DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_RangeAnalysis_h
#define jit_RangeAnalysis_h

#include "mozilla/FloatingPoint.h"
#include "mozilla/MathAlgorithms.h"

#include "jit/IonAnalysis.h"
#include "jit/MIR.h"

namespace js {
namespace jit {

class MBasicBlock;
class MIRGraph;

// An upper bound computed on the number of backedges a loop will take.
// This count only includes backedges taken while running Ion code: for OSR
// loops, this will exclude iterations that executed in the interpreter or in
// baseline compiled code.
struct LoopIterationBound : public TempObject {
  // Loop for which this bound applies.
  MBasicBlock* header;

  // Test from which this bound was derived; after executing exactly 'bound'
  // times this test will exit the loop. Code in the loop body which this
  // test dominates (will include the backedge) will execute at most 'bound'
  // times. Other code in the loop will execute at most '1 + Max(bound, 0)'
  // times.
  MTest* test;

  // Symbolic bound computed for the number of backedge executions. The terms
  // in this bound are all loop invariant.
  LinearSum boundSum;

  // Linear sum for the number of iterations already executed, at the start
  // of the loop header. This will use loop invariant terms and header phis.
  LinearSum currentSum;

  LoopIterationBound(MBasicBlock* header, MTest* test,
                     const LinearSum& boundSum, const LinearSum& currentSum)
      : header(header),
        test(test),
        boundSum(boundSum),
        currentSum(currentSum) {}
};

typedef Vector<LoopIterationBound*, 0, SystemAllocPolicy>
    LoopIterationBoundVector;

// A symbolic upper or lower bound computed for a term.
struct SymbolicBound : public TempObject {
 private:
  SymbolicBound(LoopIterationBound* loop, const LinearSum& sum)
      : loop(loop), sum(sum) {}

 public:
  // Any loop iteration bound from which this was derived.
  //
  // If non-nullptr, then 'sum' is only valid within the loop body, at
  // points dominated by the loop bound's test (see LoopIterationBound).
  //
  // If nullptr, then 'sum' is always valid.
  LoopIterationBound* loop;

  static SymbolicBound* New(TempAllocator& alloc, LoopIterationBound* loop,
                            const LinearSum& sum) {
    return new (alloc) SymbolicBound(loop, sum);
  }

  // Computed symbolic bound, see above.
  LinearSum sum;

  void dump(GenericPrinter& out) const;
  void dump() const;
};

class RangeAnalysis {
 protected:
  bool blockDominates(MBasicBlock* b, MBasicBlock* b2);
  void replaceDominatedUsesWith(MDefinition* orig, MDefinition* dom,
                                MBasicBlock* block);

 protected:
  MIRGenerator* mir;
  MIRGraph& graph_;
  Vector<MBinaryBitwiseInstruction*, 16, SystemAllocPolicy> bitops;

  TempAllocator& alloc() const;

 public:
  RangeAnalysis(MIRGenerator* mir, MIRGraph& graph) : mir(mir), graph_(graph) {}
  MOZ_MUST_USE bool addBetaNodes();
  MOZ_MUST_USE bool analyze();
  MOZ_MUST_USE bool addRangeAssertions();
  MOZ_MUST_USE bool removeBetaNodes();
  MOZ_MUST_USE bool prepareForUCE(bool* shouldRemoveDeadCode);
  MOZ_MUST_USE bool tryRemovingGuards();
  MOZ_MUST_USE bool truncate();
  MOZ_MUST_USE bool removeUnnecessaryBitops();

  // Any iteration bounds discovered for loops in the graph.
  LoopIterationBoundVector loopIterationBounds;

 private:
  MOZ_MUST_USE bool analyzeLoop(MBasicBlock* header);
  LoopIterationBound* analyzeLoopIterationCount(MBasicBlock* header,
                                                MTest* test,
                                                BranchDirection direction);
  void analyzeLoopPhi(LoopIterationBound* loopBound, MPhi* phi);
  MOZ_MUST_USE bool tryHoistBoundsCheck(MBasicBlock* header, MBoundsCheck* ins);
};

class Range : public TempObject {
 public:
  // Int32 are signed. INT32_MAX is pow(2,31)-1 and INT32_MIN is -pow(2,31),
  // so the greatest exponent we need is 31.
  static const uint16_t MaxInt32Exponent = 31;

  // UInt32 are unsigned. UINT32_MAX is pow(2,32)-1, so it's the greatest
  // value that has an exponent of 31.
  static const uint16_t MaxUInt32Exponent = 31;

  // Maximal exponenent under which we have no precission loss on double
  // operations. Double has 52 bits of mantissa, so 2^52+1 cannot be
  // represented without loss.
  static const uint16_t MaxTruncatableExponent =
      mozilla::FloatingPoint<double>::kExponentShift;

  // Maximum exponent for finite values.
  static const uint16_t MaxFiniteExponent =
      mozilla::FloatingPoint<double>::kExponentBias;

  // An special exponent value representing all non-NaN values. This
  // includes finite values and the infinities.
  static const uint16_t IncludesInfinity = MaxFiniteExponent + 1;

  // An special exponent value representing all possible double-precision
  // values. This includes finite values, the infinities, and NaNs.
  static const uint16_t IncludesInfinityAndNaN = UINT16_MAX;

  // This range class uses int32_t ranges, but has several interfaces which
  // use int64_t, which either holds an int32_t value, or one of the following
  // special values which mean a value which is beyond the int32 range,
  // potentially including infinity or NaN. These special values are
  // guaranteed to compare greater, and less than, respectively, any int32_t
  // value.
  static const int64_t NoInt32UpperBound = int64_t(JSVAL_INT_MAX) + 1;
  static const int64_t NoInt32LowerBound = int64_t(JSVAL_INT_MIN) - 1;

  enum FractionalPartFlag {
    ExcludesFractionalParts = false,
    IncludesFractionalParts = true
  };
  enum NegativeZeroFlag {
    ExcludesNegativeZero = false,
    IncludesNegativeZero = true
  };

 private:
  // Absolute ranges.
  //
  // We represent ranges where the endpoints can be in the set:
  // {-infty} U [INT_MIN, INT_MAX] U {infty}.  A bound of +/-
  // infty means that the value may have overflowed in that
  // direction. When computing the range of an integer
  // instruction, the ranges of the operands can be clamped to
  // [INT_MIN, INT_MAX], since if they had overflowed they would
  // no longer be integers. This is important for optimizations
  // and somewhat subtle.
  //
  // N.B.: All of the operations that compute new ranges based
  // on existing ranges will ignore the hasInt32*Bound_ flags of the
  // input ranges; that is, they implicitly clamp the ranges of
  // the inputs to [INT_MIN, INT_MAX]. Therefore, while our range might
  // be unbounded (and could overflow), when using this information to
  // propagate through other ranges, we disregard this fact; if that code
  // executes, then the overflow did not occur, so we may safely assume
  // that the range is [INT_MIN, INT_MAX] instead.
  //
  // To facilitate this trick, we maintain the invariants that:
  // 1) hasInt32LowerBound_ == false implies lower_ == JSVAL_INT_MIN
  // 2) hasInt32UpperBound_ == false implies upper_ == JSVAL_INT_MAX
  //
  // As a second and less precise range analysis, we represent the maximal
  // exponent taken by a value. The exponent is calculated by taking the
  // absolute value and looking at the position of the highest bit.  All
  // exponent computation have to be over-estimations of the actual result. On
  // the Int32 this over approximation is rectified.

  MOZ_INIT_OUTSIDE_CTOR int32_t lower_;
  MOZ_INIT_OUTSIDE_CTOR int32_t upper_;

  MOZ_INIT_OUTSIDE_CTOR bool hasInt32LowerBound_;
  MOZ_INIT_OUTSIDE_CTOR bool hasInt32UpperBound_;

  MOZ_INIT_OUTSIDE_CTOR FractionalPartFlag canHaveFractionalPart_ : 1;
  MOZ_INIT_OUTSIDE_CTOR NegativeZeroFlag canBeNegativeZero_ : 1;
  MOZ_INIT_OUTSIDE_CTOR uint16_t max_exponent_;

  // Any symbolic lower or upper bound computed for this term.
  const SymbolicBound* symbolicLower_;
  const SymbolicBound* symbolicUpper_;

  // This function simply makes several MOZ_ASSERTs to verify the internal
  // consistency of this range.
  void assertInvariants() const {
    // Basic sanity :).
    MOZ_ASSERT(lower_ <= upper_);

    // When hasInt32LowerBound_ or hasInt32UpperBound_ are false, we set
    // lower_ and upper_ to these specific values as it simplifies the
    // implementation in some places.
    MOZ_ASSERT_IF(!hasInt32LowerBound_, lower_ == JSVAL_INT_MIN);
    MOZ_ASSERT_IF(!hasInt32UpperBound_, upper_ == JSVAL_INT_MAX);

    // max_exponent_ must be one of three possible things.
    MOZ_ASSERT(max_exponent_ <= MaxFiniteExponent ||
               max_exponent_ == IncludesInfinity ||
               max_exponent_ == IncludesInfinityAndNaN);

    // Forbid the max_exponent_ field from implying better bounds for
    // lower_/upper_ fields. We have to add 1 to the max_exponent_ when
    // canHaveFractionalPart_ is true in order to accomodate
    // fractional offsets. For example, 2147483647.9 is greater than
    // INT32_MAX, so a range containing that value will have
    // hasInt32UpperBound_ set to false, however that value also has
    // exponent 30, which is strictly less than MaxInt32Exponent. For
    // another example, 1.9 has an exponent of 0 but requires upper_ to be
    // at least 2, which has exponent 1.
    mozilla::DebugOnly<uint32_t> adjustedExponent =
        max_exponent_ + (canHaveFractionalPart_ ? 1 : 0);
    MOZ_ASSERT_IF(!hasInt32LowerBound_ || !hasInt32UpperBound_,
                  adjustedExponent >= MaxInt32Exponent);
    MOZ_ASSERT(adjustedExponent >= mozilla::FloorLog2(mozilla::Abs(upper_)));
    MOZ_ASSERT(adjustedExponent >= mozilla::FloorLog2(mozilla::Abs(lower_)));

    // The following are essentially static assertions, but FloorLog2 isn't
    // trivially suitable for constexpr :(.
    MOZ_ASSERT(mozilla::FloorLog2(JSVAL_INT_MIN) == MaxInt32Exponent);
    MOZ_ASSERT(mozilla::FloorLog2(JSVAL_INT_MAX) == 30);
    MOZ_ASSERT(mozilla::FloorLog2(UINT32_MAX) == MaxUInt32Exponent);
    MOZ_ASSERT(mozilla::FloorLog2(0) == 0);
  }

  // Set the lower_ and hasInt32LowerBound_ values.
  void setLowerInit(int64_t x) {
    if (x > JSVAL_INT_MAX) {
      lower_ = JSVAL_INT_MAX;
      hasInt32LowerBound_ = true;
    } else if (x < JSVAL_INT_MIN) {
      lower_ = JSVAL_INT_MIN;
      hasInt32LowerBound_ = false;
    } else {
      lower_ = int32_t(x);
      hasInt32LowerBound_ = true;
    }
  }
  // Set the upper_ and hasInt32UpperBound_ values.
  void setUpperInit(int64_t x) {
    if (x > JSVAL_INT_MAX) {
      upper_ = JSVAL_INT_MAX;
      hasInt32UpperBound_ = false;
    } else if (x < JSVAL_INT_MIN) {
      upper_ = JSVAL_INT_MIN;
      hasInt32UpperBound_ = true;
    } else {
      upper_ = int32_t(x);
      hasInt32UpperBound_ = true;
    }
  }

  // Compute the least exponent value that would be compatible with the
  // values of lower() and upper().
  //
  // Note:
  //     exponent of JSVAL_INT_MIN == 31
  //     exponent of JSVAL_INT_MAX == 30
  uint16_t exponentImpliedByInt32Bounds() const {
    // The number of bits needed to encode |max| is the power of 2 plus one.
    uint32_t max = Max(mozilla::Abs(lower()), mozilla::Abs(upper()));
    uint16_t result = mozilla::FloorLog2(max);
    MOZ_ASSERT(result ==
               (max == 0 ? 0 : mozilla::ExponentComponent(double(max))));
    return result;
  }

  // When converting a range which contains fractional values to a range
  // containing only integers, the old max_exponent_ value may imply a better
  // lower and/or upper bound than was previously available, because they no
  // longer need to be conservative about fractional offsets and the ends of
  // the range.
  //
  // Given an exponent value and pointers to the lower and upper bound values,
  // this function refines the lower and upper bound values to the tighest
  // bound for integer values implied by the exponent.
  static void refineInt32BoundsByExponent(uint16_t e, int32_t* l, bool* lb,
                                          int32_t* h, bool* hb) {
    if (e < MaxInt32Exponent) {
      // pow(2, max_exponent_+1)-1 to compute a maximum absolute value.
      int32_t limit = (uint32_t(1) << (e + 1)) - 1;
      *h = Min(*h, limit);
      *l = Max(*l, -limit);
      *hb = true;
      *lb = true;
    }
  }

  // If the value of any of the fields implies a stronger possible value for
  // any other field, update that field to the stronger value. The range must
  // be completely valid before and it is guaranteed to be kept valid.
  void optimize() {
    assertInvariants();

    if (hasInt32Bounds()) {
      // Examine lower() and upper(), and if they imply a better exponent
      // bound than max_exponent_, set that value as the new
      // max_exponent_.
      uint16_t newExponent = exponentImpliedByInt32Bounds();
      if (newExponent < max_exponent_) {
        max_exponent_ = newExponent;
        assertInvariants();
      }

      // If we have a completely precise range, the value is an integer,
      // since we can only represent integers.
      if (canHaveFractionalPart_ && lower_ == upper_) {
        canHaveFractionalPart_ = ExcludesFractionalParts;
        assertInvariants();
      }
    }

    // If the range doesn't include zero, it doesn't include negative zero.
    if (canBeNegativeZero_ && !canBeZero()) {
      canBeNegativeZero_ = ExcludesNegativeZero;
      assertInvariants();
    }
  }

  // Set the range fields to the given raw values.
  void rawInitialize(int32_t l, bool lb, int32_t h, bool hb,
                     FractionalPartFlag canHaveFractionalPart,
                     NegativeZeroFlag canBeNegativeZero, uint16_t e) {
    lower_ = l;
    upper_ = h;
    hasInt32LowerBound_ = lb;
    hasInt32UpperBound_ = hb;
    canHaveFractionalPart_ = canHaveFractionalPart;
    canBeNegativeZero_ = canBeNegativeZero;
    max_exponent_ = e;
    optimize();
  }

  // Construct a range from the given raw values.
  Range(int32_t l, bool lb, int32_t h, bool hb,
        FractionalPartFlag canHaveFractionalPart,
        NegativeZeroFlag canBeNegativeZero, uint16_t e)
      : symbolicLower_(nullptr), symbolicUpper_(nullptr) {
    rawInitialize(l, lb, h, hb, canHaveFractionalPart, canBeNegativeZero, e);
  }

 public:
  Range() : symbolicLower_(nullptr), symbolicUpper_(nullptr) { setUnknown(); }

  Range(int64_t l, int64_t h, FractionalPartFlag canHaveFractionalPart,
        NegativeZeroFlag canBeNegativeZero, uint16_t e)
      : symbolicLower_(nullptr), symbolicUpper_(nullptr) {
    set(l, h, canHaveFractionalPart, canBeNegativeZero, e);
  }

  Range(const Range& other)
      : lower_(other.lower_),
        upper_(other.upper_),
        hasInt32LowerBound_(other.hasInt32LowerBound_),
        hasInt32UpperBound_(other.hasInt32UpperBound_),
        canHaveFractionalPart_(other.canHaveFractionalPart_),
        canBeNegativeZero_(other.canBeNegativeZero_),
        max_exponent_(other.max_exponent_),
        symbolicLower_(nullptr),
        symbolicUpper_(nullptr) {
    assertInvariants();
  }

  // Construct a range from the given MDefinition. This differs from the
  // MDefinition's range() method in that it describes the range of values
  // *after* any bailout checks.
  explicit Range(const MDefinition* def);

  static Range* NewInt32Range(TempAllocator& alloc, int32_t l, int32_t h) {
    return new (alloc) Range(l, h, ExcludesFractionalParts,
                             ExcludesNegativeZero, MaxInt32Exponent);
  }

  // Construct an int32 range containing just i. This is just a convenience
  // wrapper around NewInt32Range.
  static Range* NewInt32SingletonRange(TempAllocator& alloc, int32_t i) {
    return NewInt32Range(alloc, i, i);
  }

  static Range* NewUInt32Range(TempAllocator& alloc, uint32_t l, uint32_t h) {
    // For now, just pass them to the constructor as int64_t values.
    // They'll become unbounded if they're not in the int32_t range.
    return new (alloc) Range(l, h, ExcludesFractionalParts,
                             ExcludesNegativeZero, MaxUInt32Exponent);
  }

  // Construct a range containing values >= l and <= h. Note that this
  // function treats negative zero as equal to zero, as >= and <= do. If the
  // range includes zero, it is assumed to include negative zero too.
  static Range* NewDoubleRange(TempAllocator& alloc, double l, double h) {
    if (mozilla::IsNaN(l) && mozilla::IsNaN(h)) {
      return nullptr;
    }

    Range* r = new (alloc) Range();
    r->setDouble(l, h);
    return r;
  }

  // Construct the strictest possible range containing d, or null if d is NaN.
  // This function treats negative zero as distinct from zero, since this
  // makes the strictest possible range containin zero a range which
  // contains one value rather than two.
  static Range* NewDoubleSingletonRange(TempAllocator& alloc, double d) {
    if (mozilla::IsNaN(d)) {
      return nullptr;
    }

    Range* r = new (alloc) Range();
    r->setDoubleSingleton(d);
    return r;
  }

  void dump(GenericPrinter& out) const;
  void dump() const;
  MOZ_MUST_USE bool update(const Range* other);

  // Unlike the other operations, unionWith is an in-place
  // modification. This is to avoid a bunch of useless extra
  // copying when chaining together unions when handling Phi
  // nodes.
  void unionWith(const Range* other);
  static Range* intersect(TempAllocator& alloc, const Range* lhs,
                          const Range* rhs, bool* emptyRange);
  static Range* add(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* sub(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* mul(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* and_(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* or_(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* xor_(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* not_(TempAllocator& alloc, const Range* op);
  static Range* lsh(TempAllocator& alloc, const Range* lhs, int32_t c);
  static Range* rsh(TempAllocator& alloc, const Range* lhs, int32_t c);
  static Range* ursh(TempAllocator& alloc, const Range* lhs, int32_t c);
  static Range* lsh(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* rsh(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* ursh(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* abs(TempAllocator& alloc, const Range* op);
  static Range* min(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* max(TempAllocator& alloc, const Range* lhs, const Range* rhs);
  static Range* floor(TempAllocator& alloc, const Range* op);
  static Range* ceil(TempAllocator& alloc, const Range* op);
  static Range* sign(TempAllocator& alloc, const Range* op);
  static Range* NaNToZero(TempAllocator& alloc, const Range* op);

  static MOZ_MUST_USE bool negativeZeroMul(const Range* lhs, const Range* rhs);

  bool isUnknownInt32() const {
    return isInt32() && lower() == INT32_MIN && upper() == INT32_MAX;
  }

  bool isUnknown() const {
    return !hasInt32LowerBound_ && !hasInt32UpperBound_ &&
           canHaveFractionalPart_ && canBeNegativeZero_ &&
           max_exponent_ == IncludesInfinityAndNaN;
  }

  bool hasInt32LowerBound() const { return hasInt32LowerBound_; }
  bool hasInt32UpperBound() const { return hasInt32UpperBound_; }

  // Test whether the value is known to be within [INT32_MIN,INT32_MAX].
  // Note that this does not necessarily mean the value is an integer.
  bool hasInt32Bounds() const {
    return hasInt32LowerBound() && hasInt32UpperBound();
  }

  // Test whether the value is known to be representable as an int32.
  bool isInt32() const {
    return hasInt32Bounds() && !canHaveFractionalPart_ && !canBeNegativeZero_;
  }

  // Test whether the given value is known to be either 0 or 1.
  bool isBoolean() const {
    return lower() >= 0 && upper() <= 1 && !canHaveFractionalPart_ &&
           !canBeNegativeZero_;
  }

  bool canHaveRoundingErrors() const {
    return canHaveFractionalPart_ || canBeNegativeZero_ ||
           max_exponent_ >= MaxTruncatableExponent;
  }

  // Test if an integer x belongs to the range.
  bool contains(int32_t x) const { return x >= lower_ && x <= upper_; }

  // Test whether the range contains zero (of either sign).
  bool canBeZero() const { return contains(0); }

  // Test whether the range contains NaN values.
  bool canBeNaN() const { return max_exponent_ == IncludesInfinityAndNaN; }

  // Test whether the range contains infinities or NaN values.
  bool canBeInfiniteOrNaN() const { return max_exponent_ >= IncludesInfinity; }

  FractionalPartFlag canHaveFractionalPart() const {
    return canHaveFractionalPart_;
  }

  NegativeZeroFlag canBeNegativeZero() const { return canBeNegativeZero_; }

  uint16_t exponent() const {
    MOZ_ASSERT(!canBeInfiniteOrNaN());
    return max_exponent_;
  }

  uint16_t numBits() const {
    return exponent() + 1;  // 2^0 -> 1
  }

  // Return the lower bound. Asserts that the value has an int32 bound.
  int32_t lower() const {
    MOZ_ASSERT(hasInt32LowerBound());
    return lower_;
  }

  // Return the upper bound. Asserts that the value has an int32 bound.
  int32_t upper() const {
    MOZ_ASSERT(hasInt32UpperBound());
    return upper_;
  }

  // Test whether all values in this range can are finite and negative.
  bool isFiniteNegative() const { return upper_ < 0 && !canBeInfiniteOrNaN(); }

  // Test whether all values in this range can are finite and non-negative.
  bool isFiniteNonNegative() const {
    return lower_ >= 0 && !canBeInfiniteOrNaN();
  }

  // Test whether a value in this range can possibly be a finite
  // negative value. Note that "negative zero" is not considered negative.
  bool canBeFiniteNegative() const { return lower_ < 0; }

  // Test whether a value in this range can possibly be a finite
  // non-negative value.
  bool canBeFiniteNonNegative() const { return upper_ >= 0; }

  // Test whether a value in this range can have the sign bit set (not
  // counting NaN, where the sign bit is meaningless).
  bool canHaveSignBitSet() const {
    return !hasInt32LowerBound() || canBeFiniteNegative() ||
           canBeNegativeZero();
  }

  // Set this range to have a lower bound not less than x.
  void refineLower(int32_t x) {
    assertInvariants();
    hasInt32LowerBound_ = true;
    lower_ = Max(lower_, x);
    optimize();
  }

  // Set this range to have an upper bound not greater than x.
  void refineUpper(int32_t x) {
    assertInvariants();
    hasInt32UpperBound_ = true;
    upper_ = Min(upper_, x);
    optimize();
  }

  // Set this range to exclude negative zero.
  void refineToExcludeNegativeZero() {
    assertInvariants();
    canBeNegativeZero_ = ExcludesNegativeZero;
    optimize();
  }

  void setInt32(int32_t l, int32_t h) {
    hasInt32LowerBound_ = true;
    hasInt32UpperBound_ = true;
    lower_ = l;
    upper_ = h;
    canHaveFractionalPart_ = ExcludesFractionalParts;
    canBeNegativeZero_ = ExcludesNegativeZero;
    max_exponent_ = exponentImpliedByInt32Bounds();
    assertInvariants();
  }

  // Set this range to include values >= l and <= h. Note that this
  // function treats negative zero as equal to zero, as >= and <= do. If the
  // range includes zero, it is assumed to include negative zero too.
  void setDouble(double l, double h);

  // Set this range to the narrowest possible range containing d.
  // This function treats negative zero as distinct from zero, since this
  // makes the narrowest possible range containin zero a range which
  // contains one value rather than two.
  void setDoubleSingleton(double d);

  void setUnknown() {
    set(NoInt32LowerBound, NoInt32UpperBound, IncludesFractionalParts,
        IncludesNegativeZero, IncludesInfinityAndNaN);
    MOZ_ASSERT(isUnknown());
  }

  void set(int64_t l, int64_t h, FractionalPartFlag canHaveFractionalPart,
           NegativeZeroFlag canBeNegativeZero, uint16_t e) {
    max_exponent_ = e;
    canHaveFractionalPart_ = canHaveFractionalPart;
    canBeNegativeZero_ = canBeNegativeZero;
    setLowerInit(l);
    setUpperInit(h);
    optimize();
  }

  // Make the lower end of this range at least INT32_MIN, and make
  // the upper end of this range at most INT32_MAX.
  void clampToInt32();

  // If this range exceeds int32_t range, at either or both ends, change
  // it to int32_t range.  Otherwise do nothing.
  void wrapAroundToInt32();

  // If this range exceeds [0, 32) range, at either or both ends, change
  // it to the [0, 32) range.  Otherwise do nothing.
  void wrapAroundToShiftCount();

  // If this range exceeds [0, 1] range, at either or both ends, change
  // it to the [0, 1] range.  Otherwise do nothing.
  void wrapAroundToBoolean();

  const SymbolicBound* symbolicLower() const { return symbolicLower_; }
  const SymbolicBound* symbolicUpper() const { return symbolicUpper_; }

  void setSymbolicLower(SymbolicBound* bound) { symbolicLower_ = bound; }
  void setSymbolicUpper(SymbolicBound* bound) { symbolicUpper_ = bound; }
};

}  // namespace jit
}  // namespace js

#endif /* jit_RangeAnalysis_h */