DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_MoveResolver_h
#define jit_MoveResolver_h

#include "jit/InlineList.h"
#include "jit/JitAllocPolicy.h"
#include "jit/Registers.h"
#include "jit/RegisterSets.h"

namespace js {
namespace jit {

class MacroAssembler;

// This is similar to Operand, but carries more information. We're also not
// guaranteed that Operand looks like this on all ISAs.
class MoveOperand {
 public:
  enum Kind {
    // A register in the "integer", aka "general purpose", class.
    REG,
#ifdef JS_CODEGEN_REGISTER_PAIR
    // Two consecutive "integer" register (aka "general purpose"). The even
    // register contains the lower part, the odd register has the high bits
    // of the content.
    REG_PAIR,
#endif
    // A register in the "float" register class.
    FLOAT_REG,
    // A memory region.
    MEMORY,
    // The address of a memory region.
    EFFECTIVE_ADDRESS
  };

 private:
  Kind kind_;
  uint32_t code_;
  int32_t disp_;

 public:
  MoveOperand() = delete;
  explicit MoveOperand(Register reg)
      : kind_(REG), code_(reg.code()), disp_(0) {}
  explicit MoveOperand(FloatRegister reg)
      : kind_(FLOAT_REG), code_(reg.code()), disp_(0) {}
  MoveOperand(Register reg, int32_t disp, Kind kind = MEMORY)
      : kind_(kind), code_(reg.code()), disp_(disp) {
    MOZ_ASSERT(isMemoryOrEffectiveAddress());

    // With a zero offset, this is a plain reg-to-reg move.
    if (disp == 0 && kind_ == EFFECTIVE_ADDRESS) {
      kind_ = REG;
    }
  }
  MoveOperand(MacroAssembler& masm, const ABIArg& arg);
  MoveOperand(const MoveOperand& other)
      : kind_(other.kind_), code_(other.code_), disp_(other.disp_) {}
  bool isFloatReg() const { return kind_ == FLOAT_REG; }
  bool isGeneralReg() const { return kind_ == REG; }
  bool isGeneralRegPair() const {
#ifdef JS_CODEGEN_REGISTER_PAIR
    return kind_ == REG_PAIR;
#else
    return false;
#endif
  }
  bool isMemory() const { return kind_ == MEMORY; }
  bool isEffectiveAddress() const { return kind_ == EFFECTIVE_ADDRESS; }
  bool isMemoryOrEffectiveAddress() const {
    return isMemory() || isEffectiveAddress();
  }
  Register reg() const {
    MOZ_ASSERT(isGeneralReg());
    return Register::FromCode(code_);
  }
  Register evenReg() const {
    MOZ_ASSERT(isGeneralRegPair());
    return Register::FromCode(code_);
  }
  Register oddReg() const {
    MOZ_ASSERT(isGeneralRegPair());
    return Register::FromCode(code_ + 1);
  }
  FloatRegister floatReg() const {
    MOZ_ASSERT(isFloatReg());
    return FloatRegister::FromCode(code_);
  }
  Register base() const {
    MOZ_ASSERT(isMemoryOrEffectiveAddress());
    return Register::FromCode(code_);
  }
  int32_t disp() const {
    MOZ_ASSERT(isMemoryOrEffectiveAddress());
    return disp_;
  }

  bool aliases(MoveOperand other) const {
    // These are not handled presently, but MEMORY and EFFECTIVE_ADDRESS
    // only appear in controlled circumstances in the trampoline code
    // which ensures these cases never come up.

    MOZ_ASSERT_IF(isMemoryOrEffectiveAddress() && other.isGeneralReg(),
                  base() != other.reg());
    MOZ_ASSERT_IF(other.isMemoryOrEffectiveAddress() && isGeneralReg(),
                  other.base() != reg());

    // Check if one of the operand is a registe rpair, in which case, we
    // have to check any other register, or register pair.
    if (isGeneralRegPair() || other.isGeneralRegPair()) {
      if (isGeneralRegPair() && other.isGeneralRegPair()) {
        // Assume that register pairs are aligned on even registers.
        MOZ_ASSERT(!evenReg().aliases(other.oddReg()));
        MOZ_ASSERT(!oddReg().aliases(other.evenReg()));
        // Pair of registers are composed of consecutive registers, thus
        // if the first registers are aliased, then the second registers
        // are aliased too.
        MOZ_ASSERT(evenReg().aliases(other.evenReg()) ==
                   oddReg().aliases(other.oddReg()));
        return evenReg().aliases(other.evenReg());
      } else if (other.isGeneralReg()) {
        MOZ_ASSERT(isGeneralRegPair());
        return evenReg().aliases(other.reg()) || oddReg().aliases(other.reg());
      } else if (isGeneralReg()) {
        MOZ_ASSERT(other.isGeneralRegPair());
        return other.evenReg().aliases(reg()) || other.oddReg().aliases(reg());
      }
      return false;
    }

    if (kind_ != other.kind_) {
      return false;
    }
    if (kind_ == FLOAT_REG) {
      return floatReg().aliases(other.floatReg());
    }
    if (code_ != other.code_) {
      return false;
    }
    if (isMemoryOrEffectiveAddress()) {
      return disp_ == other.disp_;
    }
    return true;
  }

  bool operator==(const MoveOperand& other) const {
    if (kind_ != other.kind_) {
      return false;
    }
    if (code_ != other.code_) {
      return false;
    }
    if (isMemoryOrEffectiveAddress()) {
      return disp_ == other.disp_;
    }
    return true;
  }
  bool operator!=(const MoveOperand& other) const { return !operator==(other); }
};

// This represents a move operation.
class MoveOp {
 protected:
  MoveOperand from_;
  MoveOperand to_;
  bool cycleBegin_;
  bool cycleEnd_;
  int cycleBeginSlot_;
  int cycleEndSlot_;

 public:
  enum Type { GENERAL, INT32, FLOAT32, DOUBLE, SIMD128INT, SIMD128FLOAT };

 protected:
  Type type_;

  // If cycleBegin_ is true, endCycleType_ is the type of the move at the end
  // of the cycle. For example, given these moves:
  //       INT32 move a -> b
  //     GENERAL move b -> a
  // the move resolver starts by copying b into a temporary location, so that
  // the last move can read it. This copy needs to use use type GENERAL.
  Type endCycleType_;

 public:
  MoveOp() = delete;
  MoveOp(const MoveOperand& from, const MoveOperand& to, Type type)
      : from_(from),
        to_(to),
        cycleBegin_(false),
        cycleEnd_(false),
        cycleBeginSlot_(-1),
        cycleEndSlot_(-1),
        type_(type),
        endCycleType_(GENERAL)  // initialize to silence UBSan warning
  {}

  bool isCycleBegin() const { return cycleBegin_; }
  bool isCycleEnd() const { return cycleEnd_; }
  uint32_t cycleBeginSlot() const {
    MOZ_ASSERT(cycleBeginSlot_ != -1);
    return cycleBeginSlot_;
  }
  uint32_t cycleEndSlot() const {
    MOZ_ASSERT(cycleEndSlot_ != -1);
    return cycleEndSlot_;
  }
  const MoveOperand& from() const { return from_; }
  const MoveOperand& to() const { return to_; }
  Type type() const { return type_; }
  Type endCycleType() const {
    MOZ_ASSERT(isCycleBegin());
    return endCycleType_;
  }
  bool aliases(const MoveOperand& op) const {
    return from().aliases(op) || to().aliases(op);
  }
  bool aliases(const MoveOp& other) const {
    return aliases(other.from()) || aliases(other.to());
  }
#ifdef JS_CODEGEN_ARM
  void overwrite(MoveOperand& from, MoveOperand& to, Type type) {
    from_ = from;
    to_ = to;
    type_ = type;
  }
#endif
};

class MoveResolver {
 private:
  struct PendingMove : public MoveOp,
                       public TempObject,
                       public InlineListNode<PendingMove> {
    PendingMove() = delete;

    PendingMove(const MoveOperand& from, const MoveOperand& to, Type type)
        : MoveOp(from, to, type) {}

    void setCycleBegin(Type endCycleType, int cycleSlot) {
      MOZ_ASSERT(!cycleBegin_);
      cycleBegin_ = true;
      cycleBeginSlot_ = cycleSlot;
      endCycleType_ = endCycleType;
    }
    void setCycleEnd(int cycleSlot) {
      MOZ_ASSERT(!cycleEnd_);
      cycleEnd_ = true;
      cycleEndSlot_ = cycleSlot;
    }
  };

  typedef InlineList<MoveResolver::PendingMove>::iterator PendingMoveIterator;

  js::Vector<MoveOp, 16, SystemAllocPolicy> orderedMoves_;
  int numCycles_;
  int curCycles_;
  TempObjectPool<PendingMove> movePool_;

  InlineList<PendingMove> pending_;

  PendingMove* findBlockingMove(const PendingMove* last);
  PendingMove* findCycledMove(PendingMoveIterator* stack,
                              PendingMoveIterator end,
                              const PendingMove* first);
  MOZ_MUST_USE bool addOrderedMove(const MoveOp& move);
  void reorderMove(size_t from, size_t to);

  // Internal reset function. Does not clear lists.
  void resetState();

#ifdef JS_CODEGEN_ARM
  bool isDoubleAliasedAsSingle(const MoveOperand& move);
#endif

 public:
  MoveResolver();

  // Resolves a move group into two lists of ordered moves. These moves must
  // be executed in the order provided. Some moves may indicate that they
  // participate in a cycle. For every cycle there are two such moves, and it
  // is guaranteed that cycles do not nest inside each other in the list.
  //
  // After calling addMove() for each parallel move, resolve() performs the
  // cycle resolution algorithm. Calling addMove() again resets the resolver.
  MOZ_MUST_USE bool addMove(const MoveOperand& from, const MoveOperand& to,
                            MoveOp::Type type);
  MOZ_MUST_USE bool resolve();
  void sortMemoryToMemoryMoves();

  size_t numMoves() const { return orderedMoves_.length(); }
  const MoveOp& getMove(size_t i) const { return orderedMoves_[i]; }
  uint32_t numCycles() const { return numCycles_; }
  bool hasNoPendingMoves() const { return pending_.empty(); }
  void setAllocator(TempAllocator& alloc) { movePool_.setAllocator(alloc); }
};

}  // namespace jit
}  // namespace js

#endif /* jit_MoveResolver_h */