DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/RegisterAllocator.h"

using namespace js;
using namespace js::jit;

bool AllocationIntegrityState::record() {
  // Ignore repeated record() calls.
  if (!instructions.empty()) {
    return true;
  }

  if (!instructions.appendN(InstructionInfo(), graph.numInstructions())) {
    return false;
  }

  if (!virtualRegisters.appendN((LDefinition*)nullptr,
                                graph.numVirtualRegisters())) {
    return false;
  }

  if (!blocks.reserve(graph.numBlocks())) {
    return false;
  }
  for (size_t i = 0; i < graph.numBlocks(); i++) {
    blocks.infallibleAppend(BlockInfo());
    LBlock* block = graph.getBlock(i);
    MOZ_ASSERT(block->mir()->id() == i);

    BlockInfo& blockInfo = blocks[i];
    if (!blockInfo.phis.reserve(block->numPhis())) {
      return false;
    }

    for (size_t j = 0; j < block->numPhis(); j++) {
      blockInfo.phis.infallibleAppend(InstructionInfo());
      InstructionInfo& info = blockInfo.phis[j];
      LPhi* phi = block->getPhi(j);
      MOZ_ASSERT(phi->numDefs() == 1);
      uint32_t vreg = phi->getDef(0)->virtualRegister();
      virtualRegisters[vreg] = phi->getDef(0);
      if (!info.outputs.append(*phi->getDef(0))) {
        return false;
      }
      for (size_t k = 0, kend = phi->numOperands(); k < kend; k++) {
        if (!info.inputs.append(*phi->getOperand(k))) {
          return false;
        }
      }
    }

    for (LInstructionIterator iter = block->begin(); iter != block->end();
         iter++) {
      LInstruction* ins = *iter;
      InstructionInfo& info = instructions[ins->id()];

      for (size_t k = 0; k < ins->numTemps(); k++) {
        if (!ins->getTemp(k)->isBogusTemp()) {
          uint32_t vreg = ins->getTemp(k)->virtualRegister();
          virtualRegisters[vreg] = ins->getTemp(k);
        }
        if (!info.temps.append(*ins->getTemp(k))) {
          return false;
        }
      }
      for (size_t k = 0; k < ins->numDefs(); k++) {
        if (!ins->getDef(k)->isBogusTemp()) {
          uint32_t vreg = ins->getDef(k)->virtualRegister();
          virtualRegisters[vreg] = ins->getDef(k);
        }
        if (!info.outputs.append(*ins->getDef(k))) {
          return false;
        }
      }
      for (LInstruction::InputIterator alloc(*ins); alloc.more();
           alloc.next()) {
        if (!info.inputs.append(**alloc)) {
          return false;
        }
      }
    }
  }

  return true;
}

bool AllocationIntegrityState::check(bool populateSafepoints) {
  MOZ_ASSERT(!instructions.empty());

#ifdef JS_JITSPEW
  if (JitSpewEnabled(JitSpew_RegAlloc)) {
    dump();
  }
#endif
#ifdef DEBUG
  for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
    LBlock* block = graph.getBlock(blockIndex);

    // Check that all instruction inputs and outputs have been assigned an
    // allocation.
    for (LInstructionIterator iter = block->begin(); iter != block->end();
         iter++) {
      LInstruction* ins = *iter;

      for (LInstruction::InputIterator alloc(*ins); alloc.more();
           alloc.next()) {
        MOZ_ASSERT(!alloc->isUse());
      }

      for (size_t i = 0; i < ins->numDefs(); i++) {
        LDefinition* def = ins->getDef(i);
        MOZ_ASSERT(!def->output()->isUse());

        LDefinition oldDef = instructions[ins->id()].outputs[i];
        MOZ_ASSERT_IF(
            oldDef.policy() == LDefinition::MUST_REUSE_INPUT,
            *def->output() == *ins->getOperand(oldDef.getReusedInput()));
      }

      for (size_t i = 0; i < ins->numTemps(); i++) {
        LDefinition* temp = ins->getTemp(i);
        MOZ_ASSERT_IF(!temp->isBogusTemp(), temp->output()->isRegister());

        LDefinition oldTemp = instructions[ins->id()].temps[i];
        MOZ_ASSERT_IF(
            oldTemp.policy() == LDefinition::MUST_REUSE_INPUT,
            *temp->output() == *ins->getOperand(oldTemp.getReusedInput()));
      }
    }
  }
#endif

  // Check that the register assignment and move groups preserve the original
  // semantics of the virtual registers. Each virtual register has a single
  // write (owing to the SSA representation), but the allocation may move the
  // written value around between registers and memory locations along
  // different paths through the script.
  //
  // For each use of an allocation, follow the physical value which is read
  // backward through the script, along all paths to the value's virtual
  // register's definition.
  for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
    LBlock* block = graph.getBlock(blockIndex);
    for (LInstructionIterator iter = block->begin(); iter != block->end();
         iter++) {
      LInstruction* ins = *iter;
      const InstructionInfo& info = instructions[ins->id()];

      LSafepoint* safepoint = ins->safepoint();
      if (safepoint) {
        for (size_t i = 0; i < ins->numTemps(); i++) {
          if (ins->getTemp(i)->isBogusTemp()) {
            continue;
          }
          uint32_t vreg = info.temps[i].virtualRegister();
          LAllocation* alloc = ins->getTemp(i)->output();
          if (!checkSafepointAllocation(ins, vreg, *alloc,
                                        populateSafepoints)) {
            return false;
          }
        }
        MOZ_ASSERT_IF(ins->isCall() && !populateSafepoints,
                      safepoint->liveRegs().emptyFloat() &&
                          safepoint->liveRegs().emptyGeneral());
      }

      size_t inputIndex = 0;
      for (LInstruction::InputIterator alloc(*ins); alloc.more();
           alloc.next()) {
        LAllocation oldInput = info.inputs[inputIndex++];
        if (!oldInput.isUse()) {
          continue;
        }

        uint32_t vreg = oldInput.toUse()->virtualRegister();

        if (safepoint && !oldInput.toUse()->usedAtStart()) {
          if (!checkSafepointAllocation(ins, vreg, **alloc,
                                        populateSafepoints)) {
            return false;
          }
        }

        // Start checking at the previous instruction, in case this
        // instruction reuses its input register for an output.
        LInstructionReverseIterator riter = block->rbegin(ins);
        riter++;
        if (!checkIntegrity(block, *riter, vreg, **alloc, populateSafepoints)) {
          return false;
        }

        while (!worklist.empty()) {
          IntegrityItem item = worklist.popCopy();
          if (!checkIntegrity(item.block, *item.block->rbegin(), item.vreg,
                              item.alloc, populateSafepoints)) {
            return false;
          }
        }
      }
    }
  }

  return true;
}

bool AllocationIntegrityState::checkIntegrity(LBlock* block, LInstruction* ins,
                                              uint32_t vreg, LAllocation alloc,
                                              bool populateSafepoints) {
  for (LInstructionReverseIterator iter(block->rbegin(ins));
       iter != block->rend(); iter++) {
    ins = *iter;

    // Follow values through assignments in move groups. All assignments in
    // a move group are considered to happen simultaneously, so stop after
    // the first matching move is found.
    if (ins->isMoveGroup()) {
      LMoveGroup* group = ins->toMoveGroup();
      for (int i = group->numMoves() - 1; i >= 0; i--) {
        if (group->getMove(i).to() == alloc) {
          alloc = group->getMove(i).from();
          break;
        }
      }
    }

    const InstructionInfo& info = instructions[ins->id()];

    // Make sure the physical location being tracked is not clobbered by
    // another instruction, and that if the originating vreg definition is
    // found that it is writing to the tracked location.

    for (size_t i = 0; i < ins->numDefs(); i++) {
      LDefinition* def = ins->getDef(i);
      if (def->isBogusTemp()) {
        continue;
      }
      if (info.outputs[i].virtualRegister() == vreg) {
        MOZ_ASSERT(*def->output() == alloc);

        // Found the original definition, done scanning.
        return true;
      } else {
        MOZ_ASSERT(*def->output() != alloc);
      }
    }

    for (size_t i = 0; i < ins->numTemps(); i++) {
      LDefinition* temp = ins->getTemp(i);
      if (!temp->isBogusTemp()) {
        MOZ_ASSERT(*temp->output() != alloc);
      }
    }

    if (ins->safepoint()) {
      if (!checkSafepointAllocation(ins, vreg, alloc, populateSafepoints)) {
        return false;
      }
    }
  }

  // Phis are effectless, but change the vreg we are tracking. Check if there
  // is one which produced this vreg. We need to follow back through the phi
  // inputs as it is not guaranteed the register allocator filled in physical
  // allocations for the inputs and outputs of the phis.
  for (size_t i = 0; i < block->numPhis(); i++) {
    const InstructionInfo& info = blocks[block->mir()->id()].phis[i];
    LPhi* phi = block->getPhi(i);
    if (info.outputs[0].virtualRegister() == vreg) {
      for (size_t j = 0, jend = phi->numOperands(); j < jend; j++) {
        uint32_t newvreg = info.inputs[j].toUse()->virtualRegister();
        LBlock* predecessor = block->mir()->getPredecessor(j)->lir();
        if (!addPredecessor(predecessor, newvreg, alloc)) {
          return false;
        }
      }
      return true;
    }
  }

  // No phi which defined the vreg we are tracking, follow back through all
  // predecessors with the existing vreg.
  for (size_t i = 0, iend = block->mir()->numPredecessors(); i < iend; i++) {
    LBlock* predecessor = block->mir()->getPredecessor(i)->lir();
    if (!addPredecessor(predecessor, vreg, alloc)) {
      return false;
    }
  }

  return true;
}

bool AllocationIntegrityState::checkSafepointAllocation(
    LInstruction* ins, uint32_t vreg, LAllocation alloc,
    bool populateSafepoints) {
  LSafepoint* safepoint = ins->safepoint();
  MOZ_ASSERT(safepoint);

  if (ins->isCall() && alloc.isRegister()) {
    return true;
  }

  if (alloc.isRegister()) {
    AnyRegister reg = alloc.toRegister();
    if (populateSafepoints) {
      safepoint->addLiveRegister(reg);
    }

    MOZ_ASSERT(safepoint->liveRegs().has(reg));
  }

  // The |this| argument slot is implicitly included in all safepoints.
  if (alloc.isArgument() &&
      alloc.toArgument()->index() < THIS_FRAME_ARGSLOT + sizeof(Value)) {
    return true;
  }

  LDefinition::Type type = virtualRegisters[vreg]
                               ? virtualRegisters[vreg]->type()
                               : LDefinition::GENERAL;

  switch (type) {
    case LDefinition::OBJECT:
      if (populateSafepoints) {
        JitSpew(JitSpew_RegAlloc, "Safepoint object v%u i%u %s", vreg,
                ins->id(), alloc.toString().get());
        if (!safepoint->addGcPointer(alloc)) {
          return false;
        }
      }
      MOZ_ASSERT(safepoint->hasGcPointer(alloc));
      break;
    case LDefinition::SLOTS:
      if (populateSafepoints) {
        JitSpew(JitSpew_RegAlloc, "Safepoint slots v%u i%u %s", vreg, ins->id(),
                alloc.toString().get());
        if (!safepoint->addSlotsOrElementsPointer(alloc)) {
          return false;
        }
      }
      MOZ_ASSERT(safepoint->hasSlotsOrElementsPointer(alloc));
      break;
#ifdef JS_NUNBOX32
    // Do not assert that safepoint information for nunbox types is complete,
    // as if a vreg for a value's components are copied in multiple places
    // then the safepoint information may not reflect all copies. All copies
    // of payloads must be reflected, however, for generational GC.
    case LDefinition::TYPE:
      if (populateSafepoints) {
        JitSpew(JitSpew_RegAlloc, "Safepoint type v%u i%u %s", vreg, ins->id(),
                alloc.toString().get());
        if (!safepoint->addNunboxType(vreg, alloc)) {
          return false;
        }
      }
      break;
    case LDefinition::PAYLOAD:
      if (populateSafepoints) {
        JitSpew(JitSpew_RegAlloc, "Safepoint payload v%u i%u %s", vreg,
                ins->id(), alloc.toString().get());
        if (!safepoint->addNunboxPayload(vreg, alloc)) {
          return false;
        }
      }
      MOZ_ASSERT(safepoint->hasNunboxPayload(alloc));
      break;
#else
    case LDefinition::BOX:
      if (populateSafepoints) {
        JitSpew(JitSpew_RegAlloc, "Safepoint boxed value v%u i%u %s", vreg,
                ins->id(), alloc.toString().get());
        if (!safepoint->addBoxedValue(alloc)) {
          return false;
        }
      }
      MOZ_ASSERT(safepoint->hasBoxedValue(alloc));
      break;
#endif
    default:
      break;
  }

  return true;
}

bool AllocationIntegrityState::addPredecessor(LBlock* block, uint32_t vreg,
                                              LAllocation alloc) {
  // There is no need to reanalyze if we have already seen this predecessor.
  // We share the seen allocations across analysis of each use, as there will
  // likely be common ground between different uses of the same vreg.
  IntegrityItem item;
  item.block = block;
  item.vreg = vreg;
  item.alloc = alloc;
  item.index = seen.count();

  IntegrityItemSet::AddPtr p = seen.lookupForAdd(item);
  if (p) {
    return true;
  }
  if (!seen.add(p, item)) {
    return false;
  }

  return worklist.append(item);
}

void AllocationIntegrityState::dump() {
#ifdef DEBUG
  fprintf(stderr, "Register Allocation Integrity State:\n");

  for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
    LBlock* block = graph.getBlock(blockIndex);
    MBasicBlock* mir = block->mir();

    fprintf(stderr, "\nBlock %lu", static_cast<unsigned long>(blockIndex));
    for (size_t i = 0; i < mir->numSuccessors(); i++) {
      fprintf(stderr, " [successor %u]", mir->getSuccessor(i)->id());
    }
    fprintf(stderr, "\n");

    for (size_t i = 0; i < block->numPhis(); i++) {
      const InstructionInfo& info = blocks[blockIndex].phis[i];
      LPhi* phi = block->getPhi(i);
      CodePosition input(block->getPhi(0)->id(), CodePosition::INPUT);
      CodePosition output(block->getPhi(block->numPhis() - 1)->id(),
                          CodePosition::OUTPUT);

      fprintf(stderr, "[%u,%u Phi] [def %s] ", input.bits(), output.bits(),
              phi->getDef(0)->toString().get());
      for (size_t j = 0; j < phi->numOperands(); j++) {
        fprintf(stderr, " [use %s]", info.inputs[j].toString().get());
      }
      fprintf(stderr, "\n");
    }

    for (LInstructionIterator iter = block->begin(); iter != block->end();
         iter++) {
      LInstruction* ins = *iter;
      const InstructionInfo& info = instructions[ins->id()];

      CodePosition input(ins->id(), CodePosition::INPUT);
      CodePosition output(ins->id(), CodePosition::OUTPUT);

      fprintf(stderr, "[");
      if (input != CodePosition::MIN) {
        fprintf(stderr, "%u,%u ", input.bits(), output.bits());
      }
      fprintf(stderr, "%s]", ins->opName());

      if (ins->isMoveGroup()) {
        LMoveGroup* group = ins->toMoveGroup();
        for (int i = group->numMoves() - 1; i >= 0; i--) {
          fprintf(stderr, " [%s -> %s]",
                  group->getMove(i).from().toString().get(),
                  group->getMove(i).to().toString().get());
        }
        fprintf(stderr, "\n");
        continue;
      }

      for (size_t i = 0; i < ins->numDefs(); i++) {
        fprintf(stderr, " [def %s]", ins->getDef(i)->toString().get());
      }

      for (size_t i = 0; i < ins->numTemps(); i++) {
        LDefinition* temp = ins->getTemp(i);
        if (!temp->isBogusTemp()) {
          fprintf(stderr, " [temp v%u %s]", info.temps[i].virtualRegister(),
                  temp->toString().get());
        }
      }

      size_t index = 0;
      for (LInstruction::InputIterator alloc(*ins); alloc.more();
           alloc.next()) {
        fprintf(stderr, " [use %s", info.inputs[index++].toString().get());
        if (!alloc->isConstant()) {
          fprintf(stderr, " %s", alloc->toString().get());
        }
        fprintf(stderr, "]");
      }

      fprintf(stderr, "\n");
    }
  }

  // Print discovered allocations at the ends of blocks, in the order they
  // were discovered.

  Vector<IntegrityItem, 20, SystemAllocPolicy> seenOrdered;
  if (!seenOrdered.appendN(IntegrityItem(), seen.count())) {
    fprintf(stderr, "OOM while dumping allocations\n");
    return;
  }

  for (IntegrityItemSet::Enum iter(seen); !iter.empty(); iter.popFront()) {
    IntegrityItem item = iter.front();
    seenOrdered[item.index] = item;
  }

  if (!seenOrdered.empty()) {
    fprintf(stderr, "Intermediate Allocations:\n");

    for (size_t i = 0; i < seenOrdered.length(); i++) {
      IntegrityItem item = seenOrdered[i];
      fprintf(stderr, "  block %u reg v%u alloc %s\n", item.block->mir()->id(),
              item.vreg, item.alloc.toString().get());
    }
  }

  fprintf(stderr, "\n");
#endif
}

const CodePosition CodePosition::MAX(UINT_MAX);
const CodePosition CodePosition::MIN(0);

bool RegisterAllocator::init() {
  if (!insData.init(mir, graph.numInstructions())) {
    return false;
  }

  if (!entryPositions.reserve(graph.numBlocks()) ||
      !exitPositions.reserve(graph.numBlocks())) {
    return false;
  }

  for (size_t i = 0; i < graph.numBlocks(); i++) {
    LBlock* block = graph.getBlock(i);
    for (LInstructionIterator ins = block->begin(); ins != block->end();
         ins++) {
      insData[ins->id()] = *ins;
    }
    for (size_t j = 0; j < block->numPhis(); j++) {
      LPhi* phi = block->getPhi(j);
      insData[phi->id()] = phi;
    }

    CodePosition entry =
        block->numPhis() != 0
            ? CodePosition(block->getPhi(0)->id(), CodePosition::INPUT)
            : inputOf(block->firstInstructionWithId());
    CodePosition exit = outputOf(block->lastInstructionWithId());

    MOZ_ASSERT(block->mir()->id() == i);
    entryPositions.infallibleAppend(entry);
    exitPositions.infallibleAppend(exit);
  }

  return true;
}

LMoveGroup* RegisterAllocator::getInputMoveGroup(LInstruction* ins) {
  MOZ_ASSERT(!ins->fixReuseMoves());
  if (ins->inputMoves()) {
    return ins->inputMoves();
  }

  LMoveGroup* moves = LMoveGroup::New(alloc());
  ins->setInputMoves(moves);
  ins->block()->insertBefore(ins, moves);
  return moves;
}

LMoveGroup* RegisterAllocator::getFixReuseMoveGroup(LInstruction* ins) {
  if (ins->fixReuseMoves()) {
    return ins->fixReuseMoves();
  }

  LMoveGroup* moves = LMoveGroup::New(alloc());
  ins->setFixReuseMoves(moves);
  ins->block()->insertBefore(ins, moves);
  return moves;
}

LMoveGroup* RegisterAllocator::getMoveGroupAfter(LInstruction* ins) {
  if (ins->movesAfter()) {
    return ins->movesAfter();
  }

  LMoveGroup* moves = LMoveGroup::New(alloc());
  ins->setMovesAfter(moves);

  ins->block()->insertAfter(ins, moves);
  return moves;
}

void RegisterAllocator::dumpInstructions() {
#ifdef JS_JITSPEW
  fprintf(stderr, "Instructions:\n");

  for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
    LBlock* block = graph.getBlock(blockIndex);
    MBasicBlock* mir = block->mir();

    fprintf(stderr, "\nBlock %lu", static_cast<unsigned long>(blockIndex));
    for (size_t i = 0; i < mir->numSuccessors(); i++) {
      fprintf(stderr, " [successor %u]", mir->getSuccessor(i)->id());
    }
    fprintf(stderr, "\n");

    for (size_t i = 0; i < block->numPhis(); i++) {
      LPhi* phi = block->getPhi(i);

      fprintf(stderr, "[%u,%u Phi] [def %s]", inputOf(phi).bits(),
              outputOf(phi).bits(), phi->getDef(0)->toString().get());
      for (size_t j = 0; j < phi->numOperands(); j++) {
        fprintf(stderr, " [use %s]", phi->getOperand(j)->toString().get());
      }
      fprintf(stderr, "\n");
    }

    for (LInstructionIterator iter = block->begin(); iter != block->end();
         iter++) {
      LInstruction* ins = *iter;

      fprintf(stderr, "[");
      if (ins->id() != 0) {
        fprintf(stderr, "%u,%u ", inputOf(ins).bits(), outputOf(ins).bits());
      }
      fprintf(stderr, "%s]", ins->opName());

      if (ins->isMoveGroup()) {
        LMoveGroup* group = ins->toMoveGroup();
        for (int i = group->numMoves() - 1; i >= 0; i--) {
          // Use two printfs, as LAllocation::toString is not reentant.
          fprintf(stderr, " [%s", group->getMove(i).from().toString().get());
          fprintf(stderr, " -> %s]", group->getMove(i).to().toString().get());
        }
        fprintf(stderr, "\n");
        continue;
      }

      for (size_t i = 0; i < ins->numDefs(); i++) {
        fprintf(stderr, " [def %s]", ins->getDef(i)->toString().get());
      }

      for (size_t i = 0; i < ins->numTemps(); i++) {
        LDefinition* temp = ins->getTemp(i);
        if (!temp->isBogusTemp()) {
          fprintf(stderr, " [temp %s]", temp->toString().get());
        }
      }

      for (LInstruction::InputIterator alloc(*ins); alloc.more();
           alloc.next()) {
        if (!alloc->isBogus()) {
          fprintf(stderr, " [use %s]", alloc->toString().get());
        }
      }

      fprintf(stderr, "\n");
    }
  }
  fprintf(stderr, "\n");
#endif  // JS_JITSPEW
}