DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/Snapshots.h"

#include "jit/CompileInfo.h"
#include "jit/JitSpewer.h"
#ifdef TRACK_SNAPSHOTS
#  include "jit/LIR.h"
#endif
#include "jit/MIR.h"
#include "jit/Recover.h"
#include "vm/JSScript.h"
#include "vm/Printer.h"

using namespace js;
using namespace js::jit;

// [SMDOC] IonMonkey Snapshot encoding
//
// Encodings:
//   [ptr] A fixed-size pointer.
//   [vwu] A variable-width unsigned integer.
//   [vws] A variable-width signed integer.
//    [u8] An 8-bit unsigned integer.
//   [u8'] An 8-bit unsigned integer which is potentially extended with packed
//         data.
//   [u8"] Packed data which is stored and packed in the previous [u8'].
//  [vwu*] A list of variable-width unsigned integers.
//   [pld] Payload of Recover Value Allocation:
//         PAYLOAD_NONE:
//           There is no payload.
//
//         PAYLOAD_INDEX:
//           [vwu] Index, such as the constant pool index.
//
//         PAYLOAD_STACK_OFFSET:
//           [vws] Stack offset based on the base of the Ion frame.
//
//         PAYLOAD_GPR:
//            [u8] Code of the general register.
//
//         PAYLOAD_FPU:
//            [u8] Code of the FPU register.
//
//         PAYLOAD_PACKED_TAG:
//           [u8"] Bits 5-7: JSValueType is encoded on the low bits of the Mode
//                           of the RValueAllocation.
//
// Snapshot header:
//
//   [vwu] bits ((n+1)-31]: recover instruction offset
//         bits [0,n): bailout kind (n = SNAPSHOT_BAILOUTKIND_BITS)
//
// Snapshot body, repeated "frame count" times, from oldest frame to newest
// frame. Note that the first frame doesn't have the "parent PC" field.
//
//   [ptr] Debug only: JSScript*
//   [vwu] pc offset
//   [vwu] # of RVA's indexes, including nargs
//  [vwu*] List of indexes to R(ecover)ValueAllocation table. Contains
//         nargs + nfixed + stackDepth items.
//
// Recover value allocations are encoded at the end of the Snapshot buffer, and
// they are padded on ALLOCATION_TABLE_ALIGNMENT.  The encoding of each
// allocation is determined by the RValueAllocation::Layout, which can be
// obtained from the RValueAllocation::Mode with layoutFromMode function.  The
// layout structure list the type of payload which are used to serialized /
// deserialized / dumped the content of the allocations.
//
// R(ecover)ValueAllocation items:
//   [u8'] Mode, which defines the type of the payload as well as the
//         interpretation.
//   [pld] first payload (packed tag, index, stack offset, register, ...)
//   [pld] second payload (register, stack offset, none)
//
//       Modes:
//         CONSTANT [INDEX]
//           Index into the constant pool.
//
//         CST_UNDEFINED []
//           Constant value which correspond to the "undefined" JS value.
//
//         CST_NULL []
//           Constant value which correspond to the "null" JS value.
//
//         DOUBLE_REG [FPU_REG]
//           Double value stored in a FPU register.
//
//         ANY_FLOAT_REG [FPU_REG]
//           Any Float value (float32, simd) stored in a FPU register.
//
//         ANY_FLOAT_STACK [STACK_OFFSET]
//           Any Float value (float32, simd) stored on the stack.
//
//         UNTYPED_REG   [GPR_REG]
//         UNTYPED_STACK [STACK_OFFSET]
//         UNTYPED_REG_REG     [GPR_REG,      GPR_REG]
//         UNTYPED_REG_STACK   [GPR_REG,      STACK_OFFSET]
//         UNTYPED_STACK_REG   [STACK_OFFSET, GPR_REG]
//         UNTYPED_STACK_STACK [STACK_OFFSET, STACK_OFFSET]
//           Value with dynamically known type. On 32 bits architecture, the
//           first register/stack-offset correspond to the holder of the type,
//           and the second correspond to the payload of the JS Value.
//
//         RECOVER_INSTRUCTION [INDEX]
//           Index into the list of recovered instruction results.
//
//         RI_WITH_DEFAULT_CST [INDEX] [INDEX]
//           The first payload is the index into the list of recovered
//           instruction results.  The second payload is the index in the
//           constant pool.
//
//         TYPED_REG [PACKED_TAG, GPR_REG]:
//           Value with statically known type, which payload is stored in a
//           register.
//
//         TYPED_STACK [PACKED_TAG, STACK_OFFSET]:
//           Value with statically known type, which payload is stored at an
//           offset on the stack.
//

const RValueAllocation::Layout& RValueAllocation::layoutFromMode(Mode mode) {
  switch (mode) {
    case CONSTANT: {
      static const RValueAllocation::Layout layout = {PAYLOAD_INDEX,
                                                      PAYLOAD_NONE, "constant"};
      return layout;
    }

    case CST_UNDEFINED: {
      static const RValueAllocation::Layout layout = {
          PAYLOAD_NONE, PAYLOAD_NONE, "undefined"};
      return layout;
    }

    case CST_NULL: {
      static const RValueAllocation::Layout layout = {PAYLOAD_NONE,
                                                      PAYLOAD_NONE, "null"};
      return layout;
    }

    case DOUBLE_REG: {
      static const RValueAllocation::Layout layout = {PAYLOAD_FPU, PAYLOAD_NONE,
                                                      "double"};
      return layout;
    }
    case ANY_FLOAT_REG: {
      static const RValueAllocation::Layout layout = {PAYLOAD_FPU, PAYLOAD_NONE,
                                                      "float register content"};
      return layout;
    }
    case ANY_FLOAT_STACK: {
      static const RValueAllocation::Layout layout = {
          PAYLOAD_STACK_OFFSET, PAYLOAD_NONE, "float register content"};
      return layout;
    }
#if defined(JS_NUNBOX32)
    case UNTYPED_REG_REG: {
      static const RValueAllocation::Layout layout = {PAYLOAD_GPR, PAYLOAD_GPR,
                                                      "value"};
      return layout;
    }
    case UNTYPED_REG_STACK: {
      static const RValueAllocation::Layout layout = {
          PAYLOAD_GPR, PAYLOAD_STACK_OFFSET, "value"};
      return layout;
    }
    case UNTYPED_STACK_REG: {
      static const RValueAllocation::Layout layout = {PAYLOAD_STACK_OFFSET,
                                                      PAYLOAD_GPR, "value"};
      return layout;
    }
    case UNTYPED_STACK_STACK: {
      static const RValueAllocation::Layout layout = {
          PAYLOAD_STACK_OFFSET, PAYLOAD_STACK_OFFSET, "value"};
      return layout;
    }
#elif defined(JS_PUNBOX64)
    case UNTYPED_REG: {
      static const RValueAllocation::Layout layout = {PAYLOAD_GPR, PAYLOAD_NONE,
                                                      "value"};
      return layout;
    }
    case UNTYPED_STACK: {
      static const RValueAllocation::Layout layout = {PAYLOAD_STACK_OFFSET,
                                                      PAYLOAD_NONE, "value"};
      return layout;
    }
#endif
    case RECOVER_INSTRUCTION: {
      static const RValueAllocation::Layout layout = {
          PAYLOAD_INDEX, PAYLOAD_NONE, "instruction"};
      return layout;
    }
    case RI_WITH_DEFAULT_CST: {
      static const RValueAllocation::Layout layout = {
          PAYLOAD_INDEX, PAYLOAD_INDEX, "instruction with default"};
      return layout;
    }

    default: {
      static const RValueAllocation::Layout regLayout = {
          PAYLOAD_PACKED_TAG, PAYLOAD_GPR, "typed value"};

      static const RValueAllocation::Layout stackLayout = {
          PAYLOAD_PACKED_TAG, PAYLOAD_STACK_OFFSET, "typed value"};

      if (mode >= TYPED_REG_MIN && mode <= TYPED_REG_MAX) {
        return regLayout;
      }
      if (mode >= TYPED_STACK_MIN && mode <= TYPED_STACK_MAX) {
        return stackLayout;
      }
    }
  }

  MOZ_CRASH_UNSAFE_PRINTF("Unexpected mode: 0x%x", mode);
}

// Pad serialized RValueAllocations by a multiple of X bytes in the allocation
// buffer.  By padding serialized value allocations, we are building an
// indexable table of elements of X bytes, and thus we can safely divide any
// offset within the buffer by X to obtain an index.
//
// By padding, we are loosing space within the allocation buffer, but we
// multiple by X the number of indexes that we can store on one byte in each
// snapshots.
//
// Some value allocations are taking more than X bytes to be encoded, in which
// case we will pad to a multiple of X, and we are wasting indexes. The choice
// of X should be balanced between the wasted padding of serialized value
// allocation, and the saving made in snapshot indexes.
static const size_t ALLOCATION_TABLE_ALIGNMENT = 2; /* bytes */

void RValueAllocation::readPayload(CompactBufferReader& reader,
                                   PayloadType type, uint8_t* mode,
                                   Payload* p) {
  switch (type) {
    case PAYLOAD_NONE:
      break;
    case PAYLOAD_INDEX:
      p->index = reader.readUnsigned();
      break;
    case PAYLOAD_STACK_OFFSET:
      p->stackOffset = reader.readSigned();
      break;
    case PAYLOAD_GPR:
      p->gpr = Register::FromCode(reader.readByte());
      break;
    case PAYLOAD_FPU:
      p->fpu.data = reader.readByte();
      break;
    case PAYLOAD_PACKED_TAG:
      p->type = JSValueType(*mode & PACKED_TAG_MASK);
      *mode = *mode & ~PACKED_TAG_MASK;
      break;
  }
}

RValueAllocation RValueAllocation::read(CompactBufferReader& reader) {
  uint8_t mode = reader.readByte();
  const Layout& layout = layoutFromMode(Mode(mode & MODE_BITS_MASK));
  Payload arg1, arg2;

  readPayload(reader, layout.type1, &mode, &arg1);
  readPayload(reader, layout.type2, &mode, &arg2);
  return RValueAllocation(Mode(mode), arg1, arg2);
}

void RValueAllocation::writePayload(CompactBufferWriter& writer,
                                    PayloadType type, Payload p) {
  switch (type) {
    case PAYLOAD_NONE:
      break;
    case PAYLOAD_INDEX:
      writer.writeUnsigned(p.index);
      break;
    case PAYLOAD_STACK_OFFSET:
      writer.writeSigned(p.stackOffset);
      break;
    case PAYLOAD_GPR:
      static_assert(Registers::Total <= 0x100,
                    "Not enough bytes to encode all registers.");
      writer.writeByte(p.gpr.code());
      break;
    case PAYLOAD_FPU:
      static_assert(FloatRegisters::Total <= 0x100,
                    "Not enough bytes to encode all float registers.");
      writer.writeByte(p.fpu.code());
      break;
    case PAYLOAD_PACKED_TAG: {
      // This code assumes that the PACKED_TAG payload is following the
      // writeByte of the mode.
      if (!writer.oom()) {
        MOZ_ASSERT(writer.length());
        uint8_t* mode = writer.buffer() + (writer.length() - 1);
        MOZ_ASSERT((*mode & PACKED_TAG_MASK) == 0 &&
                   (p.type & ~PACKED_TAG_MASK) == 0);
        *mode = *mode | p.type;
      }
      break;
    }
  }
}

void RValueAllocation::writePadding(CompactBufferWriter& writer) {
  // Write 0x7f in all padding bytes.
  while (writer.length() % ALLOCATION_TABLE_ALIGNMENT) {
    writer.writeByte(0x7f);
  }
}

void RValueAllocation::write(CompactBufferWriter& writer) const {
  const Layout& layout = layoutFromMode(mode());
  MOZ_ASSERT(layout.type2 != PAYLOAD_PACKED_TAG);
  MOZ_ASSERT(writer.length() % ALLOCATION_TABLE_ALIGNMENT == 0);

  writer.writeByte(mode_);
  writePayload(writer, layout.type1, arg1_);
  writePayload(writer, layout.type2, arg2_);
  writePadding(writer);
}

HashNumber RValueAllocation::hash() const {
  HashNumber res = 0;
  res = HashNumber(mode_);
  res = arg1_.index + (res << 6) + (res << 16) - res;
  res = arg2_.index + (res << 6) + (res << 16) - res;
  return res;
}

static const char* ValTypeToString(JSValueType type) {
  switch (type) {
    case JSVAL_TYPE_INT32:
      return "int32_t";
    case JSVAL_TYPE_DOUBLE:
      return "double";
    case JSVAL_TYPE_STRING:
      return "string";
    case JSVAL_TYPE_SYMBOL:
      return "symbol";
    case JSVAL_TYPE_BIGINT:
      return "BigInt";
    case JSVAL_TYPE_BOOLEAN:
      return "boolean";
    case JSVAL_TYPE_OBJECT:
      return "object";
    case JSVAL_TYPE_MAGIC:
      return "magic";
    default:
      MOZ_CRASH("no payload");
  }
}

void RValueAllocation::dumpPayload(GenericPrinter& out, PayloadType type,
                                   Payload p) {
  switch (type) {
    case PAYLOAD_NONE:
      break;
    case PAYLOAD_INDEX:
      out.printf("index %u", p.index);
      break;
    case PAYLOAD_STACK_OFFSET:
      out.printf("stack %d", p.stackOffset);
      break;
    case PAYLOAD_GPR:
      out.printf("reg %s", p.gpr.name());
      break;
    case PAYLOAD_FPU:
      out.printf("reg %s", p.fpu.name());
      break;
    case PAYLOAD_PACKED_TAG:
      out.printf("%s", ValTypeToString(p.type));
      break;
  }
}

void RValueAllocation::dump(GenericPrinter& out) const {
  const Layout& layout = layoutFromMode(mode());
  out.printf("%s", layout.name);

  if (layout.type1 != PAYLOAD_NONE) {
    out.printf(" (");
  }
  dumpPayload(out, layout.type1, arg1_);
  if (layout.type2 != PAYLOAD_NONE) {
    out.printf(", ");
  }
  dumpPayload(out, layout.type2, arg2_);
  if (layout.type1 != PAYLOAD_NONE) {
    out.printf(")");
  }
}

SnapshotReader::SnapshotReader(const uint8_t* snapshots, uint32_t offset,
                               uint32_t RVATableSize, uint32_t listSize)
    : reader_(snapshots + offset, snapshots + listSize),
      allocReader_(snapshots + listSize, snapshots + listSize + RVATableSize),
      allocTable_(snapshots + listSize),
      allocRead_(0) {
  if (!snapshots) {
    return;
  }
  JitSpew(JitSpew_IonSnapshots, "Creating snapshot reader");
  readSnapshotHeader();
}

#define COMPUTE_SHIFT_AFTER_(name) (name##_BITS + name##_SHIFT)
#define COMPUTE_MASK_(name) ((uint32_t(1 << name##_BITS) - 1) << name##_SHIFT)

// Details of snapshot header packing.
static const uint32_t SNAPSHOT_BAILOUTKIND_SHIFT = 0;
static const uint32_t SNAPSHOT_BAILOUTKIND_BITS = 6;
static const uint32_t SNAPSHOT_BAILOUTKIND_MASK =
    COMPUTE_MASK_(SNAPSHOT_BAILOUTKIND);

static const uint32_t SNAPSHOT_ROFFSET_SHIFT =
    COMPUTE_SHIFT_AFTER_(SNAPSHOT_BAILOUTKIND);
static const uint32_t SNAPSHOT_ROFFSET_BITS = 32 - SNAPSHOT_ROFFSET_SHIFT;
static const uint32_t SNAPSHOT_ROFFSET_MASK = COMPUTE_MASK_(SNAPSHOT_ROFFSET);

// Details of recover header packing.
static const uint32_t RECOVER_RESUMEAFTER_SHIFT = 0;
static const uint32_t RECOVER_RESUMEAFTER_BITS = 1;
static const uint32_t RECOVER_RESUMEAFTER_MASK =
    COMPUTE_MASK_(RECOVER_RESUMEAFTER);

static const uint32_t RECOVER_RINSCOUNT_SHIFT =
    COMPUTE_SHIFT_AFTER_(RECOVER_RESUMEAFTER);
static const uint32_t RECOVER_RINSCOUNT_BITS = 32 - RECOVER_RINSCOUNT_SHIFT;
static const uint32_t RECOVER_RINSCOUNT_MASK = COMPUTE_MASK_(RECOVER_RINSCOUNT);

#undef COMPUTE_MASK_
#undef COMPUTE_SHIFT_AFTER_

void SnapshotReader::readSnapshotHeader() {
  uint32_t bits = reader_.readUnsigned();

  bailoutKind_ = BailoutKind((bits & SNAPSHOT_BAILOUTKIND_MASK) >>
                             SNAPSHOT_BAILOUTKIND_SHIFT);
  recoverOffset_ = (bits & SNAPSHOT_ROFFSET_MASK) >> SNAPSHOT_ROFFSET_SHIFT;

  JitSpew(JitSpew_IonSnapshots, "Read snapshot header with bailout kind %u",
          bailoutKind_);

#ifdef TRACK_SNAPSHOTS
  readTrackSnapshot();
#endif
}

#ifdef TRACK_SNAPSHOTS
void SnapshotReader::readTrackSnapshot() {
  pcOpcode_ = reader_.readUnsigned();
  mirOpcode_ = reader_.readUnsigned();
  mirId_ = reader_.readUnsigned();
  lirOpcode_ = reader_.readUnsigned();
  lirId_ = reader_.readUnsigned();
}

void SnapshotReader::spewBailingFrom() const {
  if (JitSpewEnabled(JitSpew_IonBailouts)) {
    JitSpewHeader(JitSpew_IonBailouts);
    Fprinter& out = JitSpewPrinter();
    out.printf(" bailing from bytecode: %s, MIR: ", CodeName[pcOpcode_]);
    MDefinition::PrintOpcodeName(out, MDefinition::Opcode(mirOpcode_));
    out.printf(" [%u], LIR: ", mirId_);
    LInstruction::printName(out, LInstruction::Opcode(lirOpcode_));
    out.printf(" [%u]", lirId_);
    out.printf("\n");
  }
}
#endif

uint32_t SnapshotReader::readAllocationIndex() {
  allocRead_++;
  return reader_.readUnsigned();
}

RValueAllocation SnapshotReader::readAllocation() {
  JitSpew(JitSpew_IonSnapshots, "Reading slot %u", allocRead_);
  uint32_t offset = readAllocationIndex() * ALLOCATION_TABLE_ALIGNMENT;
  allocReader_.seek(allocTable_, offset);
  return RValueAllocation::read(allocReader_);
}

SnapshotWriter::SnapshotWriter()
    // Based on the measurements made in Bug 962555 comment 20, this length
    // should be enough to prevent the reallocation of the hash table for at
    // least half of the compilations.
    : allocMap_(32) {}

RecoverReader::RecoverReader(SnapshotReader& snapshot, const uint8_t* recovers,
                             uint32_t size)
    : reader_(nullptr, nullptr),
      numInstructions_(0),
      numInstructionsRead_(0),
      resumeAfter_(false) {
  if (!recovers) {
    return;
  }
  reader_ =
      CompactBufferReader(recovers + snapshot.recoverOffset(), recovers + size);
  readRecoverHeader();
  readInstruction();
}

RecoverReader::RecoverReader(const RecoverReader& rr)
    : reader_(rr.reader_),
      numInstructions_(rr.numInstructions_),
      numInstructionsRead_(rr.numInstructionsRead_),
      resumeAfter_(rr.resumeAfter_) {
  if (reader_.currentPosition()) {
    rr.instruction()->cloneInto(&rawData_);
  }
}

RecoverReader& RecoverReader::operator=(const RecoverReader& rr) {
  reader_ = rr.reader_;
  numInstructions_ = rr.numInstructions_;
  numInstructionsRead_ = rr.numInstructionsRead_;
  resumeAfter_ = rr.resumeAfter_;
  if (reader_.currentPosition()) {
    rr.instruction()->cloneInto(&rawData_);
  }
  return *this;
}

void RecoverReader::readRecoverHeader() {
  uint32_t bits = reader_.readUnsigned();

  numInstructions_ = (bits & RECOVER_RINSCOUNT_MASK) >> RECOVER_RINSCOUNT_SHIFT;
  resumeAfter_ = (bits & RECOVER_RESUMEAFTER_MASK) >> RECOVER_RESUMEAFTER_SHIFT;
  MOZ_ASSERT(numInstructions_);

  JitSpew(JitSpew_IonSnapshots,
          "Read recover header with instructionCount %u (ra: %d)",
          numInstructions_, resumeAfter_);
}

void RecoverReader::readInstruction() {
  MOZ_ASSERT(moreInstructions());
  RInstruction::readRecoverData(reader_, &rawData_);
  numInstructionsRead_++;
}

SnapshotOffset SnapshotWriter::startSnapshot(RecoverOffset recoverOffset,
                                             BailoutKind kind) {
  lastStart_ = writer_.length();
  allocWritten_ = 0;

  JitSpew(JitSpew_IonSnapshots,
          "starting snapshot with recover offset %u, bailout kind %u",
          recoverOffset, kind);

  MOZ_ASSERT(uint32_t(kind) < (1 << SNAPSHOT_BAILOUTKIND_BITS));
  MOZ_ASSERT(recoverOffset < (1 << SNAPSHOT_ROFFSET_BITS));
  uint32_t bits = (uint32_t(kind) << SNAPSHOT_BAILOUTKIND_SHIFT) |
                  (recoverOffset << SNAPSHOT_ROFFSET_SHIFT);

  writer_.writeUnsigned(bits);
  return lastStart_;
}

#ifdef TRACK_SNAPSHOTS
void SnapshotWriter::trackSnapshot(uint32_t pcOpcode, uint32_t mirOpcode,
                                   uint32_t mirId, uint32_t lirOpcode,
                                   uint32_t lirId) {
  writer_.writeUnsigned(pcOpcode);
  writer_.writeUnsigned(mirOpcode);
  writer_.writeUnsigned(mirId);
  writer_.writeUnsigned(lirOpcode);
  writer_.writeUnsigned(lirId);
}
#endif

bool SnapshotWriter::add(const RValueAllocation& alloc) {
  uint32_t offset;
  RValueAllocMap::AddPtr p = allocMap_.lookupForAdd(alloc);
  if (!p) {
    offset = allocWriter_.length();
    alloc.write(allocWriter_);
    if (!allocMap_.add(p, alloc, offset)) {
      allocWriter_.setOOM();
      return false;
    }
  } else {
    offset = p->value();
  }

  if (JitSpewEnabled(JitSpew_IonSnapshots)) {
    JitSpewHeader(JitSpew_IonSnapshots);
    Fprinter& out = JitSpewPrinter();
    out.printf("    slot %u (%d): ", allocWritten_, offset);
    alloc.dump(out);
    out.printf("\n");
  }

  allocWritten_++;
  writer_.writeUnsigned(offset / ALLOCATION_TABLE_ALIGNMENT);
  return true;
}

void SnapshotWriter::endSnapshot() {
  // Place a sentinel for asserting on the other end.
#ifdef DEBUG
  writer_.writeSigned(-1);
#endif

  JitSpew(JitSpew_IonSnapshots,
          "ending snapshot total size: %u bytes (start %u)",
          uint32_t(writer_.length() - lastStart_), lastStart_);
}

RecoverOffset RecoverWriter::startRecover(uint32_t instructionCount,
                                          bool resumeAfter) {
  MOZ_ASSERT(instructionCount);
  instructionCount_ = instructionCount;
  instructionsWritten_ = 0;

  JitSpew(JitSpew_IonSnapshots, "starting recover with %u instruction(s)",
          instructionCount);

  MOZ_ASSERT(!(uint32_t(resumeAfter) & ~RECOVER_RESUMEAFTER_MASK));
  MOZ_ASSERT(instructionCount < uint32_t(1 << RECOVER_RINSCOUNT_BITS));
  uint32_t bits = (uint32_t(resumeAfter) << RECOVER_RESUMEAFTER_SHIFT) |
                  (instructionCount << RECOVER_RINSCOUNT_SHIFT);

  RecoverOffset recoverOffset = writer_.length();
  writer_.writeUnsigned(bits);
  return recoverOffset;
}

void RecoverWriter::writeInstruction(const MNode* rp) {
  if (!rp->writeRecoverData(writer_)) {
    writer_.setOOM();
  }
  instructionsWritten_++;
}

void RecoverWriter::endRecover() {
  MOZ_ASSERT(instructionCount_ == instructionsWritten_);
}