DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/MoveResolver.h"

#include "mozilla/Attributes.h"
#include "mozilla/ScopeExit.h"

#include "jit/MacroAssembler.h"
#include "jit/RegisterSets.h"

using namespace js;
using namespace js::jit;

MoveOperand::MoveOperand(MacroAssembler& masm, const ABIArg& arg) : disp_(0) {
  switch (arg.kind()) {
    case ABIArg::GPR:
      kind_ = REG;
      code_ = arg.gpr().code();
      break;
#ifdef JS_CODEGEN_REGISTER_PAIR
    case ABIArg::GPR_PAIR:
      kind_ = REG_PAIR;
      code_ = arg.evenGpr().code();
      MOZ_ASSERT(code_ % 2 == 0);
      MOZ_ASSERT(code_ + 1 == arg.oddGpr().code());
      break;
#endif
    case ABIArg::FPU:
      kind_ = FLOAT_REG;
      code_ = arg.fpu().code();
      break;
    case ABIArg::Stack:
      kind_ = MEMORY;
      if (IsHiddenSP(masm.getStackPointer())) {
        MOZ_CRASH(
            "Hidden SP cannot be represented as register code on this "
            "platform");
      } else {
        code_ = AsRegister(masm.getStackPointer()).code();
      }
      disp_ = arg.offsetFromArgBase();
      break;
    case ABIArg::Uninitialized:
      MOZ_CRASH("Uninitialized ABIArg kind");
  }
}

MoveResolver::MoveResolver() : numCycles_(0), curCycles_(0) {}

void MoveResolver::resetState() {
  numCycles_ = 0;
  curCycles_ = 0;
}

bool MoveResolver::addMove(const MoveOperand& from, const MoveOperand& to,
                           MoveOp::Type type) {
  // Assert that we're not doing no-op moves.
  MOZ_ASSERT(!(from == to));
  PendingMove* pm = movePool_.allocate(from, to, type);
  if (!pm) {
    return false;
  }
  pending_.pushBack(pm);
  return true;
}

// Given move (A -> B), this function attempts to find any move (B -> *) in the
// pending move list, and returns the first one.
MoveResolver::PendingMove* MoveResolver::findBlockingMove(
    const PendingMove* last) {
  for (PendingMoveIterator iter = pending_.begin(); iter != pending_.end();
       iter++) {
    PendingMove* other = *iter;

    if (other->from().aliases(last->to())) {
      // We now have pairs in the form (A -> X) (X -> y). The second pair
      // blocks the move in the first pair, so return it.
      return other;
    }
  }

  // No blocking moves found.
  return nullptr;
}

// Given move (A -> B), this function attempts to find any move (B -> *) in the
// move list iterator, and returns the first one.
// N.B. It is unclear if a single move can complete more than one cycle, so to
// be conservative, this function operates on iterators, so the caller can
// process all instructions that start a cycle.
MoveResolver::PendingMove* MoveResolver::findCycledMove(
    PendingMoveIterator* iter, PendingMoveIterator end,
    const PendingMove* last) {
  for (; *iter != end; (*iter)++) {
    PendingMove* other = **iter;
    if (other->from().aliases(last->to())) {
      // We now have pairs in the form (A -> X) (X -> y). The second pair
      // blocks the move in the first pair, so return it.
      (*iter)++;
      return other;
    }
  }
  // No blocking moves found.
  return nullptr;
}

#ifdef JS_CODEGEN_ARM
static inline bool MoveIsDouble(const MoveOperand& move) {
  if (!move.isFloatReg()) {
    return false;
  }
  return move.floatReg().isDouble();
}
#endif

#ifdef JS_CODEGEN_ARM
static inline bool MoveIsSingle(const MoveOperand& move) {
  if (!move.isFloatReg()) {
    return false;
  }
  return move.floatReg().isSingle();
}
#endif

#ifdef JS_CODEGEN_ARM
bool MoveResolver::isDoubleAliasedAsSingle(const MoveOperand& move) {
  if (!MoveIsDouble(move)) {
    return false;
  }

  for (auto iter = pending_.begin(); iter != pending_.end(); ++iter) {
    PendingMove* other = *iter;
    if (other->from().aliases(move) && MoveIsSingle(other->from())) {
      return true;
    }
    if (other->to().aliases(move) && MoveIsSingle(other->to())) {
      return true;
    }
  }
  return false;
}
#endif

#ifdef JS_CODEGEN_ARM
static MoveOperand SplitIntoLowerHalf(const MoveOperand& move) {
  if (MoveIsDouble(move)) {
    FloatRegister lowerSingle = move.floatReg().asSingle();
    return MoveOperand(lowerSingle);
  }

  MOZ_ASSERT(move.isMemoryOrEffectiveAddress());
  return move;
}
#endif

#ifdef JS_CODEGEN_ARM
static MoveOperand SplitIntoUpperHalf(const MoveOperand& move) {
  if (MoveIsDouble(move)) {
    FloatRegister lowerSingle = move.floatReg().asSingle();
    FloatRegister upperSingle =
        VFPRegister(lowerSingle.code() + 1, VFPRegister::Single);
    return MoveOperand(upperSingle);
  }

  MOZ_ASSERT(move.isMemoryOrEffectiveAddress());
  return MoveOperand(move.base(), move.disp() + sizeof(float));
}
#endif

// Resolves the pending_ list to a list in orderedMoves_.
bool MoveResolver::resolve() {
  resetState();
  orderedMoves_.clear();

  // Upon return from this function, the pending_ list must be cleared.
  auto clearPending = mozilla::MakeScopeExit([this]() { pending_.clear(); });

#ifdef JS_CODEGEN_ARM
  // Some of ARM's double registers alias two of its single registers,
  // but the algorithm below assumes that every register can participate
  // in at most one cycle. To satisfy the algorithm, any double registers
  // that may conflict are split into their single-register halves.
  //
  // This logic is only applicable because ARM only uses registers d0-d15,
  // all of which alias s0-s31. Double registers d16-d31 are unused.
  // Therefore there is never a double move that cannot be split.
  // If this changes in the future, the algorithm will have to be fixed.

  bool splitDoubles = false;
  for (auto iter = pending_.begin(); iter != pending_.end(); ++iter) {
    PendingMove* pm = *iter;

    if (isDoubleAliasedAsSingle(pm->from()) ||
        isDoubleAliasedAsSingle(pm->to())) {
      splitDoubles = true;
      break;
    }
  }

  if (splitDoubles) {
    for (auto iter = pending_.begin(); iter != pending_.end(); ++iter) {
      PendingMove *pm = *iter;

      if (!MoveIsDouble(pm->from()) && !MoveIsDouble(pm->to())) {
        continue;
      }

      MoveOperand fromLower = SplitIntoLowerHalf(pm->from());
      MoveOperand toLower = SplitIntoLowerHalf(pm->to());

      PendingMove* lower =
          movePool_.allocate(fromLower, toLower, MoveOp::FLOAT32);
      if (!lower) {
        return false;
      }

      // Insert the new node before the current position to not affect
      // iteration.
      pending_.insertBefore(pm, lower);

      // Overwrite pm in place for the upper move. Iteration proceeds as normal.
      MoveOperand fromUpper = SplitIntoUpperHalf(pm->from());
      MoveOperand toUpper = SplitIntoUpperHalf(pm->to());
      pm->overwrite(fromUpper, toUpper, MoveOp::FLOAT32);
    }
  }
#endif

  InlineList<PendingMove> stack;

  // This is a depth-first-search without recursion, which tries to find
  // cycles in a list of moves.
  //
  // Algorithm.
  //
  // S = Traversal stack.
  // P = Pending move list.
  // O = Ordered list of moves.
  //
  // As long as there are pending moves in P:
  //      Let |root| be any pending move removed from P
  //      Add |root| to the traversal stack.
  //      As long as S is not empty:
  //          Let |L| be the most recent move added to S.
  //
  //          Find any pending move M whose source is L's destination, thus
  //          preventing L's move until M has completed.
  //
  //          If a move M was found,
  //              Remove M from the pending list.
  //              If M's destination is |root|,
  //                  Annotate M and |root| as cycles.
  //                  Add M to S.
  //                  do not Add M to O, since M may have other conflictors in P
  //                  that have not yet been processed.
  //              Otherwise,
  //                  Add M to S.
  //         Otherwise,
  //              Remove L from S.
  //              Add L to O.
  //
  while (!pending_.empty()) {
    PendingMove* pm = pending_.popBack();

    // Add this pending move to the cycle detection stack.
    stack.pushBack(pm);

    while (!stack.empty()) {
      PendingMove* blocking = findBlockingMove(stack.peekBack());

      if (blocking) {
        PendingMoveIterator stackiter = stack.begin();
        PendingMove* cycled = findCycledMove(&stackiter, stack.end(), blocking);
        if (cycled) {
          // Find the cycle's start.
          // We annotate cycles at each move in the cycle, and
          // assert that we do not find two cycles in one move chain
          // traversal (which would indicate two moves to the same
          // destination).
          // Since there can be more than one cycle, find them all.
          do {
            cycled->setCycleEnd(curCycles_);
            cycled = findCycledMove(&stackiter, stack.end(), blocking);
          } while (cycled);

          blocking->setCycleBegin(pm->type(), curCycles_);
          curCycles_++;
          pending_.remove(blocking);
          stack.pushBack(blocking);
        } else {
          // This is a new link in the move chain, so keep
          // searching for a cycle.
          pending_.remove(blocking);
          stack.pushBack(blocking);
        }
      } else {
        // Otherwise, pop the last move on the search stack because it's
        // complete and not participating in a cycle. The resulting
        // move can safely be added to the ordered move list.
        PendingMove* done = stack.popBack();
        if (!addOrderedMove(*done)) {
          return false;
        }
        movePool_.free(done);
      }
    }
    // If the current queue is empty, it is certain that there are
    // all previous cycles cannot conflict with future cycles,
    // so re-set the counter of pending cycles, while keeping a high-water mark.
    if (numCycles_ < curCycles_) {
      numCycles_ = curCycles_;
    }
    curCycles_ = 0;
  }

  return true;
}

bool MoveResolver::addOrderedMove(const MoveOp& move) {
  // Sometimes the register allocator generates move groups where multiple
  // moves have the same source. Try to optimize these cases when the source
  // is in memory and the target of one of the moves is in a register.
  MOZ_ASSERT(!move.from().aliases(move.to()));

  if (!move.from().isMemory() || move.isCycleBegin() || move.isCycleEnd()) {
    return orderedMoves_.append(move);
  }

  // Look for an earlier move with the same source, where no intervening move
  // touches either the source or destination of the new move.
  for (int i = orderedMoves_.length() - 1; i >= 0; i--) {
    const MoveOp& existing = orderedMoves_[i];

    if (existing.from() == move.from() && !existing.to().aliases(move.to()) &&
        existing.type() == move.type() && !existing.isCycleBegin() &&
        !existing.isCycleEnd()) {
      MoveOp* after = orderedMoves_.begin() + i + 1;
      if (existing.to().isGeneralReg() || existing.to().isFloatReg()) {
        MoveOp nmove(existing.to(), move.to(), move.type());
        return orderedMoves_.insert(after, nmove);
      } else if (move.to().isGeneralReg() || move.to().isFloatReg()) {
        MoveOp nmove(move.to(), existing.to(), move.type());
        orderedMoves_[i] = move;
        return orderedMoves_.insert(after, nmove);
      }
    }

    if (existing.aliases(move)) {
      break;
    }
  }

  return orderedMoves_.append(move);
}

void MoveResolver::reorderMove(size_t from, size_t to) {
  MOZ_ASSERT(from != to);

  MoveOp op = orderedMoves_[from];
  if (from < to) {
    for (size_t i = from; i < to; i++) {
      orderedMoves_[i] = orderedMoves_[i + 1];
    }
  } else {
    for (size_t i = from; i > to; i--) {
      orderedMoves_[i] = orderedMoves_[i - 1];
    }
  }
  orderedMoves_[to] = op;
}

void MoveResolver::sortMemoryToMemoryMoves() {
  // Try to reorder memory->memory moves so that they are executed right
  // before a move that clobbers some register. This will allow the move
  // emitter to use that clobbered register as a scratch register for the
  // memory->memory move, if necessary.
  for (size_t i = 0; i < orderedMoves_.length(); i++) {
    const MoveOp& base = orderedMoves_[i];
    if (!base.from().isMemory() || !base.to().isMemory()) {
      continue;
    }
    if (base.type() != MoveOp::GENERAL && base.type() != MoveOp::INT32) {
      continue;
    }

    // Look for an earlier move clobbering a register.
    bool found = false;
    for (int j = i - 1; j >= 0; j--) {
      const MoveOp& previous = orderedMoves_[j];
      if (previous.aliases(base) || previous.isCycleBegin() ||
          previous.isCycleEnd()) {
        break;
      }

      if (previous.to().isGeneralReg()) {
        reorderMove(i, j);
        found = true;
        break;
      }
    }
    if (found) {
      continue;
    }

    // Look for a later move clobbering a register.
    if (i + 1 < orderedMoves_.length()) {
      bool found = false, skippedRegisterUse = false;
      for (size_t j = i + 1; j < orderedMoves_.length(); j++) {
        const MoveOp& later = orderedMoves_[j];
        if (later.aliases(base) || later.isCycleBegin() || later.isCycleEnd()) {
          break;
        }

        if (later.to().isGeneralReg()) {
          if (skippedRegisterUse) {
            reorderMove(i, j);
            found = true;
          } else {
            // There is no move that uses a register between the
            // original memory->memory move and this move that
            // clobbers a register. The move should already be able
            // to use a scratch register, so don't shift anything
            // around.
          }
          break;
        }

        if (later.from().isGeneralReg()) {
          skippedRegisterUse = true;
        }
      }

      if (found) {
        // Redo the search for memory->memory moves at the current
        // index, so we don't skip the move just shifted back.
        i--;
      }
    }
  }
}