (size_t i = 0; i < registerCount; i++) {
      if (!registers[i].dirty) {
        registers[i].set(MISSING_ALLOCATION);
      }
    }
  }
}

void StupidAllocator::allocateForDefinition(LInstruction* ins,
                                            LDefinition* def) {
  uint32_t vreg = def->virtualRegister();

  if ((def->output()->isRegister() && def->policy() == LDefinition::FIXED) ||
      def->policy() == LDefinition::MUST_REUSE_INPUT) {
    // Result will be in a specific register, spill any vreg held in
    // that register before the instruction.
    RegisterIndex index = registerIndex(
        def->policy() == LDefinition::FIXED
            ? def->output()->toRegister()
            : ins->getOperand(def->getReusedInput())->toRegister());
    evictRegister(ins, index);
    registers[index].set(vreg, ins, true);
    registers[index].type = virtualRegisters[vreg]->type();
    def->setOutput(LAllocation(registers[index].reg));
  } else if (def->policy() == LDefinition::FIXED) {
    // The result must be a stack location.
    def->setOutput(*stackLocation(vreg));
  } else {
    // Find a register to hold the result of the instruction.
    RegisterIndex best = allocateRegister(ins, vreg);
    registers[best].set(vreg, ins, true);
    registers[best].type = virtualRegisters[vreg]->type();
    def->setOutput(LAllocation(registers[best].reg));
  }
}