DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_RegisterAllocator_h
#define jit_RegisterAllocator_h

#include "mozilla/Attributes.h"
#include "mozilla/MathAlgorithms.h"

#include "jit/LIR.h"
#include "jit/MIRGenerator.h"
#include "jit/MIRGraph.h"

// Generic structures and functions for use by register allocators.

namespace js {
namespace jit {

class LIRGenerator;

// Structure for running a liveness analysis on a finished register allocation.
// This analysis can be used for two purposes:
//
// - Check the integrity of the allocation, i.e. that the reads and writes of
//   physical values preserve the semantics of the original virtual registers.
//
// - Populate safepoints with live registers, GC thing and value data, to
//   streamline the process of prototyping new allocators.
struct AllocationIntegrityState {
  explicit AllocationIntegrityState(LIRGraph& graph) : graph(graph) {}

  // Record all virtual registers in the graph. This must be called before
  // register allocation, to pick up the original LUses.
  MOZ_MUST_USE bool record();

  // Perform the liveness analysis on the graph, and assert on an invalid
  // allocation. This must be called after register allocation, to pick up
  // all assigned physical values. If populateSafepoints is specified,
  // safepoints will be filled in with liveness information.
  MOZ_MUST_USE bool check(bool populateSafepoints);

 private:
  LIRGraph& graph;

  // For all instructions and phis in the graph, keep track of the virtual
  // registers for all inputs and outputs of the nodes. These are overwritten
  // in place during register allocation. This information is kept on the
  // side rather than in the instructions and phis themselves to avoid
  // debug-builds-only bloat in the size of the involved structures.

  struct InstructionInfo {
    Vector<LAllocation, 2, SystemAllocPolicy> inputs;
    Vector<LDefinition, 0, SystemAllocPolicy> temps;
    Vector<LDefinition, 1, SystemAllocPolicy> outputs;

    InstructionInfo() {}

    InstructionInfo(const InstructionInfo& o) {
      AutoEnterOOMUnsafeRegion oomUnsafe;
      if (!inputs.appendAll(o.inputs) || !temps.appendAll(o.temps) ||
          !outputs.appendAll(o.outputs)) {
        oomUnsafe.crash("InstructionInfo::InstructionInfo");
      }
    }
  };
  Vector<InstructionInfo, 0, SystemAllocPolicy> instructions;

  struct BlockInfo {
    Vector<InstructionInfo, 5, SystemAllocPolicy> phis;
    BlockInfo() {}
    BlockInfo(const BlockInfo& o) {
      AutoEnterOOMUnsafeRegion oomUnsafe;
      if (!phis.appendAll(o.phis)) {
        oomUnsafe.crash("BlockInfo::BlockInfo");
      }
    }
  };
  Vector<BlockInfo, 0, SystemAllocPolicy> blocks;

  Vector<LDefinition*, 20, SystemAllocPolicy> virtualRegisters;

  // Describes a correspondence that should hold at the end of a block.
  // The value which was written to vreg in the original LIR should be
  // physically stored in alloc after the register allocation.
  struct IntegrityItem {
    LBlock* block;
    uint32_t vreg;
    LAllocation alloc;

    // Order of insertion into seen, for sorting.
    uint32_t index;

    typedef IntegrityItem Lookup;
    static HashNumber hash(const IntegrityItem& item) {
      HashNumber hash = item.alloc.hash();
      hash = mozilla::RotateLeft(hash, 4) ^ item.vreg;
      hash = mozilla::RotateLeft(hash, 4) ^ HashNumber(item.block->mir()->id());
      return hash;
    }
    static bool match(const IntegrityItem& one, const IntegrityItem& two) {
      return one.block == two.block && one.vreg == two.vreg &&
             one.alloc == two.alloc;
    }
  };

  // Items still to be processed.
  Vector<IntegrityItem, 10, SystemAllocPolicy> worklist;

  // Set of all items that have already been processed.
  typedef HashSet<IntegrityItem, IntegrityItem, SystemAllocPolicy>
      IntegrityItemSet;
  IntegrityItemSet seen;

  MOZ_MUST_USE bool checkIntegrity(LBlock* block, LInstruction* ins,
                                   uint32_t vreg, LAllocation alloc,
                                   bool populateSafepoints);
  MOZ_MUST_USE bool checkSafepointAllocation(LInstruction* ins, uint32_t vreg,
                                             LAllocation alloc,
                                             bool populateSafepoints);
  MOZ_MUST_USE bool addPredecessor(LBlock* block, uint32_t vreg,
                                   LAllocation alloc);

  void dump();
};

// Represents with better-than-instruction precision a position in the
// instruction stream.
//
// An issue comes up when performing register allocation as to how to represent
// information such as "this register is only needed for the input of
// this instruction, it can be clobbered in the output". Just having ranges
// of instruction IDs is insufficiently expressive to denote all possibilities.
// This class solves this issue by associating an extra bit with the instruction
// ID which indicates whether the position is the input half or output half of
// an instruction.
class CodePosition {
 private:
  constexpr explicit CodePosition(uint32_t bits) : bits_(bits) {}

  static const unsigned int INSTRUCTION_SHIFT = 1;
  static const unsigned int SUBPOSITION_MASK = 1;
  uint32_t bits_;

 public:
  static const CodePosition MAX;
  static const CodePosition MIN;

  // This is the half of the instruction this code position represents, as
  // described in the huge comment above.
  enum SubPosition { INPUT, OUTPUT };

  constexpr CodePosition() : bits_(0) {}

  CodePosition(uint32_t instruction, SubPosition where) {
    MOZ_ASSERT(instruction < 0x80000000u);
    MOZ_ASSERT(((uint32_t)where & SUBPOSITION_MASK) == (uint32_t)where);
    bits_ = (instruction << INSTRUCTION_SHIFT) | (uint32_t)where;
  }

  uint32_t ins() const { return bits_ >> INSTRUCTION_SHIFT; }

  uint32_t bits() const { return bits_; }

  SubPosition subpos() const { return (SubPosition)(bits_ & SUBPOSITION_MASK); }

  bool operator<(CodePosition other) const { return bits_ < other.bits_; }

  bool operator<=(CodePosition other) const { return bits_ <= other.bits_; }

  bool operator!=(CodePosition other) const { return bits_ != other.bits_; }

  bool operator==(CodePosition other) const { return bits_ == other.bits_; }

  bool operator>(CodePosition other) const { return bits_ > other.bits_; }

  bool operator>=(CodePosition other) const { return bits_ >= other.bits_; }

  uint32_t operator-(CodePosition other) const {
    MOZ_ASSERT(bits_ >= other.bits_);
    return bits_ - other.bits_;
  }

  CodePosition previous() const {
    MOZ_ASSERT(*this != MIN);
    return CodePosition(bits_ - 1);
  }
  CodePosition next() const {
    MOZ_ASSERT(*this != MAX);
    return CodePosition(bits_ + 1);
  }
};

// Structure to track all moves inserted next to instructions in a graph.
class InstructionDataMap {
  FixedList<LNode*> insData_;

 public:
  InstructionDataMap() : insData_() {}

  MOZ_MUST_USE bool init(MIRGenerator* gen, uint32_t numInstructions) {
    if (!insData_.init(gen->alloc(), numInstructions)) {
      return false;
    }
    memset(&insData_[0], 0, sizeof(LNode*) * numInstructions);
    return true;
  }

  LNode*& operator[](CodePosition pos) { return operator[](pos.ins()); }
  LNode* const& operator[](CodePosition pos) const {
    return operator[](pos.ins());
  }
  LNode*& operator[](uint32_t ins) { return insData_[ins]; }
  LNode* const& operator[](uint32_t ins) const { return insData_[ins]; }
};

inline void TakeJitRegisters(bool isProfiling, AllocatableRegisterSet* set) {
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64) || \
    defined(JS_CODEGEN_ARM64)
  if (isProfiling) {
    set->take(AnyRegister(FramePointer));
  }
#endif
}

// Common superclass for register allocators.
class RegisterAllocator {
  void operator=(const RegisterAllocator&) = delete;
  RegisterAllocator(const RegisterAllocator&) = delete;

 protected:
  // Context
  MIRGenerator* mir;
  LIRGenerator* lir;
  LIRGraph& graph;

  // Pool of all registers that should be considered allocateable
  AllocatableRegisterSet allRegisters_;

  // Computed data
  InstructionDataMap insData;
  Vector<CodePosition, 12, SystemAllocPolicy> entryPositions;
  Vector<CodePosition, 12, SystemAllocPolicy> exitPositions;

  RegisterAllocator(MIRGenerator* mir, LIRGenerator* lir, LIRGraph& graph)
      : mir(mir), lir(lir), graph(graph), allRegisters_(RegisterSet::All()) {
    if (mir->compilingWasm()) {
      takeWasmRegisters(allRegisters_);
    } else {
      TakeJitRegisters(mir->instrumentedProfiling(), &allRegisters_);
    }
  }

  MOZ_MUST_USE bool init();

  TempAllocator& alloc() const { return mir->alloc(); }

  CodePosition outputOf(const LNode* ins) const {
    return ins->isPhi() ? outputOf(ins->toPhi())
                        : outputOf(ins->toInstruction());
  }
  CodePosition outputOf(const LPhi* ins) const {
    // All phis in a block write their outputs after all of them have
    // read their inputs. Consequently, it doesn't make sense to talk
    // about code positions in the middle of a series of phis.
    LBlock* block = ins->block();
    return CodePosition(block->getPhi(block->numPhis() - 1)->id(),
                        CodePosition::OUTPUT);
  }
  CodePosition outputOf(const LInstruction* ins) const {
    return CodePosition(ins->id(), CodePosition::OUTPUT);
  }
  CodePosition inputOf(const LNode* ins) const {
    return ins->isPhi() ? inputOf(ins->toPhi()) : inputOf(ins->toInstruction());
  }
  CodePosition inputOf(const LPhi* ins) const {
    // All phis in a block read their inputs before any of them write their
    // outputs. Consequently, it doesn't make sense to talk about code
    // positions in the middle of a series of phis.
    return CodePosition(ins->block()->getPhi(0)->id(), CodePosition::INPUT);
  }
  CodePosition inputOf(const LInstruction* ins) const {
    return CodePosition(ins->id(), CodePosition::INPUT);
  }
  CodePosition entryOf(const LBlock* block) {
    return entryPositions[block->mir()->id()];
  }
  CodePosition exitOf(const LBlock* block) {
    return exitPositions[block->mir()->id()];
  }

  LMoveGroup* getInputMoveGroup(LInstruction* ins);
  LMoveGroup* getFixReuseMoveGroup(LInstruction* ins);
  LMoveGroup* getMoveGroupAfter(LInstruction* ins);

  CodePosition minimalDefEnd(LNode* ins) {
    // Compute the shortest interval that captures vregs defined by ins.
    // Watch for instructions that are followed by an OSI point.
    // If moves are introduced between the instruction and the OSI point then
    // safepoint information for the instruction may be incorrect.
    while (true) {
      LNode* next = insData[ins->id() + 1];
      if (!next->isOsiPoint()) {
        break;
      }
      ins = next;
    }

    return outputOf(ins);
  }

  void dumpInstructions();

 public:
  template <typename TakeableSet>
  static void takeWasmRegisters(TakeableSet& regs) {
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_ARM) ||      \
    defined(JS_CODEGEN_ARM64) || defined(JS_CODEGEN_MIPS32) || \
    defined(JS_CODEGEN_MIPS64)
    regs.take(HeapReg);
#endif
    regs.take(FramePointer);
  }
};

static inline AnyRegister GetFixedRegister(const LDefinition* def,
                                           const LUse* use) {
  return def->isFloatReg()
             ? AnyRegister(FloatRegister::FromCode(use->registerCode()))
             : AnyRegister(Register::FromCode(use->registerCode()));
}

}  // namespace jit
}  // namespace js

#endif /* jit_RegisterAllocator_h */