DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/MacroAssembler-inl.h"

#include "mozilla/CheckedInt.h"
#include "mozilla/MathAlgorithms.h"

#include "jsfriendapi.h"

#include "builtin/TypedObject.h"
#include "gc/GCTrace.h"
#include "jit/AtomicOp.h"
#include "jit/Bailouts.h"
#include "jit/BaselineFrame.h"
#include "jit/BaselineIC.h"
#include "jit/BaselineJIT.h"
#include "jit/JitOptions.h"
#include "jit/Lowering.h"
#include "jit/MIR.h"
#include "jit/MoveEmitter.h"
#include "jit/Simulator.h"
#include "js/Conversions.h"
#include "js/Printf.h"
#include "vm/TraceLogging.h"

#include "gc/Nursery-inl.h"
#include "jit/shared/Lowering-shared-inl.h"
#include "jit/TemplateObject-inl.h"
#include "vm/Interpreter-inl.h"
#include "vm/JSObject-inl.h"
#include "vm/TypeInference-inl.h"

using namespace js;
using namespace js::jit;

using JS::GenericNaN;
using JS::ToInt32;

using mozilla::CheckedUint32;

template <typename T>
static void EmitTypeCheck(MacroAssembler& masm, Assembler::Condition cond,
                          const T& src, TypeSet::Type type, Label* label) {
  if (type.isAnyObject()) {
    masm.branchTestObject(cond, src, label);
    return;
  }
  switch (type.primitive()) {
    case ValueType::Double:
      // TI double type includes int32.
      masm.branchTestNumber(cond, src, label);
      break;
    case ValueType::Int32:
      masm.branchTestInt32(cond, src, label);
      break;
    case ValueType::Boolean:
      masm.branchTestBoolean(cond, src, label);
      break;
    case ValueType::String:
      masm.branchTestString(cond, src, label);
      break;
    case ValueType::Symbol:
      masm.branchTestSymbol(cond, src, label);
      break;
    case ValueType::BigInt:
      masm.branchTestBigInt(cond, src, label);
      break;
    case ValueType::Null:
      masm.branchTestNull(cond, src, label);
      break;
    case ValueType::Undefined:
      masm.branchTestUndefined(cond, src, label);
      break;
    case ValueType::Magic:
      masm.branchTestMagic(cond, src, label);
      break;
    case ValueType::PrivateGCThing:
    case ValueType::Object:
      MOZ_CRASH("Unexpected type");
  }
}

template <typename Source>
void MacroAssembler::guardTypeSet(const Source& address, const TypeSet* types,
                                  BarrierKind kind, Register unboxScratch,
                                  Register objScratch,
                                  Register spectreRegToZero, Label* miss) {
  // unboxScratch may be InvalidReg on 32-bit platforms. It should only be
  // used for extracting the Value tag or payload.
  //
  // objScratch may be InvalidReg if the TypeSet does not contain specific
  // objects to guard on. It should only be used for guardObjectType.
  //
  // spectreRegToZero is a register that will be zeroed by guardObjectType on
  // speculatively executed paths.

  MOZ_ASSERT(kind == BarrierKind::TypeTagOnly || kind == BarrierKind::TypeSet);
  MOZ_ASSERT(!types->unknown());

  Label matched;
  TypeSet::Type tests[] = {TypeSet::Int32Type(),    TypeSet::UndefinedType(),
                           TypeSet::BooleanType(),  TypeSet::StringType(),
                           TypeSet::SymbolType(),   TypeSet::BigIntType(),
                           TypeSet::NullType(),     TypeSet::MagicArgType(),
                           TypeSet::AnyObjectType()};

  // The double type also implies Int32.
  // So replace the int32 test with the double one.
  if (types->hasType(TypeSet::DoubleType())) {
    MOZ_ASSERT(types->hasType(TypeSet::Int32Type()));
    tests[0] = TypeSet::DoubleType();
  }

  unsigned numBranches = 0;
  for (size_t i = 0; i < mozilla::ArrayLength(tests); i++) {
    if (types->hasType(tests[i])) {
      numBranches++;
    }
  }

  if (!types->unknownObject() && types->getObjectCount() > 0) {
    numBranches++;
  }

  if (numBranches == 0) {
    MOZ_ASSERT(types->empty());
    jump(miss);
    return;
  }

  Register tag = extractTag(address, unboxScratch);

  // Emit all typed tests.
  for (size_t i = 0; i < mozilla::ArrayLength(tests); i++) {
    if (!types->hasType(tests[i])) {
      continue;
    }

    if (--numBranches > 0) {
      EmitTypeCheck(*this, Equal, tag, tests[i], &matched);
    } else {
      EmitTypeCheck(*this, NotEqual, tag, tests[i], miss);
    }
  }

  // If we don't have specific objects to check for, we're done.
  if (numBranches == 0) {
    MOZ_ASSERT(types->unknownObject() || types->getObjectCount() == 0);
    bind(&matched);
    return;
  }

  // Test specific objects.
  MOZ_ASSERT(objScratch != InvalidReg);
  MOZ_ASSERT(objScratch != unboxScratch);

  MOZ_ASSERT(numBranches == 1);
  branchTestObject(NotEqual, tag, miss);

  if (kind != BarrierKind::TypeTagOnly) {
    Register obj = extractObject(address, unboxScratch);
    guardObjectType(obj, types, objScratch, spectreRegToZero, miss);
  } else {
#ifdef DEBUG
    Label fail;
    Register obj = extractObject(address, unboxScratch);
    guardObjectType(obj, types, objScratch, spectreRegToZero, &fail);
    jump(&matched);

    bind(&fail);
    guardTypeSetMightBeIncomplete(types, obj, objScratch, &matched);
    assumeUnreachable("Unexpected object type");
#endif
  }

  bind(&matched);
}

#ifdef DEBUG
// guardTypeSetMightBeIncomplete is only used in DEBUG builds. If this ever
// changes, we need to make sure it's Spectre-safe.
void MacroAssembler::guardTypeSetMightBeIncomplete(const TypeSet* types,
                                                   Register obj,
                                                   Register scratch,
                                                   Label* label) {
  // Type set guards might miss when an object's group changes. In this case
  // either its old group's properties will become unknown, or it will change
  // to a native object with an original unboxed group. Jump to label if this
  // might have happened for the input object.

  if (types->unknownObject()) {
    jump(label);
    return;
  }

  for (size_t i = 0; i < types->getObjectCount(); i++) {
    if (JSObject* singleton = getSingletonAndDelayBarrier(types, i)) {
      movePtr(ImmGCPtr(singleton), scratch);
      loadPtr(Address(scratch, JSObject::offsetOfGroup()), scratch);
    } else if (ObjectGroup* group = getGroupAndDelayBarrier(types, i)) {
      movePtr(ImmGCPtr(group), scratch);
    } else {
      continue;
    }
    branchTest32(Assembler::NonZero,
                 Address(scratch, ObjectGroup::offsetOfFlags()),
                 Imm32(OBJECT_FLAG_UNKNOWN_PROPERTIES), label);
  }
}
#endif

void MacroAssembler::guardObjectType(Register obj, const TypeSet* types,
                                     Register scratch,
                                     Register spectreRegToZero, Label* miss) {
  MOZ_ASSERT(obj != scratch);
  MOZ_ASSERT(!types->unknown());
  MOZ_ASSERT(!types->hasType(TypeSet::AnyObjectType()));
  MOZ_ASSERT_IF(types->getObjectCount() > 0, scratch != InvalidReg);

  // Note: this method elides read barriers on values read from type sets, as
  // this may be called off thread during Ion compilation. This is
  // safe to do as the final JitCode object will be allocated during the
  // incremental GC (or the compilation canceled before we start sweeping),
  // see CodeGenerator::link. Other callers should use TypeSet::readBarrier
  // to trigger the barrier on the contents of type sets passed in here.
  Label matched;

  bool hasSingletons = false;
  bool hasObjectGroups = false;
  unsigned numBranches = 0;

  unsigned count = types->getObjectCount();
  for (unsigned i = 0; i < count; i++) {
    if (types->hasGroup(i)) {
      hasObjectGroups = true;
      numBranches++;
    } else if (types->hasSingleton(i)) {
      hasSingletons = true;
      numBranches++;
    }
  }

  if (numBranches == 0) {
    jump(miss);
    return;
  }

  if (JitOptions.spectreObjectMitigationsBarriers) {
    move32(Imm32(0), scratch);
  }

  if (hasSingletons) {
    for (unsigned i = 0; i < count; i++) {
      JSObject* singleton = getSingletonAndDelayBarrier(types, i);
      if (!singleton) {
        continue;
      }

      if (JitOptions.spectreObjectMitigationsBarriers) {
        if (--numBranches > 0) {
          Label next;
          branchPtr(NotEqual, obj, ImmGCPtr(singleton), &next);
          spectreMovePtr(NotEqual, scratch, spectreRegToZero);
          jump(&matched);
          bind(&next);
        } else {
          branchPtr(NotEqual, obj, ImmGCPtr(singleton), miss);
          spectreMovePtr(NotEqual, scratch, spectreRegToZero);
        }
      } else {
        if (--numBranches > 0) {
          branchPtr(Equal, obj, ImmGCPtr(singleton), &matched);
        } else {
          branchPtr(NotEqual, obj, ImmGCPtr(singleton), miss);
        }
      }
    }
  }

  if (hasObjectGroups) {
    comment("has object groups");

    // If Spectre mitigations are enabled, we use the scratch register as
    // zero register. Without mitigations we can use it to store the group.
    Address groupAddr(obj, JSObject::offsetOfGroup());
    if (!JitOptions.spectreObjectMitigationsBarriers) {
      loadPtr(groupAddr, scratch);
    }

    for (unsigned i = 0; i < count; i++) {
      ObjectGroup* group = getGroupAndDelayBarrier(types, i);
      if (!group) {
        continue;
      }

      if (!pendingObjectGroupReadBarriers_.append(group)) {
        setOOM();
        return;
      }

      if (JitOptions.spectreObjectMitigationsBarriers) {
        if (--numBranches > 0) {
          Label next;
          branchPtr(NotEqual, groupAddr, ImmGCPtr(group), &next);
          spectreMovePtr(NotEqual, scratch, spectreRegToZero);
          jump(&matched);
          bind(&next);
        } else {
          branchPtr(NotEqual, groupAddr, ImmGCPtr(group), miss);
          spectreMovePtr(NotEqual, scratch, spectreRegToZero);
        }
      } else {
        if (--numBranches > 0) {
          branchPtr(Equal, scratch, ImmGCPtr(group), &matched);
        } else {
          branchPtr(NotEqual, scratch, ImmGCPtr(group), miss);
        }
      }
    }
  }

  MOZ_ASSERT(numBranches == 0);

  bind(&matched);
}

template void MacroAssembler::guardTypeSet(
    const Address& address, const TypeSet* types, BarrierKind kind,
    Register unboxScratch, Register objScratch, Register spectreRegToZero,
    Label* miss);
template void MacroAssembler::guardTypeSet(
    const ValueOperand& value, const TypeSet* types, BarrierKind kind,
    Register unboxScratch, Register objScratch, Register spectreRegToZero,
    Label* miss);
template void MacroAssembler::guardTypeSet(
    const TypedOrValueRegister& value, const TypeSet* types, BarrierKind kind,
    Register unboxScratch, Register objScratch, Register spectreRegToZero,
    Label* miss);

template <typename S, typename T>
static void StoreToTypedFloatArray(MacroAssembler& masm, int arrayType,
                                   const S& value, const T& dest) {
  switch (arrayType) {
    case Scalar::Float32:
      masm.storeFloat32(value, dest);
      break;
    case Scalar::Float64:
      masm.storeDouble(value, dest);
      break;
    default:
      MOZ_CRASH("Invalid typed array type");
  }
}

void MacroAssembler::storeToTypedFloatArray(Scalar::Type arrayType,
                                            FloatRegister value,
                                            const BaseIndex& dest) {
  StoreToTypedFloatArray(*this, arrayType, value, dest);
}
void MacroAssembler::storeToTypedFloatArray(Scalar::Type arrayType,
                                            FloatRegister value,
                                            const Address& dest) {
  StoreToTypedFloatArray(*this, arrayType, value, dest);
}

template <typename T>
void MacroAssembler::loadFromTypedArray(Scalar::Type arrayType, const T& src,
                                        AnyRegister dest, Register temp,
                                        Label* fail, bool canonicalizeDoubles) {
  switch (arrayType) {
    case Scalar::Int8:
      load8SignExtend(src, dest.gpr());
      break;
    case Scalar::Uint8:
    case Scalar::Uint8Clamped:
      load8ZeroExtend(src, dest.gpr());
      break;
    case Scalar::Int16:
      load16SignExtend(src, dest.gpr());
      break;
    case Scalar::Uint16:
      load16ZeroExtend(src, dest.gpr());
      break;
    case Scalar::Int32:
      load32(src, dest.gpr());
      break;
    case Scalar::Uint32:
      if (dest.isFloat()) {
        load32(src, temp);
        convertUInt32ToDouble(temp, dest.fpu());
      } else {
        load32(src, dest.gpr());

        // Bail out if the value doesn't fit into a signed int32 value. This
        // is what allows MLoadUnboxedScalar to have a type() of
        // MIRType::Int32 for UInt32 array loads.
        branchTest32(Assembler::Signed, dest.gpr(), dest.gpr(), fail);
      }
      break;
    case Scalar::BigInt64:
    case Scalar::BigUint64:
      // FIXME: https://bugzil.la/1536702
      jump(fail);
      break;
    case Scalar::Float32:
      loadFloat32(src, dest.fpu());
      canonicalizeFloat(dest.fpu());
      break;
    case Scalar::Float64:
      loadDouble(src, dest.fpu());
      if (canonicalizeDoubles) {
        canonicalizeDouble(dest.fpu());
      }
      break;
    default:
      MOZ_CRASH("Invalid typed array type");
  }
}

template void MacroAssembler::loadFromTypedArray(Scalar::Type arrayType,
                                                 const Address& src,
                                                 AnyRegister dest,
                                                 Register temp, Label* fail,
                                                 bool canonicalizeDoubles);
template void MacroAssembler::loadFromTypedArray(Scalar::Type arrayType,
                                                 const BaseIndex& src,
                                                 AnyRegister dest,
                                                 Register temp, Label* fail,
                                                 bool canonicalizeDoubles);

template <typename T>
void MacroAssembler::loadFromTypedArray(Scalar::Type arrayType, const T& src,
                                        const ValueOperand& dest,
                                        bool allowDouble, Register temp,
                                        Label* fail) {
  switch (arrayType) {
    case Scalar::Int8:
    case Scalar::Uint8:
    case Scalar::Uint8Clamped:
    case Scalar::Int16:
    case Scalar::Uint16:
    case Scalar::Int32:
      loadFromTypedArray(arrayType, src, AnyRegister(dest.scratchReg()),
                         InvalidReg, nullptr);
      tagValue(JSVAL_TYPE_INT32, dest.scratchReg(), dest);
      break;
    case Scalar::Uint32:
      // Don't clobber dest when we could fail, instead use temp.
      load32(src, temp);
      if (allowDouble) {
        // If the value fits in an int32, store an int32 type tag.
        // Else, convert the value to double and box it.
        Label done, isDouble;
        branchTest32(Assembler::Signed, temp, temp, &isDouble);
        {
          tagValue(JSVAL_TYPE_INT32, temp, dest);
          jump(&done);
        }
        bind(&isDouble);
        {
          ScratchDoubleScope fpscratch(*this);
          convertUInt32ToDouble(temp, fpscratch);
          boxDouble(fpscratch, dest, fpscratch);
        }
        bind(&done);
      } else {
        // Bailout if the value does not fit in an int32.
        branchTest32(Assembler::Signed, temp, temp, fail);
        tagValue(JSVAL_TYPE_INT32, temp, dest);
      }
      break;
    case Scalar::Float32: {
      ScratchDoubleScope dscratch(*this);
      FloatRegister fscratch = dscratch.asSingle();
      loadFromTypedArray(arrayType, src, AnyRegister(fscratch),
                         dest.scratchReg(), nullptr);
      convertFloat32ToDouble(fscratch, dscratch);
      boxDouble(dscratch, dest, dscratch);
      break;
    }
    case Scalar::Float64: {
      ScratchDoubleScope fpscratch(*this);
      loadFromTypedArray(arrayType, src, AnyRegister(fpscratch),
                         dest.scratchReg(), nullptr);
      boxDouble(fpscratch, dest, fpscratch);
      break;
    }
    // FIXME: https://bugzil.la/1536702
    case Scalar::BigInt64:
    case Scalar::BigUint64: {
      jump(fail);
      break;
    }
    default:
      MOZ_CRASH("Invalid typed array type");
  }
}

template void MacroAssembler::loadFromTypedArray(Scalar::Type arrayType,
                                                 const Address& src,
                                                 const ValueOperand& dest,
                                                 bool allowDouble,
                                                 Register temp, Label* fail);
template void MacroAssembler::loadFromTypedArray(Scalar::Type arrayType,
                                                 const BaseIndex& src,
                                                 const ValueOperand& dest,
                                                 bool allowDouble,
                                                 Register temp, Label* fail);

// Inlined version of gc::CheckAllocatorState that checks the bare essentials
// and bails for anything that cannot be handled with our jit allocators.
void MacroAssembler::checkAllocatorState(Label* fail) {
  // Don't execute the inline path if we are tracing allocations.
  if (js::gc::gcTracer.traceEnabled()) {
    jump(fail);
  }

#ifdef JS_GC_ZEAL
  // Don't execute the inline path if gc zeal or tracing are active.
  const uint32_t* ptrZealModeBits =
      GetJitContext()->runtime->addressOfGCZealModeBits();
  branch32(Assembler::NotEqual, AbsoluteAddress(ptrZealModeBits), Imm32(0),
           fail);
#endif

  // Don't execute the inline path if the realm has an object metadata callback,
  // as the metadata to use for the object may vary between executions of the
  // op.
  if (GetJitContext()->realm()->hasAllocationMetadataBuilder()) {
    jump(fail);
  }
}

bool MacroAssembler::shouldNurseryAllocate(gc::AllocKind allocKind,
                                           gc::InitialHeap initialHeap) {
  // Note that Ion elides barriers on writes to objects known to be in the
  // nursery, so any allocation that can be made into the nursery must be made
  // into the nursery, even if the nursery is disabled. At runtime these will
  // take the out-of-line path, which is required to insert a barrier for the
  // initializing writes.
  return IsNurseryAllocable(allocKind) && initialHeap != gc::TenuredHeap;
}

// Inline version of Nursery::allocateObject. If the object has dynamic slots,
// this fills in the slots_ pointer.
void MacroAssembler::nurseryAllocateObject(Register result, Register temp,
                                           gc::AllocKind allocKind,
                                           size_t nDynamicSlots, Label* fail) {
  MOZ_ASSERT(IsNurseryAllocable(allocKind));

  // We still need to allocate in the nursery, per the comment in
  // shouldNurseryAllocate; however, we need to insert into the
  // mallocedBuffers set, so bail to do the nursery allocation in the
  // interpreter.
  if (nDynamicSlots >= Nursery::MaxNurseryBufferSize / sizeof(Value)) {
    jump(fail);
    return;
  }

  // No explicit check for nursery.isEnabled() is needed, as the comparison
  // with the nursery's end will always fail in such cases.
  CompileZone* zone = GetJitContext()->realm()->zone();
  size_t thingSize = gc::Arena::thingSize(allocKind);
  size_t totalSize = thingSize + nDynamicSlots * sizeof(HeapSlot);
  MOZ_ASSERT(totalSize < INT32_MAX);
  MOZ_ASSERT(totalSize % gc::CellAlignBytes == 0);

  bumpPointerAllocate(result, temp, fail, zone->addressOfNurseryPosition(),
                      zone->addressOfNurseryCurrentEnd(), totalSize, totalSize);

  if (nDynamicSlots) {
    computeEffectiveAddress(Address(result, thingSize), temp);
    storePtr(temp, Address(result, NativeObject::offsetOfSlots()));
  }
}

// Inlined version of FreeSpan::allocate. This does not fill in slots_.
void MacroAssembler::freeListAllocate(Register result, Register temp,
                                      gc::AllocKind allocKind, Label* fail) {
  CompileZone* zone = GetJitContext()->realm()->zone();
  int thingSize = int(gc::Arena::thingSize(allocKind));

  Label fallback;
  Label success;

  // Load the first and last offsets of |zone|'s free list for |allocKind|.
  // If there is no room remaining in the span, fall back to get the next one.
  gc::FreeSpan** ptrFreeList = zone->addressOfFreeList(allocKind);
  loadPtr(AbsoluteAddress(ptrFreeList), temp);
  load16ZeroExtend(Address(temp, js::gc::FreeSpan::offsetOfFirst()), result);
  load16ZeroExtend(Address(temp, js::gc::FreeSpan::offsetOfLast()), temp);
  branch32(Assembler::AboveOrEqual, result, temp, &fallback);

  // Bump the offset for the next allocation.
  add32(Imm32(thingSize), result);
  loadPtr(AbsoluteAddress(ptrFreeList), temp);
  store16(result, Address(temp, js::gc::FreeSpan::offsetOfFirst()));
  sub32(Imm32(thingSize), result);
  addPtr(temp, result);  // Turn the offset into a pointer.
  jump(&success);

  bind(&fallback);
  // If there are no free spans left, we bail to finish the allocation. The
  // interpreter will call the GC allocator to set up a new arena to allocate
  // from, after which we can resume allocating in the jit.
  branchTest32(Assembler::Zero, result, result, fail);
  loadPtr(AbsoluteAddress(ptrFreeList), temp);
  addPtr(temp, result);  // Turn the offset into a pointer.
  Push(result);
  // Update the free list to point to the next span (which may be empty).
  load32(Address(result, 0), result);
  store32(result, Address(temp, js::gc::FreeSpan::offsetOfFirst()));
  Pop(result);

  bind(&success);

  if (GetJitContext()->runtime->geckoProfiler().enabled()) {
    uint32_t* countAddress =
        GetJitContext()->runtime->addressOfTenuredAllocCount();
    movePtr(ImmPtr(countAddress), temp);
    add32(Imm32(1), Address(temp, 0));
  }
}

void MacroAssembler::callFreeStub(Register slots) {
  // This register must match the one in JitRuntime::generateFreeStub.
  const Register regSlots = CallTempReg0;

  push(regSlots);
  movePtr(slots, regSlots);
  call(GetJitContext()->runtime->jitRuntime()->freeStub());
  pop(regSlots);
}

// Inlined equivalent of gc::AllocateObject, without failure case handling.
void MacroAssembler::allocateObject(Register result, Register temp,
                                    gc::AllocKind allocKind,
                                    uint32_t nDynamicSlots,
                                    gc::InitialHeap initialHeap, Label* fail) {
  MOZ_ASSERT(gc::IsObjectAllocKind(allocKind));

  checkAllocatorState(fail);

  if (shouldNurseryAllocate(allocKind, initialHeap)) {
    MOZ_ASSERT(initialHeap == gc::DefaultHeap);
    return nurseryAllocateObject(result, temp, allocKind, nDynamicSlots, fail);
  }

  // Fall back to calling into the VM to allocate objects in the tenured heap
  // that have dynamic slots.
  if (nDynamicSlots) {
    jump(fail);
    return;
  }

  return freeListAllocate(result, temp, allocKind, fail);
}

void MacroAssembler::createGCObject(Register obj, Register temp,
                                    const TemplateObject& templateObj,
                                    gc::InitialHeap initialHeap, Label* fail,
                                    bool initContents) {
  gc::AllocKind allocKind = templateObj.getAllocKind();
  MOZ_ASSERT(gc::IsObjectAllocKind(allocKind));

  uint32_t nDynamicSlots = 0;
  if (templateObj.isNative()) {
    const NativeTemplateObject& ntemplate =
        templateObj.asNativeTemplateObject();
    nDynamicSlots = ntemplate.numDynamicSlots();

    // Arrays with copy on write elements do not need fixed space for an
    // elements header. The template object, which owns the original
    // elements, might have another allocation kind.
    if (ntemplate.denseElementsAreCopyOnWrite()) {
      allocKind = gc::AllocKind::OBJECT0_BACKGROUND;
    }
  }

  allocateObject(obj, temp, allocKind, nDynamicSlots, initialHeap, fail);
  initGCThing(obj, temp, templateObj, initContents);
}

// Inlined equivalent of gc::AllocateNonObject, without failure case handling.
// Non-object allocation does not need to worry about slots, so can take a
// simpler path.
void MacroAssembler::allocateNonObject(Register result, Register temp,
                                       gc::AllocKind allocKind, Label* fail) {
  checkAllocatorState(fail);
  freeListAllocate(result, temp, allocKind, fail);
}

// Inline version of Nursery::allocateString.
void MacroAssembler::nurseryAllocateString(Register result, Register temp,
                                           gc::AllocKind allocKind,
                                           Label* fail) {
  MOZ_ASSERT(IsNurseryAllocable(allocKind));

  // No explicit check for nursery.isEnabled() is needed, as the comparison
  // with the nursery's end will always fail in such cases.

  CompileZone* zone = GetJitContext()->realm()->zone();
  size_t thingSize = gc::Arena::thingSize(allocKind);
  size_t totalSize = js::Nursery::stringHeaderSize() + thingSize;
  MOZ_ASSERT(totalSize < INT32_MAX, "Nursery allocation too large");
  MOZ_ASSERT(totalSize % gc::CellAlignBytes == 0);

  bumpPointerAllocate(
      result, temp, fail, zone->addressOfStringNurseryPosition(),
      zone->addressOfStringNurseryCurrentEnd(), totalSize, thingSize);
  storePtr(ImmPtr(zone), Address(result, -js::Nursery::stringHeaderSize()));
}

void MacroAssembler::bumpPointerAllocate(Register result, Register temp,
                                         Label* fail, void* posAddr,
                                         const void* curEndAddr,
                                         uint32_t totalSize, uint32_t size) {
  // The position (allocation pointer) and the end pointer are stored
  // very close to each other -- specifically, easily within a 32 bit offset.
  // Use relative offsets between them, to avoid 64-bit immediate loads.
  //
  // I tried to optimise this further by using an extra register to avoid
  // the final subtraction and hopefully get some more instruction
  // parallelism, but it made no difference.
  movePtr(ImmPtr(posAddr), temp);
  loadPtr(Address(temp, 0), result);
  addPtr(Imm32(totalSize), result);
  CheckedInt<int32_t> endOffset =
      (CheckedInt<uintptr_t>(uintptr_t(curEndAddr)) -
       CheckedInt<uintptr_t>(uintptr_t(posAddr)))
          .toChecked<int32_t>();
  MOZ_ASSERT(endOffset.isValid(), "Position and end pointers must be nearby");
  branchPtr(Assembler::Below, Address(temp, endOffset.value()), result, fail);
  storePtr(result, Address(temp, 0));
  subPtr(Imm32(size), result);

  if (GetJitContext()->runtime->geckoProfiler().enabled()) {
    CompileZone* zone = GetJitContext()->realm()->zone();
    uint32_t* countAddress = zone->addressOfNurseryAllocCount();
    CheckedInt<int32_t> counterOffset =
        (CheckedInt<uintptr_t>(uintptr_t(countAddress)) -
         CheckedInt<uintptr_t>(uintptr_t(posAddr)))
            .toChecked<int32_t>();
    if (counterOffset.isValid()) {
      add32(Imm32(1), Address(temp, counterOffset.value()));
    } else {
      movePtr(ImmPtr(countAddress), temp);
      add32(Imm32(1), Address(temp, 0));
    }
  }
}

// Inlined equivalent of gc::AllocateString, jumping to fail if nursery
// allocation requested but unsuccessful.
void MacroAssembler::allocateString(Register result, Register temp,
                                    gc::AllocKind allocKind,
                                    gc::InitialHeap initialHeap, Label* fail) {
  MOZ_ASSERT(allocKind == gc::AllocKind::STRING ||
             allocKind == gc::AllocKind::FAT_INLINE_STRING);

  checkAllocatorState(fail);

  if (shouldNurseryAllocate(allocKind, initialHeap)) {
    MOZ_ASSERT(initialHeap == gc::DefaultHeap);
    return nurseryAllocateString(result, temp, allocKind, fail);
  }

  freeListAllocate(result, temp, allocKind, fail);
}

void MacroAssembler::newGCString(Register result, Register temp, Label* fail,
                                 bool attemptNursery) {
  allocateString(result, temp, js::gc::AllocKind::STRING,
                 attemptNursery ? gc::DefaultHeap : gc::TenuredHeap, fail);
}

void MacroAssembler::newGCFatInlineString(Register result, Register temp,
                                          Label* fail, bool attemptNursery) {
  allocateString(result, temp, js::gc::AllocKind::FAT_INLINE_STRING,
                 attemptNursery ? gc::DefaultHeap : gc::TenuredHeap, fail);
}

void MacroAssembler::copySlotsFromTemplate(
    Register obj, const NativeTemplateObject& templateObj, uint32_t start,
    uint32_t end) {
  uint32_t nfixed = Min(templateObj.numFixedSlots(), end);
  for (unsigned i = start; i < nfixed; i++) {
    // Template objects are not exposed to script and therefore immutable.
    // However, regexp template objects are sometimes used directly (when
    // the cloning is not observable), and therefore we can end up with a
    // non-zero lastIndex. Detect this case here and just substitute 0, to
    // avoid racing with the main thread updating this slot.
    Value v;
    if (templateObj.isRegExpObject() && i == RegExpObject::lastIndexSlot()) {
      v = Int32Value(0);
    } else {
      v = templateObj.getSlot(i);
    }
    storeValue(v, Address(obj, NativeObject::getFixedSlotOffset(i)));
  }
}

void MacroAssembler::fillSlotsWithConstantValue(Address base, Register temp,
                                                uint32_t start, uint32_t end,
                                                const Value& v) {
  MOZ_ASSERT(v.isUndefined() || IsUninitializedLexical(v));

  if (start >= end) {
    return;
  }

#ifdef JS_NUNBOX32
  // We only have a single spare register, so do the initialization as two
  // strided writes of the tag and body.
  Address addr = base;
  move32(Imm32(v.toNunboxPayload()), temp);
  for (unsigned i = start; i < end; ++i, addr.offset += sizeof(GCPtrValue)) {
    store32(temp, ToPayload(addr));
  }

  addr = base;
  move32(Imm32(v.toNunboxTag()), temp);
  for (unsigned i = start; i < end; ++i, addr.offset += sizeof(GCPtrValue)) {
    store32(temp, ToType(addr));
  }
#else
  moveValue(v, ValueOperand(temp));
  for (uint32_t i = start; i < end; ++i, base.offset += sizeof(GCPtrValue)) {
    storePtr(temp, base);
  }
#endif
}

void MacroAssembler::fillSlotsWithUndefined(Address base, Register temp,
                                            uint32_t start, uint32_t end) {
  fillSlotsWithConstantValue(base, temp, start, end, UndefinedValue());
}

void MacroAssembler::fillSlotsWithUninitialized(Address base, Register temp,
                                                uint32_t start, uint32_t end) {
  fillSlotsWithConstantValue(base, temp, start, end,
                             MagicValue(JS_UNINITIALIZED_LEXICAL));
}

static void FindStartOfUninitializedAndUndefinedSlots(
    const NativeTemplateObject& templateObj, uint32_t nslots,
    uint32_t* startOfUninitialized, uint32_t* startOfUndefined) {
  MOZ_ASSERT(nslots == templateObj.slotSpan());
  MOZ_ASSERT(nslots > 0);

  uint32_t first = nslots;
  for (; first != 0; --first) {
    if (templateObj.getSlot(first - 1) != UndefinedValue()) {
      break;
    }
  }
  *startOfUndefined = first;

  if (first != 0 && IsUninitializedLexical(templateObj.getSlot(first - 1))) {
    for (; first != 0; --first) {
      if (!IsUninitializedLexical(templateObj.getSlot(first - 1))) {
        break;
      }
    }
    *startOfUninitialized = first;
  } else {
    *startOfUninitialized = *startOfUndefined;
  }
}

static void AllocateAndInitTypedArrayBuffer(JSContext* cx,
                                            TypedArrayObject* obj,
                                            int32_t count) {
  AutoUnsafeCallWithABI unsafe;

  obj->initPrivate(nullptr);

  // Negative numbers or zero will bail out to the slow path, which in turn will
  // raise an invalid argument exception or create a correct object with zero
  // elements.
  if (count <= 0 || uint32_t(count) >= INT32_MAX / obj->bytesPerElement()) {
    obj->setFixedSlot(TypedArrayObject::LENGTH_SLOT, Int32Value(0));
    return;
  }

  obj->setFixedSlot(TypedArrayObject::LENGTH_SLOT, Int32Value(count));

  size_t nbytes = count * obj->bytesPerElement();
  MOZ_ASSERT((CheckedUint32(nbytes) + sizeof(Value)).isValid(),
             "JS_ROUNDUP must not overflow");

  nbytes = JS_ROUNDUP(nbytes, sizeof(Value));
  void* buf = cx->nursery().allocateZeroedBuffer(obj, nbytes,
                                                 js::ArrayBufferContentsArena);
  if (buf) {
    InitObjectPrivate(obj, buf, nbytes, MemoryUse::TypedArrayElements);
  }
}

void MacroAssembler::initTypedArraySlots(Register obj, Register temp,
                                         Register lengthReg,
                                         LiveRegisterSet liveRegs, Label* fail,
                                         TypedArrayObject* templateObj,
                                         TypedArrayLength lengthKind) {
  MOZ_ASSERT(templateObj->hasPrivate());
  MOZ_ASSERT(!templateObj->hasBuffer());

  constexpr size_t dataSlotOffset = TypedArrayObject::dataOffset();
  constexpr size_t dataOffset = dataSlotOffset + sizeof(HeapSlot);

  static_assert(
      TypedArrayObject::FIXED_DATA_START == TypedArrayObject::DATA_SLOT + 1,
      "fixed inline element data assumed to begin after the data slot");

  static_assert(
      TypedArrayObject::INLINE_BUFFER_LIMIT ==
          JSObject::MAX_BYTE_SIZE - dataOffset,
      "typed array inline buffer is limited by the maximum object byte size");

  // Initialise data elements to zero.
  int32_t length = templateObj->length();
  size_t nbytes = length * templateObj->bytesPerElement();

  if (lengthKind == TypedArrayLength::Fixed &&
      nbytes <= TypedArrayObject::INLINE_BUFFER_LIMIT) {
    MOZ_ASSERT(dataOffset + nbytes <= templateObj->tenuredSizeOfThis());

    // Store data elements inside the remaining JSObject slots.
    computeEffectiveAddress(Address(obj, dataOffset), temp);
    storePtr(temp, Address(obj, dataSlotOffset));

    // Write enough zero pointers into fixed data to zero every
    // element.  (This zeroes past the end of a byte count that's
    // not a multiple of pointer size.  That's okay, because fixed
    // data is a count of 8-byte HeapSlots (i.e. <= pointer size),
    // and we won't inline unless the desired memory fits in that
    // space.)
    static_assert(sizeof(HeapSlot) == 8, "Assumed 8 bytes alignment");

    size_t numZeroPointers = ((nbytes + 7) & ~0x7) / sizeof(char*);
    for (size_t i = 0; i < numZeroPointers; i++) {
      storePtr(ImmWord(0), Address(obj, dataOffset + i * sizeof(char*)));
    }
#ifdef DEBUG
    if (nbytes == 0) {
      store8(Imm32(TypedArrayObject::ZeroLengthArrayData),
             Address(obj, dataSlotOffset));
    }
#endif
  } else {
    if (lengthKind == TypedArrayLength::Fixed) {
      move32(Imm32(length), lengthReg);
    }

    // Allocate a buffer on the heap to store the data elements.
    liveRegs.addUnchecked(temp);
    liveRegs.addUnchecked(obj);
    liveRegs.addUnchecked(lengthReg);
    PushRegsInMask(liveRegs);
    setupUnalignedABICall(temp);
    loadJSContext(temp);
    passABIArg(temp);
    passABIArg(obj);
    passABIArg(lengthReg);
    callWithABI(JS_FUNC_TO_DATA_PTR(void*, AllocateAndInitTypedArrayBuffer));
    PopRegsInMask(liveRegs);

    // Fail when data elements is set to NULL.
    branchPtr(Assembler::Equal, Address(obj, dataSlotOffset), ImmWord(0), fail);
  }
}

void MacroAssembler::initGCSlots(Register obj, Register temp,
                                 const NativeTemplateObject& templateObj,
                                 bool initContents) {
  // Slots of non-array objects are required to be initialized.
  // Use the values currently in the template object.
  uint32_t nslots = templateObj.slotSpan();
  if (nslots == 0) {
    return;
  }

  uint32_t nfixed = templateObj.numUsedFixedSlots();
  uint32_t ndynamic = templateObj.numDynamicSlots();

  // Attempt to group slot writes such that we minimize the amount of
  // duplicated data we need to embed in code and load into registers. In
  // general, most template object slots will be undefined except for any
  // reserved slots. Since reserved slots come first, we split the object
  // logically into independent non-UndefinedValue writes to the head and
  // duplicated writes of UndefinedValue to the tail. For the majority of
  // objects, the "tail" will be the entire slot range.
  //
  // The template object may be a CallObject, in which case we need to
  // account for uninitialized lexical slots as well as undefined
  // slots. Unitialized lexical slots appears in CallObjects if the function
  // has parameter expressions, in which case closed over parameters have
  // TDZ. Uninitialized slots come before undefined slots in CallObjects.
  uint32_t startOfUninitialized = nslots;
  uint32_t startOfUndefined = nslots;
  FindStartOfUninitializedAndUndefinedSlots(
      templateObj, nslots, &startOfUninitialized, &startOfUndefined);
  MOZ_ASSERT(startOfUninitialized <= nfixed);  // Reserved slots must be fixed.
  MOZ_ASSERT(startOfUndefined >= startOfUninitialized);
  MOZ_ASSERT_IF(!templateObj.isCallObject(),
                startOfUninitialized == startOfUndefined);

  // Copy over any preserved reserved slots.
  copySlotsFromTemplate(obj, templateObj, 0, startOfUninitialized);

  // Fill the rest of the fixed slots with undefined and uninitialized.
  if (initContents) {
    size_t offset = NativeObject::getFixedSlotOffset(startOfUninitialized);
    fillSlotsWithUninitialized(Address(obj, offset), temp, startOfUninitialized,
                               Min(startOfUndefined, nfixed));

    offset = NativeObject::getFixedSlotOffset(startOfUndefined);
    fillSlotsWithUndefined(Address(obj, offset), temp, startOfUndefined,
                           nfixed);
  }

  if (ndynamic) {
    // We are short one register to do this elegantly. Borrow the obj
    // register briefly for our slots base address.
    push(obj);
    loadPtr(Address(obj, NativeObject::offsetOfSlots()), obj);

    // Fill uninitialized slots if necessary. Otherwise initialize all
    // slots to undefined.
    if (startOfUndefined > nfixed) {
      MOZ_ASSERT(startOfUninitialized != startOfUndefined);
      fillSlotsWithUninitialized(Address(obj, 0), temp, 0,
                                 startOfUndefined - nfixed);
      size_t offset = (startOfUndefined - nfixed) * sizeof(Value);
      fillSlotsWithUndefined(Address(obj, offset), temp,
                             startOfUndefined - nfixed, ndynamic);
    } else {
      fillSlotsWithUndefined(Address(obj, 0), temp, 0, ndynamic);
    }

    pop(obj);
  }
}

#ifdef JS_GC_TRACE
static void TraceCreateObject(JSObject* obj) {
  AutoUnsafeCallWithABI unsafe;
  js::gc::gcTracer.traceCreateObject(obj);
}
#endif

void MacroAssembler::initGCThing(Register obj, Register temp,
                                 const TemplateObject& templateObj,
                                 bool initContents) {
  // Fast initialization of an empty object returned by allocateObject().

  storePtr(ImmGCPtr(templateObj.group()),
           Address(obj, JSObject::offsetOfGroup()));

  storePtr(ImmGCPtr(templateObj.shape()),
           Address(obj, JSObject::offsetOfShape()));

  if (templateObj.isNative()) {
    const NativeTemplateObject& ntemplate =
        templateObj.asNativeTemplateObject();
    MOZ_ASSERT_IF(!ntemplate.denseElementsAreCopyOnWrite(),
                  !ntemplate.hasDynamicElements());
    MOZ_ASSERT_IF(ntemplate.convertDoubleElements(), ntemplate.isArrayObject());

    // If the object has dynamic slots, the slots member has already been
    // filled in.
    if (!ntemplate.hasDynamicSlots()) {
      storePtr(ImmPtr(nullptr), Address(obj, NativeObject::offsetOfSlots()));
    }

    if (ntemplate.denseElementsAreCopyOnWrite()) {
      storePtr(ImmPtr(ntemplate.getDenseElements()),
               Address(obj, NativeObject::offsetOfElements()));
    } else if (ntemplate.isArrayObject()) {
      int elementsOffset = NativeObject::offsetOfFixedElements();

      computeEffectiveAddress(Address(obj, elementsOffset), temp);
      storePtr(temp, Address(obj, NativeObject::offsetOfElements()));

      // Fill in the elements header.
      store32(
          Imm32(ntemplate.getDenseCapacity()),
          Address(obj, elementsOffset + ObjectElements::offsetOfCapacity()));
      store32(Imm32(ntemplate.getDenseInitializedLength()),
              Address(obj, elementsOffset +
                               ObjectElements::offsetOfInitializedLength()));
      store32(Imm32(ntemplate.getArrayLength()),
              Address(obj, elementsOffset + ObjectElements::offsetOfLength()));
      store32(Imm32(ntemplate.convertDoubleElements()
                        ? ObjectElements::CONVERT_DOUBLE_ELEMENTS
                        : 0),
              Address(obj, elementsOffset + ObjectElements::offsetOfFlags()));
      MOZ_ASSERT(!ntemplate.hasPrivate());
    } else if (ntemplate.isArgumentsObject()) {
      // The caller will initialize the reserved slots.
      MOZ_ASSERT(!initContents);
      MOZ_ASSERT(!ntemplate.hasPrivate());
      storePtr(ImmPtr(emptyObjectElements),
               Address(obj, NativeObject::offsetOfElements()));
    } else {
      // If the target type could be a TypedArray that maps shared memory
      // then this would need to store emptyObjectElementsShared in that case.
      MOZ_ASSERT(!ntemplate.isSharedMemory());

      storePtr(ImmPtr(emptyObjectElements),
               Address(obj, NativeObject::offsetOfElements()));

      initGCSlots(obj, temp, ntemplate, initContents);

      if (ntemplate.hasPrivate() && !ntemplate.isTypedArrayObject()) {
        uint32_t nfixed = ntemplate.numFixedSlots();
        Address privateSlot(obj, NativeObject::getPrivateDataOffset(nfixed));
        if (ntemplate.isRegExpObject()) {
          // RegExpObject stores a GC thing (RegExpShared*) in its
          // private slot, so we have to use ImmGCPtr.
          storePtr(ImmGCPtr(ntemplate.regExpShared()), privateSlot);
        } else {
          storePtr(ImmPtr(ntemplate.getPrivate()), privateSlot);
        }
      }
    }
  } else if (templateObj.isInlineTypedObject()) {
    JS::AutoAssertNoGC nogc;  // off-thread, so cannot GC
    size_t nbytes = templateObj.getInlineTypedObjectSize();
    const uint8_t* memory = templateObj.getInlineTypedObjectMem(nogc);

    // Memcpy the contents of the template object to the new object.
    size_t offset = 0;
    while (nbytes) {
      uintptr_t value = *(uintptr_t*)(memory + offset);
      storePtr(ImmWord(value),
               Address(obj, InlineTypedObject::offsetOfDataStart() + offset));
      nbytes = (nbytes < sizeof(uintptr_t)) ? 0 : nbytes - sizeof(uintptr_t);
      offset += sizeof(uintptr_t);
    }
  } else {
    MOZ_CRASH("Unknown object");
  }

#ifdef JS_GC_TRACE
  AllocatableRegisterSet regs(RegisterSet::Volatile());
  LiveRegisterSet save(regs.asLiveSet());
  PushRegsInMask(save);

  regs.takeUnchecked(obj);
  Register temp2 = regs.takeAnyGeneral();

  setupUnalignedABICall(temp2);
  passABIArg(obj);
  callWithABI(JS_FUNC_TO_DATA_PTR(void*, TraceCreateObject));

  PopRegsInMask(save);
#endif
}

void MacroAssembler::compareStrings(JSOp op, Register left, Register right,
                                    Register result, Label* fail) {
  MOZ_ASSERT(left != result);
  MOZ_ASSERT(right != result);
  MOZ_ASSERT(IsEqualityOp(op) || IsRelationalOp(op));

  Label notPointerEqual;
  // If operands point to the same instance, the strings are trivially equal.
  branchPtr(Assembler::NotEqual, left, right,
            IsEqualityOp(op) ? &notPointerEqual : fail);
  move32(Imm32(op == JSOP_EQ || op == JSOP_STRICTEQ || op == JSOP_LE ||
               op == JSOP_GE),
         result);

  if (IsEqualityOp(op)) {
    Label done;
    jump(&done);

    bind(&notPointerEqual);

    Label leftIsNotAtom;
    Label setNotEqualResult;
    // Atoms cannot be equal to each other if they point to different strings.
    Imm32 nonAtomBit(JSString::NON_ATOM_BIT);
    branchTest32(Assembler::NonZero, Address(left, JSString::offsetOfFlags()),
                 nonAtomBit, &leftIsNotAtom);
    branchTest32(Assembler::Zero, Address(right, JSString::offsetOfFlags()),
                 nonAtomBit, &setNotEqualResult);

    bind(&leftIsNotAtom);
    // Strings of different length can never be equal.
    loadStringLength(left, result);
    branch32(Assembler::Equal, Address(right, JSString::offsetOfLength()),
             result, fail);

    bind(&setNotEqualResult);
    move32(Imm32(op == JSOP_NE || op == JSOP_STRICTNE), result);

    bind(&done);
  }
}

void MacroAssembler::loadStringChars(Register str, Register dest,
                                     CharEncoding encoding) {
  MOZ_ASSERT(str != dest);

  if (JitOptions.spectreStringMitigations) {
    if (encoding == CharEncoding::Latin1) {
      // If the string is a rope, zero the |str| register. The code below
      // depends on str->flags so this should block speculative execution.
      movePtr(ImmWord(0), dest);
      test32MovePtr(Assembler::Zero, Address(str, JSString::offsetOfFlags()),
                    Imm32(JSString::LINEAR_BIT), dest, str);
    } else {
      // If we're loading TwoByte chars, there's an additional risk:
      // if the string has Latin1 chars, we could read out-of-bounds. To
      // prevent this, we check both the Linear and Latin1 bits. We don't
      // have a scratch register, so we use these flags also to block
      // speculative execution, similar to the use of 0 above.
      MOZ_ASSERT(encoding == CharEncoding::TwoByte);
      static constexpr uint32_t Mask =
          JSString::LINEAR_BIT | JSString::LATIN1_CHARS_BIT;
      static_assert(Mask < 1024,
                    "Mask should be a small, near-null value to ensure we "
                    "block speculative execution when it's used as string "
                    "pointer");
      move32(Imm32(Mask), dest);
      and32(Address(str, JSString::offsetOfFlags()), dest);
      cmp32MovePtr(Assembler::NotEqual, dest, Imm32(JSString::LINEAR_BIT), dest,
                   str);
    }
  }

  // Load the inline chars.
  computeEffectiveAddress(Address(str, JSInlineString::offsetOfInlineStorage()),
                          dest);

  // If it's not an inline string, load the non-inline chars. Use a
  // conditional move to prevent speculative execution.
  test32LoadPtr(Assembler::Zero, Address(str, JSString::offsetOfFlags()),
                Imm32(JSString::INLINE_CHARS_BIT),
                Address(str, JSString::offsetOfNonInlineChars()), dest);
}

void MacroAssembler::loadNonInlineStringChars(Register str, Register dest,
                                              CharEncoding encoding) {
  MOZ_ASSERT(str != dest);

  if (JitOptions.spectreStringMitigations) {
    // If the string is a rope, has inline chars, or has a different
    // character encoding, set str to a near-null value to prevent
    // speculative execution below (when reading str->nonInlineChars).

    static constexpr uint32_t Mask = JSString::LINEAR_BIT |
                                     JSString::INLINE_CHARS_BIT |
                                     JSString::LATIN1_CHARS_BIT;
    static_assert(Mask < 1024,
                  "Mask should be a small, near-null value to ensure we "
                  "block speculative execution when it's used as string "
                  "pointer");

    uint32_t expectedBits = JSString::LINEAR_BIT;
    if (encoding == CharEncoding::Latin1) {
      expectedBits |= JSString::LATIN1_CHARS_BIT;
    }

    move32(Imm32(Mask), dest);
    and32(Address(str, JSString::offsetOfFlags()), dest);

    cmp32MovePtr(Assembler::NotEqual, dest, Imm32(expectedBits), dest, str);
  }

  loadPtr(Address(str, JSString::offsetOfNonInlineChars()), dest);
}

void MacroAssembler::storeNonInlineStringChars(Register chars, Register str) {
  MOZ_ASSERT(chars != str);
  storePtr(chars, Address(str, JSString::offsetOfNonInlineChars()));
}

void MacroAssembler::loadInlineStringCharsForStore(Register str,
                                                   Register dest) {
  computeEffectiveAddress(Address(str, JSInlineString::offsetOfInlineStorage()),
                          dest);
}

void MacroAssembler::loadInlineStringChars(Register str, Register dest,
                                           CharEncoding encoding) {
  MOZ_ASSERT(str != dest);

  if (JitOptions.spectreStringMitigations) {
    // Making this Spectre-safe is a bit complicated: using
    // computeEffectiveAddress and then zeroing the output register if
    // non-inline is not sufficient: when the index is very large, it would
    // allow reading |nullptr + index|. Just fall back to loadStringChars
    // for now.
    loadStringChars(str, dest, encoding);
  } else {
    computeEffectiveAddress(
        Address(str, JSInlineString::offsetOfInlineStorage()), dest);
  }
}

void MacroAssembler::loadRopeLeftChild(Register str, Register dest) {
  MOZ_ASSERT(str != dest);

  if (JitOptions.spectreStringMitigations) {
    // Zero the output register if the input was not a rope.
    movePtr(ImmWord(0), dest);
    test32LoadPtr(Assembler::Zero, Address(str, JSString::offsetOfFlags()),
                  Imm32(JSString::LINEAR_BIT),
                  Address(str, JSRope::offsetOfLeft()), dest);
  } else {
    loadPtr(Address(str, JSRope::offsetOfLeft()), dest);
  }
}

void MacroAssembler::storeRopeChildren(Register left, Register right,
                                       Register str) {
  storePtr(left, Address(str, JSRope::offsetOfLeft()));
  storePtr(right, Address(str, JSRope::offsetOfRight()));
}

void MacroAssembler::loadDependentStringBase(Register str, Register dest) {
  MOZ_ASSERT(str != dest);

  if (JitOptions.spectreStringMitigations) {
    // If the string does not have a base-string, zero the |str| register.
    // The code below loads str->base so this should block speculative
    // execution.
    movePtr(ImmWord(0), dest);
    test32MovePtr(Assembler::Zero, Address(str, JSString::offsetOfFlags()),
                  Imm32(JSString::HAS_BASE_BIT), dest, str);
  }

  loadPtr(Address(str, JSDependentString::offsetOfBase()), dest);
}

void MacroAssembler::storeDependentStringBase(Register base, Register str) {
  storePtr(base, Address(str, JSDependentString::offsetOfBase()));
}

void MacroAssembler::loadStringChar(Register str, Register index,
                                    Register output, Register scratch,
                                    Label* fail) {
  MOZ_ASSERT(str != output);
  MOZ_ASSERT(str != index);
  MOZ_ASSERT(index != output);
  MOZ_ASSERT(output != scratch);

  movePtr(str, output);

  // This follows JSString::getChar.
  Label notRope;
  branchIfNotRope(str, &notRope);

  loadRopeLeftChild(str, output);

  // Check if the index is contained in the leftChild.
  // Todo: Handle index in the rightChild.
  spectreBoundsCheck32(index, Address(output, JSString::offsetOfLength()),
                       scratch, fail);

  // If the left side is another rope, give up.
  branchIfRope(output, fail);

  bind(&notRope);

  Label isLatin1, done;
  // We have to check the left/right side for ropes,
  // because a TwoByte rope might have a Latin1 child.
  branchLatin1String(output, &isLatin1);
  loadStringChars(output, scratch, CharEncoding::TwoByte);
  loadChar(scratch, index, output, CharEncoding::TwoByte);
  jump(&done);

  bind(&isLatin1);
  loadStringChars(output, scratch, CharEncoding::Latin1);
  loadChar(scratch, index, output, CharEncoding::Latin1);

  bind(&done);
}

void MacroAssembler::loadStringIndexValue(Register str, Register dest,
                                          Label* fail) {
  MOZ_ASSERT(str != dest);

  load32(Address(str, JSString::offsetOfFlags()), dest);

  // Does not have a cached index value.
  branchTest32(Assembler::Zero, dest, Imm32(JSString::INDEX_VALUE_BIT), fail);

  // Extract the index.
  rshift32(Imm32(JSString::INDEX_VALUE_SHIFT), dest);
}

void MacroAssembler::loadChar(Register chars, Register index, Register dest,
                              CharEncoding encoding, int32_t offset /* = 0 */) {
  if (encoding == CharEncoding::Latin1) {
    loadChar(BaseIndex(chars, index, TimesOne, offset), dest, encoding);
  } else {
    loadChar(BaseIndex(chars, index, TimesTwo, offset), dest, encoding);
  }
}

void MacroAssembler::addToCharPtr(Register chars, Register index,
                                  CharEncoding encoding) {
  if (encoding == CharEncoding::Latin1) {
    static_assert(sizeof(char) == 1,
                  "Latin-1 string index shouldn't need scaling");
    addPtr(index, chars);
  } else {
    computeEffectiveAddress(BaseIndex(chars, index, TimesTwo), chars);
  }
}

void MacroAssembler::typeOfObject(Register obj, Register scratch, Label* slow,
                                  Label* isObject, Label* isCallable,
                                  Label* isUndefined) {
  loadObjClassUnsafe(obj, scratch);

  // Proxies can emulate undefined and have complex isCallable behavior.
  branchTestClassIsProxy(true, scratch, slow);

  // JSFunctions are always callable.
  branchPtr(Assembler::Equal, scratch, ImmPtr(&JSFunction::class_), isCallable);

  // Objects that emulate undefined.
  Address flags(scratch, JSClass::offsetOfFlags());
  branchTest32(Assembler::NonZero, flags, Imm32(JSCLASS_EMULATES_UNDEFINED),
               isUndefined);

  // Handle classes with a call hook.
  branchPtr(Assembler::Equal, Address(scratch, offsetof(JSClass, cOps)),
            ImmPtr(nullptr), isObject);

  loadPtr(Address(scratch, offsetof(JSClass, cOps)), scratch);
  branchPtr(Assembler::Equal, Address(scratch, offsetof(JSClassOps, call)),
            ImmPtr(nullptr), isObject);

  jump(isCallable);
}

void MacroAssembler::loadJSContext(Register dest) {
  JitContext* jcx = GetJitContext();
  movePtr(ImmPtr(jcx->runtime->mainContextPtr()), dest);
}

static const uint8_t* ContextRealmPtr() {
  return (
      static_cast<const uint8_t*>(GetJitContext()->runtime->mainContextPtr()) +
      JSContext::offsetOfRealm());
}

void MacroAssembler::switchToRealm(Register realm) {
  storePtr(realm, AbsoluteAddress(ContextRealmPtr()));
}

void MacroAssembler::switchToRealm(const void* realm, Register scratch) {
  MOZ_ASSERT(realm);

  movePtr(ImmPtr(realm), scratch);
  switchToRealm(scratch);
}

void MacroAssembler::switchToObjectRealm(Register obj, Register scratch) {
  loadPtr(Address(obj, JSObject::offsetOfGroup()), scratch);
  loadPtr(Address(scratch, ObjectGroup::offsetOfRealm()), scratch);
  switchToRealm(scratch);
}

void MacroAssembler::switchToBaselineFrameRealm(Register scratch) {
  Address envChain(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfEnvironmentChain());
  loadPtr(envChain, scratch);
  switchToObjectRealm(scratch, scratch);
}

void MacroAssembler::switchToWasmTlsRealm(Register scratch1,
                                          Register scratch2) {
  loadPtr(Address(WasmTlsReg, offsetof(wasm::TlsData, cx)), scratch1);
  loadPtr(Address(WasmTlsReg, offsetof(wasm::TlsData, realm)), scratch2);
  storePtr(scratch2, Address(scratch1, JSContext::offsetOfRealm()));
}

void MacroAssembler::debugAssertContextRealm(const void* realm,
                                             Register scratch) {
#ifdef DEBUG
  Label ok;
  movePtr(ImmPtr(realm), scratch);
  branchPtr(Assembler::Equal, AbsoluteAddress(ContextRealmPtr()), scratch, &ok);
  assumeUnreachable("Unexpected context realm");
  bind(&ok);
#endif
}

void MacroAssembler::guardGroupHasUnanalyzedNewScript(Register group,
                                                      Register scratch,
                                                      Label* fail) {
  Label noNewScript;
  load32(Address(group, ObjectGroup::offsetOfFlags()), scratch);
  and32(Imm32(OBJECT_FLAG_ADDENDUM_MASK), scratch);
  branch32(Assembler::NotEqual, scratch,
           Imm32(uint32_t(ObjectGroup::Addendum_NewScript)
                 << OBJECT_FLAG_ADDENDUM_SHIFT),
           &noNewScript);

  // Guard group->newScript()->preliminaryObjects is non-nullptr.
  loadPtr(Address(group, ObjectGroup::offsetOfAddendum()), scratch);
  branchPtr(Assembler::Equal,
            Address(scratch, TypeNewScript::offsetOfPreliminaryObjects()),
            ImmWord(0), fail);

  bind(&noNewScript);
}

void MacroAssembler::generateBailoutTail(Register scratch,
                                         Register bailoutInfo) {
  loadJSContext(scratch);
  enterFakeExitFrame(scratch, scratch, ExitFrameType::Bare);

  branchIfFalseBool(ReturnReg, exceptionLabel());

  // Finish bailing out to Baseline.
  {
    // Prepare a register set for use in this case.
    AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
    MOZ_ASSERT_IF(!IsHiddenSP(getStackPointer()),
                  !regs.has(AsRegister(getStackPointer())));
    regs.take(bailoutInfo);

    // Reset SP to the point where clobbering starts.
    loadStackPtr(
        Address(bailoutInfo, offsetof(BaselineBailoutInfo, incomingStack)));

    Register copyCur = regs.takeAny();
    Register copyEnd = regs.takeAny();
    Register temp = regs.takeAny();

    // Copy data onto stack.
    loadPtr(Address(bailoutInfo, offsetof(BaselineBailoutInfo, copyStackTop)),
            copyCur);
    loadPtr(
        Address(bailoutInfo, offsetof(BaselineBailoutInfo, copyStackBottom)),
        copyEnd);
    {
      Label copyLoop;
      Label endOfCopy;
      bind(&copyLoop);
      branchPtr(Assembler::BelowOrEqual, copyCur, copyEnd, &endOfCopy);
      subPtr(Imm32(4), copyCur);
      subFromStackPtr(Imm32(4));
      load32(Address(copyCur, 0), temp);
      store32(temp, Address(getStackPointer(), 0));
      jump(&copyLoop);
      bind(&endOfCopy);
    }

    // Enter exit frame for the FinishBailoutToBaseline call.
    loadPtr(Address(bailoutInfo, offsetof(BaselineBailoutInfo, resumeFramePtr)),
            temp);
    load32(Address(temp, BaselineFrame::reverseOffsetOfFrameSize()), temp);
    makeFrameDescriptor(temp, FrameType::BaselineJS, ExitFrameLayout::Size());
    push(temp);
    push(Address(bailoutInfo, offsetof(BaselineBailoutInfo, resumeAddr)));
    // No GC things to mark on the stack, push a bare token.
    loadJSContext(scratch);
    enterFakeExitFrame(scratch, scratch, ExitFrameType::Bare);

    // Save needed values onto stack temporarily.
    push(Address(bailoutInfo, offsetof(BaselineBailoutInfo, resumeFramePtr)));
    push(Address(bailoutInfo, offsetof(BaselineBailoutInfo, resumeAddr)));

    // Call a stub to free allocated memory and create arguments objects.
    setupUnalignedABICall(temp);
    passABIArg(bailoutInfo);
    callWithABI(JS_FUNC_TO_DATA_PTR(void*, FinishBailoutToBaseline),
                MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame);
    branchIfFalseBool(ReturnReg, exceptionLabel());

    // Restore values where they need to be and resume execution.
    AllocatableGeneralRegisterSet enterRegs(GeneralRegisterSet::All());
    enterRegs.take(BaselineFrameReg);
    Register jitcodeReg = enterRegs.takeAny();

    pop(jitcodeReg);
    pop(BaselineFrameReg);

    // Discard exit frame.
    addToStackPtr(Imm32(ExitFrameLayout::SizeWithFooter()));

    jump(jitcodeReg);
  }
}

void MacroAssembler::assertRectifierFrameParentType(Register frameType) {
#ifdef DEBUG
  {
    // Check the possible previous frame types here.
    Label checkOk;
    branch32(Assembler::Equal, frameType, Imm32(FrameType::IonJS), &checkOk);
    branch32(Assembler::Equal, frameType, Imm32(FrameType::BaselineStub),
             &checkOk);
    branch32(Assembler::Equal, frameType, Imm32(FrameType::WasmToJSJit),
             &checkOk);
    branch32(Assembler::Equal, frameType, Imm32(FrameType::CppToJSJit),
             &checkOk);
    assumeUnreachable("Unrecognized frame type preceding RectifierFrame.");
    bind(&checkOk);
  }
#endif
}

void MacroAssembler::loadJitCodeRaw(Register func, Register dest) {
  static_assert(
      JSScript::offsetOfJitCodeRaw() == LazyScript::offsetOfJitCodeRaw(),
      "LazyScript and JSScript must use same layout for jitCodeRaw_");
  static_assert(
      JSScript::offsetOfJitCodeRaw() ==
          SelfHostedLazyScript::offsetOfJitCodeRaw(),
      "SelfHostedLazyScript and JSScript must use same layout for jitCodeRaw_");
  loadPtr(Address(func, JSFunction::offsetOfScript()), dest);
  loadPtr(Address(dest, JSScript::offsetOfJitCodeRaw()), dest);
}

void MacroAssembler::loadJitCodeNoArgCheck(Register func, Register dest) {
  loadPtr(Address(func, JSFunction::offsetOfScript()), dest);
  loadPtr(Address(dest, JSScript::offsetOfJitScript()), dest);
  loadPtr(Address(dest, JitScript::offsetOfJitCodeSkipArgCheck()), dest);
}

void MacroAssembler::loadBaselineFramePtr(Register framePtr, Register dest) {
  if (framePtr != dest) {
    movePtr(framePtr, dest);
  }
  subPtr(Imm32(BaselineFrame::Size()), dest);
}

void MacroAssembler::handleFailure() {
  // Re-entry code is irrelevant because the exception will leave the
  // running function and never come back
  TrampolinePtr excTail =
      GetJitContext()->runtime->jitRuntime()->getExceptionTail();
  jump(excTail);
}

#ifdef JS_MASM_VERBOSE
static void AssumeUnreachable_(const char* output) {
  MOZ_ReportAssertionFailure(output, __FILE__, __LINE__);
}
#endif

void MacroAssembler::assumeUnreachable(const char* output) {
#ifdef JS_MASM_VERBOSE
  if (!IsCompilingWasm()) {
    AllocatableRegisterSet regs(RegisterSet::Volatile());
    LiveRegisterSet save(regs.asLiveSet());
    PushRegsInMask(save);
    Register temp = regs.takeAnyGeneral();

    setupUnalignedABICall(temp);
    movePtr(ImmPtr(output), temp);
    passABIArg(temp);
    callWithABI(JS_FUNC_TO_DATA_PTR(void*, AssumeUnreachable_), MoveOp::GENERAL,
                CheckUnsafeCallWithABI::DontCheckOther);

    PopRegsInMask(save);
  }
#endif

  breakpoint();
}

template <typename T>
void MacroAssembler::assertTestInt32(Condition cond, const T& value,
                                     const char* output) {
#ifdef DEBUG
  Label ok;
  branchTestInt32(cond, value, &ok);
  assumeUnreachable(output);
  bind(&ok);
#endif
}

template void MacroAssembler::assertTestInt32(Condition, const Address&,
                                              const char*);

#ifdef JS_MASM_VERBOSE
static void Printf0_(const char* output) {
  AutoUnsafeCallWithABI unsafe;

  // Use stderr instead of stdout because this is only used for debug
  // output. stderr is less likely to interfere with the program's normal
  // output, and it's always unbuffered.
  fprintf(stderr, "%s", output);
}
#endif

void MacroAssembler::printf(const char* output) {
#ifdef JS_MASM_VERBOSE
  AllocatableRegisterSet regs(RegisterSet::Volatile());
  LiveRegisterSet save(regs.asLiveSet());
  PushRegsInMask(save);

  Register temp = regs.takeAnyGeneral();

  setupUnalignedABICall(temp);
  movePtr(ImmPtr(output), temp);
  passABIArg(temp);
  callWithABI(JS_FUNC_TO_DATA_PTR(void*, Printf0_));

  PopRegsInMask(save);
#endif
}

#ifdef JS_MASM_VERBOSE
static void Printf1_(const char* output, uintptr_t value) {
  AutoUnsafeCallWithABI unsafe;
  AutoEnterOOMUnsafeRegion oomUnsafe;
  js::UniqueChars line = JS_sprintf_append(nullptr, output, value);
  if (!line) {
    oomUnsafe.crash("OOM at masm.printf");
  }
  fprintf(stderr, "%s", line.get());
}
#endif

void MacroAssembler::printf(const char* output, Register value) {
#ifdef JS_MASM_VERBOSE
  AllocatableRegisterSet regs(RegisterSet::Volatile());
  LiveRegisterSet save(regs.asLiveSet());
  PushRegsInMask(save);

  regs.takeUnchecked(value);

  Register temp = regs.takeAnyGeneral();

  setupUnalignedABICall(temp);
  movePtr(ImmPtr(output), temp);
  passABIArg(temp);
  passABIArg(value);
  callWithABI(JS_FUNC_TO_DATA_PTR(void*, Printf1_));

  PopRegsInMask(save);
#endif
}

#ifdef JS_TRACE_LOGGING
void MacroAssembler::tracelogStartId(Register logger, uint32_t textId,
                                     bool force) {
  if (!force && !TraceLogTextIdEnabled(textId)) {
    return;
  }

  AllocatableRegisterSet regs(RegisterSet::Volatile());
  LiveRegisterSet save(regs.asLiveSet());
  PushRegsInMask(save);
  regs.takeUnchecked(logger);

  Register temp = regs.takeAnyGeneral();

  setupUnalignedABICall(temp);
  passABIArg(logger);
  move32(Imm32(textId), temp);
  passABIArg(temp);
  callWithABI(JS_FUNC_TO_DATA_PTR(void*, TraceLogStartEventPrivate),
              MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther);

  PopRegsInMask(save);
}

void MacroAssembler::tracelogStartId(Register logger, Register textId) {
  AllocatableRegisterSet regs(RegisterSet::Volatile());
  LiveRegisterSet save(regs.asLiveSet());
  PushRegsInMask(save);
  regs.takeUnchecked(logger);
  regs.takeUnchecked(textId);

  Register temp = regs.takeAnyGeneral();

  setupUnalignedABICall(temp);
  passABIArg(logger);
  passABIArg(textId);
  callWithABI(JS_FUNC_TO_DATA_PTR(void*, TraceLogStartEventPrivate),
              MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther);

  PopRegsInMask(save);
}

void MacroAssembler::tracelogStartEvent(Register logger, Register event) {
  void (&TraceLogFunc)(TraceLoggerThread*, const TraceLoggerEvent&) =
      TraceLogStartEvent;

  AllocatableRegisterSet regs(RegisterSet::Volatile());
  LiveRegisterSet save(regs.asLiveSet());
  PushRegsInMask(save);
  regs.takeUnchecked(logger);
  regs.takeUnchecked(event);

  Register temp = regs.takeAnyGeneral();

  setupUnalignedABICall(temp);
  passABIArg(logger);
  passABIArg(event);
  callWithABI(JS_FUNC_TO_DATA_PTR(void*, TraceLogFunc), MoveOp::GENERAL,
              CheckUnsafeCallWithABI::DontCheckOther);

  PopRegsInMask(save);
}

void MacroAssembler::tracelogStopId(Register logger, uint32_t textId,
                                    bool force) {
  if (!force && !TraceLogTextIdEnabled(textId)) {
    return;
  }

  AllocatableRegisterSet regs(RegisterSet::Volatile());
  LiveRegisterSet save(regs.asLiveSet());
  PushRegsInMask(save);
  regs.takeUnchecked(logger);

  Register temp = regs.takeAnyGeneral();

  setupUnalignedABICall(temp);
  passABIArg(logger);
  move32(Imm32(textId), temp);
  passABIArg(temp);

  callWithABI(JS_FUNC_TO_DATA_PTR(void*, TraceLogStopEventPrivate),
              MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther);

  PopRegsInMask(save);
}

void MacroAssembler::tracelogStopId(Register logger, Register textId) {
  AllocatableRegisterSet regs(RegisterSet::Volatile());
  LiveRegisterSet save(regs.asLiveSet());
  PushRegsInMask(save);
  regs.takeUnchecked(logger);
  regs.takeUnchecked(textId);

  Register temp = regs.takeAnyGeneral();

  setupUnalignedABICall(temp);
  passABIArg(logger);
  passABIArg(textId);
  callWithABI(JS_FUNC_TO_DATA_PTR(void*, TraceLogStopEventPrivate),
              MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther);

  PopRegsInMask(save);
}
#endif

void MacroAssembler::convertInt32ValueToDouble(const Address& address,
                                               Register scratch, Label* done) {
  branchTestInt32(Assembler::NotEqual, address, done);
  unboxInt32(address, scratch);
  ScratchDoubleScope fpscratch(*this);
  convertInt32ToDouble(scratch, fpscratch);
  storeDouble(fpscratch, address);
}

void MacroAssembler::convertInt32ValueToDouble(ValueOperand val) {
  Label done;
  branchTestInt32(Assembler::NotEqual, val, &done);
  unboxInt32(val, val.scratchReg());
  ScratchDoubleScope fpscratch(*this);
  convertInt32ToDouble(val.scratchReg(), fpscratch);
  boxDouble(fpscratch, val, fpscratch);
  bind(&done);
}

void MacroAssembler::convertValueToFloatingPoint(ValueOperand value,
                                                 FloatRegister output,
                                                 Label* fail,
                                                 MIRType outputType) {
  Label isDouble, isInt32, isBool, isNull, done;

  {
    ScratchTagScope tag(*this, value);
    splitTagForTest(value, tag);

    branchTestDouble(Assembler::Equal, tag, &isDouble);
    branchTestInt32(Assembler::Equal, tag, &isInt32);
    branchTestBoolean(Assembler::Equal, tag, &isBool);
    branchTestNull(Assembler::Equal, tag, &isNull);
    branchTestUndefined(Assembler::NotEqual, tag, fail);
  }

  // fall-through: undefined
  loadConstantFloatingPoint(GenericNaN(), float(GenericNaN()), output,
                            outputType);
  jump(&done);

  bind(&isNull);
  loadConstantFloatingPoint(0.0, 0.0f, output, outputType);
  jump(&done);

  bind(&isBool);
  boolValueToFloatingPoint(value, output, outputType);
  jump(&done);

  bind(&isInt32);
  int32ValueToFloatingPoint(value, output, outputType);
  jump(&done);

  // On some non-multiAlias platforms, unboxDouble may use the scratch register,
  // so do not merge code paths here.
  bind(&isDouble);
  if (outputType == MIRType::Float32 && hasMultiAlias()) {
    ScratchDoubleScope tmp(*this);
    unboxDouble(value, tmp);
    convertDoubleToFloat32(tmp, output);
  } else {
    FloatRegister tmp = output.asDouble();
    unboxDouble(value, tmp);
    if (outputType == MIRType::Float32) {
      convertDoubleToFloat32(tmp, output);
    }
  }

  bind(&done);
}

bool MacroAssembler::convertValueToFloatingPoint(JSContext* cx, const Value& v,
                                                 FloatRegister output,
                                                 Label* fail,
                                                 MIRType outputType) {
  if (v.isNumber() || v.isString()) {
    double d;
    if (v.isNumber()) {
      d = v.toNumber();
    } else if (!StringToNumber(cx, v.toString(), &d)) {
      return false;
    }

    loadConstantFloatingPoint(d, (float)d, output, outputType);
    return true;
  }

  if (v.isBoolean()) {
    if (v.toBoolean()) {
      loadConstantFloatingPoint(1.0, 1.0f, output, outputType);
    } else {
      loadConstantFloatingPoint(0.0, 0.0f, output, outputType);
    }
    return true;
  }

  if (v.isNull()) {
    loadConstantFloatingPoint(0.0, 0.0f, output, outputType);
    return true;
  }

  if (v.isUndefined()) {
    loadConstantFloatingPoint(GenericNaN(), float(GenericNaN()), output,
                              outputType);
    return true;
  }

  MOZ_ASSERT(v.isObject() || v.isSymbol());
  jump(fail);
  return true;
}

bool MacroAssembler::convertConstantOrRegisterToFloatingPoint(
    JSContext* cx, const ConstantOrRegister& src, FloatRegister output,
    Label* fail, MIRType outputType) {
  if (src.constant()) {
    return convertValueToFloatingPoint(cx, src.value(), output, fail,
                                       outputType);
  }

  convertTypedOrValueToFloatingPoint(src.reg(), output, fail, outputType);
  return true;
}

void MacroAssembler::convertTypedOrValueToFloatingPoint(
    TypedOrValueRegister src, FloatRegister output, Label* fail,
    MIRType outputType) {
  MOZ_ASSERT(IsFloatingPointType(outputType));

  if (src.hasValue()) {
    convertValueToFloatingPoint(src.valueReg(), output, fail, outputType);
    return;
  }

  bool outputIsDouble = outputType == MIRType::Double;
  switch (src.type()) {
    case MIRType::Null:
      loadConstantFloatingPoint(0.0, 0.0f, output, outputType);
      break;
    case MIRType::Boolean:
    case MIRType::Int32:
      convertInt32ToFloatingPoint(src.typedReg().gpr(), output, outputType);
      break;
    case MIRType::Float32:
      if (outputIsDouble) {
        convertFloat32ToDouble(src.typedReg().fpu(), output);
      } else {
        if (src.typedReg().fpu() != output) {
          moveFloat32(src.typedReg().fpu(), output);
        }
      }
      break;
    case MIRType::Double:
      if (outputIsDouble) {
        if (src.typedReg().fpu() != output) {
          moveDouble(src.typedReg().fpu(), output);
        }
      } else {
        convertDoubleToFloat32(src.typedReg().fpu(), output);
      }
      break;
    case MIRType::Object:
    case MIRType::String:
    case MIRType::Symbol:
      jump(fail);
      break;
    case MIRType::Undefined:
      loadConstantFloatingPoint(GenericNaN(), float(GenericNaN()), output,
                                outputType);
      break;
    default:
      MOZ_CRASH("Bad MIRType");
  }
}

void MacroAssembler::outOfLineTruncateSlow(FloatRegister src, Register dest,
                                           bool widenFloatToDouble,
                                           bool compilingWasm,
                                           wasm::BytecodeOffset callOffset) {
#if defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_ARM64) || \
    defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
  ScratchDoubleScope fpscratch(*this);
  if (widenFloatToDouble) {
    convertFloat32ToDouble(src, fpscratch);
    src = fpscratch;
  }
#elif defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
  FloatRegister srcSingle;
  if (widenFloatToDouble) {
    MOZ_ASSERT(src.isSingle());
    srcSingle = src;
    src = src.asDouble();
    Push(srcSingle);
    convertFloat32ToDouble(srcSingle, src);
  }
#else
  // Also see below
  MOZ_CRASH("MacroAssembler platform hook: outOfLineTruncateSlow");
#endif

  MOZ_ASSERT(src.isDouble());

  if (compilingWasm) {
    setupWasmABICall();
    passABIArg(src, MoveOp::DOUBLE);
    callWithABI(callOffset, wasm::SymbolicAddress::ToInt32);
  } else {
    setupUnalignedABICall(dest);
    passABIArg(src, MoveOp::DOUBLE);
    callWithABI(mozilla::BitwiseCast<void*, int32_t (*)(double)>(JS::ToInt32),
                MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther);
  }
  storeCallInt32Result(dest);

#if defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_ARM64) || \
    defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
  // Nothing
#elif defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
  if (widenFloatToDouble) {
    Pop(srcSingle);
  }
#else
  MOZ_CRASH("MacroAssembler platform hook: outOfLineTruncateSlow");
#endif
}

void MacroAssembler::convertDoubleToInt(FloatRegister src, Register output,
                                        FloatRegister temp, Label* truncateFail,
                                        Label* fail,
                                        IntConversionBehavior behavior) {
  switch (behavior) {
    case IntConversionBehavior::Normal:
    case IntConversionBehavior::NegativeZeroCheck:
      convertDoubleToInt32(
          src, output, fail,
          behavior == IntConversionBehavior::NegativeZeroCheck);
      break;
    case IntConversionBehavior::Truncate:
      branchTruncateDoubleMaybeModUint32(src, output,
                                         truncateFail ? truncateFail : fail);
      break;
    case IntConversionBehavior::ClampToUint8:
      // Clamping clobbers the input register, so use a temp.
      moveDouble(src, temp);
      clampDoubleToUint8(temp, output);
      break;
  }
}

void MacroAssembler::convertValueToInt(
    ValueOperand value, MDefinition* maybeInput, Label* handleStringEntry,
    Label* handleStringRejoin, Label* truncateDoubleSlow, Register stringReg,
    FloatRegister temp, Register output, Label* fail,
    IntConversionBehavior behavior, IntConversionInputKind conversion) {
  Label done, isInt32, isBool, isDouble, isNull, isString;

  bool handleStrings = (behavior == IntConversionBehavior::Truncate ||
                        behavior == IntConversionBehavior::ClampToUint8) &&
                       handleStringEntry && handleStringRejoin;

  MOZ_ASSERT_IF(handleStrings, conversion == IntConversionInputKind::Any);

  {
    ScratchTagScope tag(*this, value);
    splitTagForTest(value, tag);

    maybeBranchTestType(MIRType::Int32, maybeInput, tag, &isInt32);
    if (conversion == IntConversionInputKind::Any ||
        conversion == IntConversionInputKind::NumbersOrBoolsOnly) {
      maybeBranchTestType(MIRType::Boolean, maybeInput, tag, &isBool);
    }
    maybeBranchTestType(MIRType::Double, maybeInput, tag, &isDouble);

    if (conversion == IntConversionInputKind::Any) {
      // If we are not truncating, we fail for anything that's not
      // null. Otherwise we might be able to handle strings and objects.
      switch (behavior) {
        case IntConversionBehavior::Normal:
        case IntConversionBehavior::NegativeZeroCheck:
          branchTestNull(Assembler::NotEqual, tag, fail);
          break;

        case IntConversionBehavior::Truncate:
        case IntConversionBehavior::ClampToUint8:
          maybeBranchTestType(MIRType::Null, maybeInput, tag, &isNull);
          if (handleStrings) {
            maybeBranchTestType(MIRType::String, maybeInput, tag, &isString);
          }
          maybeBranchTestType(MIRType::Object, maybeInput, tag, fail);
          branchTestUndefined(Assembler::NotEqual, tag, fail);
          break;
      }
    } else {
      jump(fail);
    }
  }

  // The value is null or undefined in truncation contexts - just emit 0.
  if (isNull.used()) {
    bind(&isNull);
  }
  mov(ImmWord(0), output);
  jump(&done);

  // Try converting a string into a double, then jump to the double case.
  if (handleStrings) {
    bind(&isString);
    unboxString(value, stringReg);
    jump(handleStringEntry);
  }

  // Try converting double into integer.
  if (isDouble.used() || handleStrings) {
    if (isDouble.used()) {
      bind(&isDouble);
      unboxDouble(value, temp);
    }

    if (handleStrings) {
      bind(handleStringRejoin);
    }

    convertDoubleToInt(temp, output, temp, truncateDoubleSlow, fail, behavior);
    jump(&done);
  }

  // Just unbox a bool, the result is 0 or 1.
  if (isBool.used()) {
    bind(&isBool);
    unboxBoolean(value, output);
    jump(&done);
  }

  // Integers can be unboxed.
  if (isInt32.used()) {
    bind(&isInt32);
    unboxInt32(value, output);
    if (behavior == IntConversionBehavior::ClampToUint8) {
      clampIntToUint8(output);
    }
  }

  bind(&done);
}

bool MacroAssembler::convertValueToInt(JSContext* cx, const Value& v,
                                       Register output, Label* fail,
                                       IntConversionBehavior behavior) {
  bool handleStrings = (behavior == IntConversionBehavior::Truncate ||
                        behavior == IntConversionBehavior::ClampToUint8);

  if (v.isNumber() || (handleStrings && v.isString())) {
    double d;
    if (v.isNumber()) {
      d = v.toNumber();
    } else if (!StringToNumber(cx, v.toString(), &d)) {
      return false;
    }

    switch (behavior) {
      case IntConversionBehavior::Normal:
      case IntConversionBehavior::NegativeZeroCheck: {
        // -0 is checked anyways if we have a constant value.
        int i;
        if (mozilla::NumberIsInt32(d, &i)) {
          move32(Imm32(i), output);
        } else {
          jump(fail);
        }
        break;
      }
      case IntConversionBehavior::Truncate:
        move32(Imm32(ToInt32(d)), output);
        break;
      case IntConversionBehavior::ClampToUint8:
        move32(Imm32(ClampDoubleToUint8(d)), output);
        break;
    }

    return true;
  }

  if (v.isBoolean()) {
    move32(Imm32(v.toBoolean() ? 1 : 0), output);
    return true;
  }

  if (v.isNull() || v.isUndefined()) {
    move32(Imm32(0), output);
    return true;
  }

  MOZ_ASSERT(v.isObject() || v.isSymbol());

  jump(fail);
  return true;
}

bool MacroAssembler::convertConstantOrRegisterToInt(
    JSContext* cx, const ConstantOrRegister& src, FloatRegister temp,
    Register output, Label* fail, IntConversionBehavior behavior) {
  if (src.constant()) {
    return convertValueToInt(cx, src.value(), output, fail, behavior);
  }

  convertTypedOrValueToInt(src.reg(), temp, output, fail, behavior);
  return true;
}

void MacroAssembler::convertTypedOrValueToInt(TypedOrValueRegister src,
                                              FloatRegister temp,
                                              Register output, Label* fail,
                                              IntConversionBehavior behavior) {
  if (src.hasValue()) {
    convertValueToInt(src.valueReg(), temp, output, fail, behavior);
    return;
  }

  switch (src.type()) {
    case MIRType::Undefined:
    case MIRType::Null:
      move32(Imm32(0), output);
      break;
    case MIRType::Boolean:
    case MIRType::Int32:
      if (src.typedReg().gpr() != output) {
        move32(src.typedReg().gpr(), output);
      }
      if (src.type() == MIRType::Int32 &&
          behavior == IntConversionBehavior::ClampToUint8) {
        clampIntToUint8(output);
      }
      break;
    case MIRType::Double:
      convertDoubleToInt(src.typedReg().fpu(), output, temp, nullptr, fail,
                         behavior);
      break;
    case MIRType::Float32:
      // Conversion to Double simplifies implementation at the expense of
      // performance.
      convertFloat32ToDouble(src.typedReg().fpu(), temp);
      convertDoubleToInt(temp, output, temp, nullptr, fail, behavior);
      break;
    case MIRType::String:
    case MIRType::Symbol:
    case MIRType::Object:
      jump(fail);
      break;
    default:
      MOZ_CRASH("Bad MIRType");
  }
}

void MacroAssembler::finish() {
  if (failureLabel_.used()) {
    bind(&failureLabel_);
    handleFailure();
  }

  MacroAssemblerSpecific::finish();

  MOZ_RELEASE_ASSERT(
      size() <= MaxCodeBytesPerProcess,
      "AssemblerBuffer should ensure we don't exceed MaxCodeBytesPerProcess");

  if (bytesNeeded() > MaxCodeBytesPerProcess) {
    setOOM();
  }
}

void MacroAssembler::link(JitCode* code) {
  MOZ_ASSERT(!oom());
  linkProfilerCallSites(code);
}

MacroAssembler::AutoProfilerCallInstrumentation::
    AutoProfilerCallInstrumentation(
        MacroAssembler& masm MOZ_GUARD_OBJECT_NOTIFIER_PARAM_IN_IMPL) {
  MOZ_GUARD_OBJECT_NOTIFIER_INIT;
  if (!masm.emitProfilingInstrumentation_) {
    return;
  }

  Register reg = CallTempReg0;
  Register reg2 = CallTempReg1;
  masm.push(reg);
  masm.push(reg2);

  CodeOffset label = masm.movWithPatch(ImmWord(uintptr_t(-1)), reg);
  masm.loadJSContext(reg2);
  masm.loadPtr(Address(reg2, offsetof(JSContext, profilingActivation_)), reg2);
  masm.storePtr(reg,
                Address(reg2, JitActivation::offsetOfLastProfilingCallSite()));

  masm.appendProfilerCallSite(label);

  masm.pop(reg2);
  masm.pop(reg);
}

void MacroAssembler::linkProfilerCallSites(JitCode* code) {
  for (size_t i = 0; i < profilerCallSites_.length(); i++) {
    CodeOffset offset = profilerCallSites_[i];
    CodeLocationLabel location(code, offset);
    PatchDataWithValueCheck(location, ImmPtr(location.raw()),
                            ImmPtr((void*)-1));
  }
}

void MacroAssembler::alignJitStackBasedOnNArgs(Register nargs,
                                               bool countIncludesThis) {
  // The stack should already be aligned to the size of a value.
  assertStackAlignment(sizeof(Value), 0);

  static_assert(JitStackValueAlignment == 1 || JitStackValueAlignment == 2,
                "JitStackValueAlignment is either 1 or 2.");
  if (JitStackValueAlignment == 1) {
    return;
  }
  // A jit frame is composed of the following:
  //
  // [padding?] [argN] .. [arg1] [this] [[argc] [callee] [descr] [raddr]]
  //                                    \________JitFrameLayout_________/
  // (The stack grows this way --->)
  //
  // We want to ensure that |raddr|, the return address, is 16-byte aligned.
  // (Note: if 8-byte alignment was sufficient, we would have already
  // returned above.)

  // JitFrameLayout does not affect the alignment, so we can ignore it.
  static_assert(sizeof(JitFrameLayout) % JitStackAlignment == 0,
                "JitFrameLayout doesn't affect stack alignment");

  // Therefore, we need to ensure that |this| is aligned.
  // This implies that |argN| must be aligned if N is even,
  // and offset by |sizeof(Value)| if N is odd.

  // Depending on the context of the caller, it may be easier to pass in a
  // register that has already been modified to include |this|. If that is the
  // case, we want to flip the direction of the test.
  Assembler::Condition condition =
      countIncludesThis ? Assembler::NonZero : Assembler::Zero;

  Label alignmentIsOffset, end;
  branchTestPtr(condition, nargs, Imm32(1), &alignmentIsOffset);

  // |argN| should be aligned to 16 bytes.
  andToStackPtr(Imm32(~(JitStackAlignment - 1)));
  jump(&end);

  // |argN| should be offset by 8 bytes from 16-byte alignment.
  // We already know that it is 8-byte aligned, so the only possibilities are:
  // a) It is 16-byte aligned, and we must offset it by 8 bytes.
  // b) It is not 16-byte aligned, and therefore already has the right offset.
  // Therefore, we test to see if it is 16-byte aligned, and adjust it if it is.
  bind(&alignmentIsOffset);
  branchTestStackPtr(Assembler::NonZero, Imm32(JitStackAlignment - 1), &end);
  subFromStackPtr(Imm32(sizeof(Value)));

  bind(&end);
}

void MacroAssembler::alignJitStackBasedOnNArgs(uint32_t argc) {
  // The stack should already be aligned to the size of a value.
  assertStackAlignment(sizeof(Value), 0);

  static_assert(JitStackValueAlignment == 1 || JitStackValueAlignment == 2,
                "JitStackValueAlignment is either 1 or 2.");
  if (JitStackValueAlignment == 1) {
    return;
  }

  // See above for full explanation.
  uint32_t nArgs = argc + 1;
  if (nArgs % 2 == 0) {
    // |argN| should be 16-byte aligned
    andToStackPtr(Imm32(~(JitStackAlignment - 1)));
  } else {
    // |argN| must be 16-byte aligned if argc is even,
    // and offset by 8 if argc is odd.
    Label end;
    branchTestStackPtr(Assembler::NonZero, Imm32(JitStackAlignment - 1), &end);
    subFromStackPtr(Imm32(sizeof(Value)));
    bind(&end);
    assertStackAlignment(JitStackAlignment, sizeof(Value));
  }
}

// ===============================================================

MacroAssembler::MacroAssembler(JSContext* cx)
    : framePushed_(0),
#ifdef DEBUG
      inCall_(false),
#endif
      dynamicAlignment_(false),
      emitProfilingInstrumentation_(false) {
  jitContext_.emplace(cx, (js::jit::TempAllocator*)nullptr);
  alloc_.emplace(cx);
  moveResolver_.setAllocator(*jitContext_->temp);
#if defined(JS_CODEGEN_ARM)
  initWithAllocator();
  m_buffer.id = GetJitContext()->getNextAssemblerId();
#elif defined(JS_CODEGEN_ARM64)
  initWithAllocator();
  armbuffer_.id = GetJitContext()->getNextAssemblerId();
#endif
}

MacroAssembler::MacroAssembler()
    : framePushed_(0),
#ifdef DEBUG
      inCall_(false),
#endif
      dynamicAlignment_(false),
      emitProfilingInstrumentation_(false) {
  JitContext* jcx = GetJitContext();

  if (!jcx->temp) {
    JSContext* cx = jcx->cx;
    MOZ_ASSERT(cx);
    alloc_.emplace(cx);
  }

  moveResolver_.setAllocator(*jcx->temp);

#if defined(JS_CODEGEN_ARM)
  initWithAllocator();
  m_buffer.id = jcx->getNextAssemblerId();
#elif defined(JS_CODEGEN_ARM64)
  initWithAllocator();
  armbuffer_.id = jcx->getNextAssemblerId();
#endif
}

MacroAssembler::MacroAssembler(WasmToken, TempAllocator& alloc)
    : framePushed_(0),
#ifdef DEBUG
      inCall_(false),
#endif
      dynamicAlignment_(false),
      emitProfilingInstrumentation_(false) {
  moveResolver_.setAllocator(alloc);

#if defined(JS_CODEGEN_ARM)
  initWithAllocator();
  m_buffer.id = 0;
#elif defined(JS_CODEGEN_ARM64)
  initWithAllocator();
  // Stubs + builtins + the baseline compiler all require the native SP,
  // not the PSP.
  SetStackPointer64(sp);
  armbuffer_.id = 0;
#endif
}

bool MacroAssembler::icBuildOOLFakeExitFrame(void* fakeReturnAddr,
                                             AutoSaveLiveRegisters& save) {
  return buildOOLFakeExitFrame(fakeReturnAddr);
}

#ifndef JS_CODEGEN_ARM64
void MacroAssembler::subFromStackPtr(Register reg) {
  subPtr(reg, getStackPointer());
}
#endif  // JS_CODEGEN_ARM64

//{{{ check_macroassembler_style
// ===============================================================
// Stack manipulation functions.

void MacroAssembler::PushRegsInMask(LiveGeneralRegisterSet set) {
  PushRegsInMask(LiveRegisterSet(set.set(), FloatRegisterSet()));
}

void MacroAssembler::PopRegsInMask(LiveRegisterSet set) {
  PopRegsInMaskIgnore(set, LiveRegisterSet());
}

void MacroAssembler::PopRegsInMask(LiveGeneralRegisterSet set) {
  PopRegsInMask(LiveRegisterSet(set.set(), FloatRegisterSet()));
}

void MacroAssembler::Push(jsid id, Register scratchReg) {
  if (JSID_IS_GCTHING(id)) {
    // If we're pushing a gcthing, then we can't just push the tagged jsid
    // value since the GC won't have any idea that the push instruction
    // carries a reference to a gcthing.  Need to unpack the pointer,
    // push it using ImmGCPtr, and then rematerialize the id at runtime.

    if (JSID_IS_STRING(id)) {
      JSString* str = JSID_TO_STRING(id);
      MOZ_ASSERT(((size_t)str & JSID_TYPE_MASK) == 0);
      static_assert(JSID_TYPE_STRING == 0,
                    "need to orPtr JSID_TYPE_STRING tag if it's not 0");
      Push(ImmGCPtr(str));
    } else {
      MOZ_ASSERT(JSID_IS_SYMBOL(id));
      JS::Symbol* sym = JSID_TO_SYMBOL(id);
      movePtr(ImmGCPtr(sym), scratchReg);
      orPtr(Imm32(JSID_TYPE_SYMBOL), scratchReg);
      Push(scratchReg);
    }
  } else {
    Push(ImmWord(JSID_BITS(id)));
  }
}

void MacroAssembler::Push(TypedOrValueRegister v) {
  if (v.hasValue()) {
    Push(v.valueReg());
  } else if (IsFloatingPointType(v.type())) {
    FloatRegister reg = v.typedReg().fpu();
    if (v.type() == MIRType::Float32) {
      ScratchDoubleScope fpscratch(*this);
      convertFloat32ToDouble(reg, fpscratch);
      PushBoxed(fpscratch);
    } else {
      PushBoxed(reg);
    }
  } else {
    Push(ValueTypeFromMIRType(v.type()), v.typedReg().gpr());
  }
}

void MacroAssembler::Push(const ConstantOrRegister& v) {
  if (v.constant()) {
    Push(v.value());
  } else {
    Push(v.reg());
  }
}

void MacroAssembler::Push(const Address& addr) {
  push(addr);
  framePushed_ += sizeof(uintptr_t);
}

void MacroAssembler::Push(const ValueOperand& val) {
  pushValue(val);
  framePushed_ += sizeof(Value);
}

void MacroAssembler::Push(const Value& val) {
  pushValue(val);
  framePushed_ += sizeof(Value);
}

void MacroAssembler::Push(JSValueType type, Register reg) {
  pushValue(type, reg);
  framePushed_ += sizeof(Value);
}

void MacroAssembler::PushValue(const Address& addr) {
  MOZ_ASSERT(addr.base != getStackPointer());
  pushValue(addr);
  framePushed_ += sizeof(Value);
}

void MacroAssembler::PushEmptyRooted(VMFunctionData::RootType rootType) {
  switch (rootType) {
    case VMFunctionData::RootNone:
      MOZ_CRASH("Handle must have root type");
    case VMFunctionData::RootObject:
    case VMFunctionData::RootString:
    case VMFunctionData::RootFunction:
    case VMFunctionData::RootCell:
      Push(ImmPtr(nullptr));
      break;
    case VMFunctionData::RootValue:
      Push(UndefinedValue());
      break;
    case VMFunctionData::RootId:
      Push(ImmWord(JSID_BITS(JSID_VOID)));
      break;
  }
}

void MacroAssembler::popRooted(VMFunctionData::RootType rootType,
                               Register cellReg, const ValueOperand& valueReg) {
  switch (rootType) {
    case VMFunctionData::RootNone:
      MOZ_CRASH("Handle must have root type");
    case VMFunctionData::RootObject:
    case VMFunctionData::RootString:
    case VMFunctionData::RootFunction:
    case VMFunctionData::RootCell:
    case VMFunctionData::RootId:
      Pop(cellReg);
      break;
    case VMFunctionData::RootValue:
      Pop(valueReg);
      break;
  }
}

void MacroAssembler::adjustStack(int amount) {
  if (amount > 0) {
    freeStack(amount);
  } else if (amount < 0) {
    reserveStack(-amount);
  }
}

void MacroAssembler::freeStack(uint32_t amount) {
  MOZ_ASSERT(amount <= framePushed_);
  if (amount) {
    addToStackPtr(Imm32(amount));
  }
  framePushed_ -= amount;
}

void MacroAssembler::freeStack(Register amount) { addToStackPtr(amount); }

// ===============================================================
// ABI function calls.

void MacroAssembler::setupABICall() {
#ifdef DEBUG
  MOZ_ASSERT(!inCall_);
  inCall_ = true;
#endif

#ifdef JS_SIMULATOR
  signature_ = 0;
#endif

  // Reinitialize the ABIArg generator.
  abiArgs_ = ABIArgGenerator();

#if defined(JS_CODEGEN_ARM)
  // On ARM, we need to know what ABI we are using, either in the
  // simulator, or based on the configure flags.
#  if defined(JS_SIMULATOR_ARM)
  abiArgs_.setUseHardFp(UseHardFpABI());
#  elif defined(JS_CODEGEN_ARM_HARDFP)
  abiArgs_.setUseHardFp(true);
#  else
  abiArgs_.setUseHardFp(false);
#  endif
#endif

#if defined(JS_CODEGEN_MIPS32)
  // On MIPS, the system ABI use general registers pairs to encode double
  // arguments, after one or 2 integer-like arguments. Unfortunately, the
  // Lowering phase is not capable to express it at the moment. So we enforce
  // the system ABI here.
  abiArgs_.enforceO32ABI();
#endif
}

void MacroAssembler::setupWasmABICall() {
  MOZ_ASSERT(IsCompilingWasm(), "non-wasm should use setupAlignedABICall");
  setupABICall();

#if defined(JS_CODEGEN_ARM)
  // The builtin thunk does the FP -> GPR moving on soft-FP, so
  // use hard fp unconditionally.
  abiArgs_.setUseHardFp(true);
#endif
  dynamicAlignment_ = false;
}

void MacroAssembler::setupAlignedABICall() {
  MOZ_ASSERT(!IsCompilingWasm(), "wasm should use setupWasmABICall");
  setupABICall();
  dynamicAlignment_ = false;

#if defined(JS_CODEGEN_ARM64)
  MOZ_CRASH("Not supported on arm64");
#endif
}

void MacroAssembler::passABIArg(const MoveOperand& from, MoveOp::Type type) {
  MOZ_ASSERT(inCall_);
  appendSignatureType(type);

  ABIArg arg;
  switch (type) {
    case MoveOp::FLOAT32:
      arg = abiArgs_.next(MIRType::Float32);
      break;
    case MoveOp::DOUBLE:
      arg = abiArgs_.next(MIRType::Double);
      break;
    case MoveOp::GENERAL:
      arg = abiArgs_.next(MIRType::Pointer);
      break;
    default:
      MOZ_CRASH("Unexpected argument type");
  }

  MoveOperand to(*this, arg);
  if (from == to) {
    return;
  }

  if (oom()) {
    return;
  }
  propagateOOM(moveResolver_.addMove(from, to, type));
}

void MacroAssembler::callWithABINoProfiler(void* fun, MoveOp::Type result,
                                           CheckUnsafeCallWithABI check) {
  appendSignatureType(result);
#ifdef JS_SIMULATOR
  fun = Simulator::RedirectNativeFunction(fun, signature());
#endif

  uint32_t stackAdjust;
  callWithABIPre(&stackAdjust);

#ifdef DEBUG
  if (check == CheckUnsafeCallWithABI::Check) {
    push(ReturnReg);
    loadJSContext(ReturnReg);
    Address flagAddr(ReturnReg, JSContext::offsetOfInUnsafeCallWithABI());
    store32(Imm32(1), flagAddr);
    pop(ReturnReg);
  }
#endif

  call(ImmPtr(fun));

  callWithABIPost(stackAdjust, result);

#ifdef DEBUG
  if (check == CheckUnsafeCallWithABI::Check) {
    Label ok;
    push(ReturnReg);
    loadJSContext(ReturnReg);
    Address flagAddr(ReturnReg, JSContext::offsetOfInUnsafeCallWithABI());
    branch32(Assembler::Equal, flagAddr, Imm32(0), &ok);
    assumeUnreachable("callWithABI: callee did not use AutoUnsafeCallWithABI");
    bind(&ok);
    pop(ReturnReg);
  }
#endif
}

CodeOffset MacroAssembler::callWithABI(wasm::BytecodeOffset bytecode,
                                       wasm::SymbolicAddress imm,
                                       MoveOp::Type result) {
  MOZ_ASSERT(wasm::NeedsBuiltinThunk(imm));

  // We clobber WasmTlsReg below in the loadWasmTlsRegFromFrame(), but Ion
  // assumes it is non-volatile, so preserve it manually.
  Push(WasmTlsReg);

  uint32_t stackAdjust;
  callWithABIPre(&stackAdjust, /* callFromWasm = */ true);

  // The TLS register is used in builtin thunks and must be set, by ABI:
  // reload it after passing arguments, which might have used it at spill
  // points when placing arguments.
  loadWasmTlsRegFromFrame();

  CodeOffset raOffset = call(
      wasm::CallSiteDesc(bytecode.offset(), wasm::CallSite::Symbolic), imm);

  callWithABIPost(stackAdjust, result, /* callFromWasm = */ true);

  Pop(WasmTlsReg);

  return raOffset;
}

void MacroAssembler::callDebugWithABI(wasm::SymbolicAddress imm,
                                      MoveOp::Type result) {
  MOZ_ASSERT(!wasm::NeedsBuiltinThunk(imm));
  uint32_t stackAdjust;
  callWithABIPre(&stackAdjust, /* callFromWasm = */ false);
  call(imm);
  callWithABIPost(stackAdjust, result, /* callFromWasm = */ false);
}

// ===============================================================
// Exit frame footer.

void MacroAssembler::linkExitFrame(Register cxreg, Register scratch) {
  loadPtr(Address(cxreg, JSContext::offsetOfActivation()), scratch);
  storeStackPtr(Address(scratch, JitActivation::offsetOfPackedExitFP()));
}

// ===============================================================
// Simple value-shuffling helpers, to hide MoveResolver verbosity
// in common cases.

void MacroAssembler::moveRegPair(Register src0, Register src1, Register dst0,
                                 Register dst1, MoveOp::Type type) {
  MoveResolver& moves = moveResolver();
  if (src0 != dst0) {
    propagateOOM(moves.addMove(MoveOperand(src0), MoveOperand(dst0), type));
  }
  if (src1 != dst1) {
    propagateOOM(moves.addMove(MoveOperand(src1), MoveOperand(dst1), type));
  }
  propagateOOM(moves.resolve());
  if (oom()) {
    return;
  }

  MoveEmitter emitter(*this);
  emitter.emit(moves);
  emitter.finish();
}

// ===============================================================
// Branch functions

void MacroAssembler::branchIfNotInterpretedConstructor(Register fun,
                                                       Register scratch,
                                                       Label* label) {
  // First, ensure it's a scripted function. It is fine if it is still lazy.
  branchTestFunctionFlags(
      fun, FunctionFlags::INTERPRETED | FunctionFlags::INTERPRETED_LAZY,
      Assembler::Zero, label);

  // Check if the CONSTRUCTOR bit is set.
  branchTestFunctionFlags(fun, FunctionFlags::CONSTRUCTOR, Assembler::Zero,
                          label);
}

void MacroAssembler::branchTestObjGroupNoSpectreMitigations(
    Condition cond, Register obj, const Address& group, Register scratch,
    Label* label) {
  // Note: obj and scratch registers may alias.
  MOZ_ASSERT(group.base != scratch);
  MOZ_ASSERT(group.base != obj);

  loadPtr(Address(obj, JSObject::offsetOfGroup()), scratch);
  branchPtr(cond, group, scratch, label);
}

void MacroAssembler::branchTestObjGroup(Condition cond, Register obj,
                                        const Address& group, Register scratch,
                                        Register spectreRegToZero,
                                        Label* label) {
  // Note: obj and scratch registers may alias.
  MOZ_ASSERT(group.base != scratch);
  MOZ_ASSERT(group.base != obj);
  MOZ_ASSERT(scratch != spectreRegToZero);

  loadPtr(Address(obj, JSObject::offsetOfGroup()), scratch);
  branchPtr(cond, group, scratch, label);

  if (JitOptions.spectreObjectMitigationsMisc) {
    spectreZeroRegister(cond, scratch, spectreRegToZero);
  }
}

void MacroAssembler::branchTestObjCompartment(Condition cond, Register obj,
                                              const Address& compartment,
                                              Register scratch, Label* label) {
  MOZ_ASSERT(obj != scratch);
  loadPtr(Address(obj, JSObject::offsetOfGroup()), scratch);
  loadPtr(Address(scratch, ObjectGroup::offsetOfRealm()), scratch);
  loadPtr(Address(scratch, Realm::offsetOfCompartment()), scratch);
  branchPtr(cond, compartment, scratch, label);
}

void MacroAssembler::branchTestObjCompartment(
    Condition cond, Register obj, const JS::Compartment* compartment,
    Register scratch, Label* label) {
  MOZ_ASSERT(obj != scratch);
  loadPtr(Address(obj, JSObject::offsetOfGroup()), scratch);
  loadPtr(Address(scratch, ObjectGroup::offsetOfRealm()), scratch);
  loadPtr(Address(scratch, Realm::offsetOfCompartment()), scratch);
  branchPtr(cond, scratch, ImmPtr(compartment), label);
}

void MacroAssembler::branchIfObjGroupHasNoAddendum(Register obj,
                                                   Register scratch,
                                                   Label* label) {
  MOZ_ASSERT(obj != scratch);
  loadPtr(Address(obj, JSObject::offsetOfGroup()), scratch);
  branchPtr(Assembler::Equal, Address(scratch, ObjectGroup::offsetOfAddendum()),
            ImmWord(0), label);
}

void MacroAssembler::branchIfPretenuredGroup(const ObjectGroup* group,
                                             Register scratch, Label* label) {
  movePtr(ImmGCPtr(group), scratch);
  branchIfPretenuredGroup(scratch, label);
}

void MacroAssembler::branchIfPretenuredGroup(Register group, Label* label) {
  // To check for the pretenured flag we need OBJECT_FLAG_PRETENURED set, and
  // OBJECT_FLAG_UNKNOWN_PROPERTIES unset, so check the latter first, and don't
  // branch if it set.
  Label unknownProperties;
  branchTest32(Assembler::NonZero, Address(group, ObjectGroup::offsetOfFlags()),
               Imm32(OBJECT_FLAG_UNKNOWN_PROPERTIES), &unknownProperties);
  branchTest32(Assembler::NonZero, Address(group, ObjectGroup::offsetOfFlags()),
               Imm32(OBJECT_FLAG_PRE_TENURE), label);
  bind(&unknownProperties);
}

void MacroAssembler::branchIfNonNativeObj(Register obj, Register scratch,
                                          Label* label) {
  loadObjClassUnsafe(obj, scratch);
  branchTest32(Assembler::NonZero, Address(scratch, JSClass::offsetOfFlags()),
               Imm32(JSClass::NON_NATIVE), label);
}

void MacroAssembler::branchIfInlineTypedObject(Register obj, Register scratch,
                                               Label* label) {
  loadObjClassUnsafe(obj, scratch);
  branchPtr(Assembler::Equal, scratch, ImmPtr(&InlineOpaqueTypedObject::class_),
            label);
  branchPtr(Assembler::Equal, scratch,
            ImmPtr(&InlineTransparentTypedObject::class_), label);
}

void MacroAssembler::copyObjGroupNoPreBarrier(Register sourceObj,
                                              Register destObj,
                                              Register scratch) {
  loadPtr(Address(sourceObj, JSObject::offsetOfGroup()), scratch);
  storePtr(scratch, Address(destObj, JSObject::offsetOfGroup()));
}

void MacroAssembler::loadTypedObjectDescr(Register obj, Register dest) {
  loadPtr(Address(obj, JSObject::offsetOfGroup()), dest);
  loadPtr(Address(dest, ObjectGroup::offsetOfAddendum()), dest);
}

void MacroAssembler::loadTypedObjectLength(Register obj, Register dest) {
  loadTypedObjectDescr(obj, dest);
  unboxInt32(Address(dest, ArrayTypeDescr::offsetOfLength()), dest);
}

void MacroAssembler::maybeBranchTestType(MIRType type, MDefinition* maybeDef,
                                         Register tag, Label* label) {
  if (!maybeDef || maybeDef->mightBeType(type)) {
    switch (type) {
      case MIRType::Null:
        branchTestNull(Equal, tag, label);
        break;
      case MIRType::Boolean:
        branchTestBoolean(Equal, tag, label);
        break;
      case MIRType::Int32:
        branchTestInt32(Equal, tag, label);
        break;
      case MIRType::Double:
        branchTestDouble(Equal, tag, label);
        break;
      case MIRType::String:
        branchTestString(Equal, tag, label);
        break;
      case MIRType::Symbol:
        branchTestSymbol(Equal, tag, label);
        break;
      case MIRType::BigInt:
        branchTestBigInt(Equal, tag, label);
        break;
      case MIRType::Object:
        branchTestObject(Equal, tag, label);
        break;
      default:
        MOZ_CRASH("Unsupported type");
    }
  }
}

void MacroAssembler::wasmTrap(wasm::Trap trap,
                              wasm::BytecodeOffset bytecodeOffset) {
  uint32_t trapOffset = wasmTrapInstruction().offset();
  MOZ_ASSERT_IF(!oom(),
                currentOffset() - trapOffset == WasmTrapInstructionLength);

  append(trap, wasm::TrapSite(trapOffset, bytecodeOffset));
}

void MacroAssembler::wasmInterruptCheck(Register tls,
                                        wasm::BytecodeOffset bytecodeOffset) {
  Label ok;
  branch32(Assembler::Equal, Address(tls, offsetof(wasm::TlsData, interrupt)),
           Imm32(0), &ok);
  wasmTrap(wasm::Trap::CheckInterrupt, bytecodeOffset);
  bind(&ok);
}

std::pair<CodeOffset, uint32_t> MacroAssembler::wasmReserveStackChecked(
    uint32_t amount, wasm::BytecodeOffset trapOffset) {
  if (amount > MAX_UNCHECKED_LEAF_FRAME_SIZE) {
    // The frame is large.  Don't bump sp until after the stack limit check so
    // that the trap handler isn't called with a wild sp.
    Label ok;
    Register scratch = ABINonArgReg0;
    moveStackPtrTo(scratch);
    subPtr(Address(WasmTlsReg, offsetof(wasm::TlsData, stackLimit)), scratch);
    branchPtr(Assembler::GreaterThan, scratch, Imm32(amount), &ok);
    wasmTrap(wasm::Trap::StackOverflow, trapOffset);
    CodeOffset trapInsnOffset = CodeOffset(currentOffset());
    bind(&ok);
    reserveStack(amount);
    return std::pair<CodeOffset, uint32_t>(trapInsnOffset, 0);
  }

  reserveStack(amount);
  Label ok;
  branchStackPtrRhs(Assembler::Below,
                    Address(WasmTlsReg, offsetof(wasm::TlsData, stackLimit)),
                    &ok);
  wasmTrap(wasm::Trap::StackOverflow, trapOffset);
  CodeOffset trapInsnOffset = CodeOffset(currentOffset());
  bind(&ok);
  return std::pair<CodeOffset, uint32_t>(trapInsnOffset, amount);
}

CodeOffset MacroAssembler::wasmCallImport(const wasm::CallSiteDesc& desc,
                                          const wasm::CalleeDesc& callee) {
  // Load the callee, before the caller's registers are clobbered.
  uint32_t globalDataOffset = callee.importGlobalDataOffset();
  loadWasmGlobalPtr(globalDataOffset + offsetof(wasm::FuncImportTls, code),
                    ABINonArgReg0);

#ifndef JS_CODEGEN_NONE
  static_assert(ABINonArgReg0 != WasmTlsReg, "by constraint");
#endif

  // Switch to the callee's realm.
  loadWasmGlobalPtr(globalDataOffset + offsetof(wasm::FuncImportTls, realm),
                    ABINonArgReg1);
  loadPtr(Address(WasmTlsReg, offsetof(wasm::TlsData, cx)), ABINonArgReg2);
  storePtr(ABINonArgReg1, Address(ABINonArgReg2, JSContext::offsetOfRealm()));

  // Switch to the callee's TLS and pinned registers and make the call.
  loadWasmGlobalPtr(globalDataOffset + offsetof(wasm::FuncImportTls, tls),
                    WasmTlsReg);
  loadWasmPinnedRegsFromTls();

  return call(desc, ABINonArgReg0);
}

CodeOffset MacroAssembler::wasmCallBuiltinInstanceMethod(
    const wasm::CallSiteDesc& desc, const ABIArg& instanceArg,
    wasm::SymbolicAddress builtin, wasm::FailureMode failureMode) {
  MOZ_ASSERT(instanceArg != ABIArg());

  if (instanceArg.kind() == ABIArg::GPR) {
    loadPtr(Address(WasmTlsReg, offsetof(wasm::TlsData, instance)),
            instanceArg.gpr());
  } else if (instanceArg.kind() == ABIArg::Stack) {
    // Safe to use ABINonArgReg0 since it's the last thing before the call.
    Register scratch = ABINonArgReg0;
    loadPtr(Address(WasmTlsReg, offsetof(wasm::TlsData, instance)), scratch);
    storePtr(scratch,
             Address(getStackPointer(), instanceArg.offsetFromArgBase()));
  } else {
    MOZ_CRASH("Unknown abi passing style for pointer");
  }

  CodeOffset ret = call(desc, builtin);

  if (failureMode != wasm::FailureMode::Infallible) {
    Label noTrap;
    switch (failureMode) {
      case wasm::FailureMode::Infallible:
        MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE();
      case wasm::FailureMode::FailOnNegI32:
        branchTest32(Assembler::NotSigned, ReturnReg, ReturnReg, &noTrap);
        break;
      case wasm::FailureMode::FailOnNullPtr:
        branchTestPtr(Assembler::NonZero, ReturnReg, ReturnReg, &noTrap);
        break;
      case wasm::FailureMode::FailOnInvalidRef:
        branchPtr(Assembler::NotEqual, ReturnReg,
                  ImmWord(uintptr_t(wasm::AnyRef::invalid().forCompiledCode())),
                  &noTrap);
        break;
    }
    wasmTrap(wasm::Trap::ThrowReported,
             wasm::BytecodeOffset(desc.lineOrBytecode()));
    bind(&noTrap);
  }

  return ret;
}

CodeOffset MacroAssembler::wasmCallIndirect(const wasm::CallSiteDesc& desc,
                                            const wasm::CalleeDesc& callee,
                                            bool needsBoundsCheck) {
  Register scratch = WasmTableCallScratchReg0;
  Register index = WasmTableCallIndexReg;

  // Optimization opportunity: when offsetof(FunctionTableElem, code) == 0, as
  // it is at present, we can probably generate better code here by folding
  // the address computation into the load.

  static_assert(sizeof(wasm::FunctionTableElem) == 8 ||
                    sizeof(wasm::FunctionTableElem) == 16,
                "elements of function tables are two words");

  if (callee.which() == wasm::CalleeDesc::AsmJSTable) {
    // asm.js tables require no signature check, and have had their index
    // masked into range and thus need no bounds check.
    loadWasmGlobalPtr(callee.tableFunctionBaseGlobalDataOffset(), scratch);
    if (sizeof(wasm::FunctionTableElem) == 8) {
      computeEffectiveAddress(BaseIndex(scratch, index, TimesEight), scratch);
    } else {
      lshift32(Imm32(4), index);
      addPtr(index, scratch);
    }
    loadPtr(Address(scratch, offsetof(wasm::FunctionTableElem, code)), scratch);
    return call(desc, scratch);
  }

  MOZ_ASSERT(callee.which() == wasm::CalleeDesc::WasmTable);

  // Write the functype-id into the ABI functype-id register.
  wasm::FuncTypeIdDesc funcTypeId = callee.wasmTableSigId();
  switch (funcTypeId.kind()) {
    case wasm::FuncTypeIdDescKind::Global:
      loadWasmGlobalPtr(funcTypeId.globalDataOffset(), WasmTableCallSigReg);
      break;
    case wasm::FuncTypeIdDescKind::Immediate:
      move32(Imm32(funcTypeId.immediate()), WasmTableCallSigReg);
      break;
    case wasm::FuncTypeIdDescKind::None:
      break;
  }

  wasm::BytecodeOffset trapOffset(desc.lineOrBytecode());

  // WebAssembly throws if the index is out-of-bounds.
  if (needsBoundsCheck) {
    loadWasmGlobalPtr(callee.tableLengthGlobalDataOffset(), scratch);

    Label ok;
    branch32(Assembler::Condition::Below, index, scratch, &ok);
    wasmTrap(wasm::Trap::OutOfBounds, trapOffset);
    bind(&ok);
  }

  // Load the base pointer of the table.
  loadWasmGlobalPtr(callee.tableFunctionBaseGlobalDataOffset(), scratch);

  // Load the callee from the table.
  if (sizeof(wasm::FunctionTableElem) == 8) {
    computeEffectiveAddress(BaseIndex(scratch, index, TimesEight), scratch);
  } else {
    lshift32(Imm32(4), index);
    addPtr(index, scratch);
  }

  loadPtr(Address(scratch, offsetof(wasm::FunctionTableElem, tls)), WasmTlsReg);

  Label nonNull;
  branchTest32(Assembler::NonZero, WasmTlsReg, WasmTlsReg, &nonNull);
  wasmTrap(wasm::Trap::IndirectCallToNull, trapOffset);
  bind(&nonNull);

  loadWasmPinnedRegsFromTls();
  switchToWasmTlsRealm(index, WasmTableCallScratchReg1);

  loadPtr(Address(scratch, offsetof(wasm::FunctionTableElem, code)), scratch);

  return call(desc, scratch);
}

void MacroAssembler::nopPatchableToCall(const wasm::CallSiteDesc& desc) {
  CodeOffset offset = nopPatchableToCall();
  append(desc, offset);
}

void MacroAssembler::emitPreBarrierFastPath(JSRuntime* rt, MIRType type,
                                            Register temp1, Register temp2,
                                            Register temp3, Label* noBarrier) {
  MOZ_ASSERT(temp1 != PreBarrierReg);
  MOZ_ASSERT(temp2 != PreBarrierReg);
  MOZ_ASSERT(temp3 != PreBarrierReg);

  // Load the GC thing in temp1.
  if (type == MIRType::Value) {
    unboxGCThingForPreBarrierTrampoline(Address(PreBarrierReg, 0), temp1);
  } else {
    MOZ_ASSERT(type == MIRType::Object || type == MIRType::String ||
               type == MIRType::Shape || type == MIRType::ObjectGroup);
    loadPtr(Address(PreBarrierReg, 0), temp1);
  }

#ifdef DEBUG
  // The caller should have checked for null pointers.
  Label nonZero;
  branchTestPtr(Assembler::NonZero, temp1, temp1, &nonZero);
  assumeUnreachable("JIT pre-barrier: unexpected nullptr");
  bind(&nonZero);
#endif

  // Load the chunk address in temp2.
  movePtr(ImmWord(~gc::ChunkMask), temp2);
  andPtr(temp1, temp2);

  // If the GC thing is in the nursery, we don't need to barrier it.
  if (type == MIRType::Value || type == MIRType::Object ||
      type == MIRType::String) {
    branch32(Assembler::Equal, Address(temp2, gc::ChunkLocationOffset),
             Imm32(int32_t(gc::ChunkLocation::Nursery)), noBarrier);
  } else {
#ifdef DEBUG
    Label isTenured;
    branch32(Assembler::NotEqual, Address(temp2, gc::ChunkLocationOffset),
             Imm32(int32_t(gc::ChunkLocation::Nursery)), &isTenured);
    assumeUnreachable("JIT pre-barrier: unexpected nursery pointer");
    bind(&isTenured);
#endif
  }

  // If it's a permanent atom or symbol from a parent runtime we don't
  // need to barrier it.
  if (type == MIRType::Value || type == MIRType::String) {
    branchPtr(Assembler::NotEqual, Address(temp2, gc::ChunkRuntimeOffset),
              ImmPtr(rt), noBarrier);
  } else {
#ifdef DEBUG
    Label thisRuntime;
    branchPtr(Assembler::Equal, Address(temp2, gc::ChunkRuntimeOffset),
              ImmPtr(rt), &thisRuntime);
    assumeUnreachable("JIT pre-barrier: unexpected runtime");
    bind(&thisRuntime);
#endif
  }

  // Determine the bit index and store in temp1.
  //
  // bit = (addr & js::gc::ChunkMask) / js::gc::CellBytesPerMarkBit +
  //        static_cast<uint32_t>(colorBit);
  static_assert(gc::CellBytesPerMarkBit == 8,
                "Calculation below relies on this");
  static_assert(size_t(gc::ColorBit::BlackBit) == 0,
                "Calculation below relies on this");
  andPtr(Imm32(gc::ChunkMask), temp1);
  rshiftPtr(Imm32(3), temp1);

  static const size_t nbits = sizeof(uintptr_t) * CHAR_BIT;
  static_assert(nbits == JS_BITS_PER_WORD, "Calculation below relies on this");

  // Load the bitmap word in temp2.
  //
  // word = chunk.bitmap[bit / nbits];
  movePtr(temp1, temp3);
#if JS_BITS_PER_WORD == 64
  rshiftPtr(Imm32(6), temp1);
  loadPtr(BaseIndex(temp2, temp1, TimesEight, gc::ChunkMarkBitmapOffset),
          temp2);
#else
  rshiftPtr(Imm32(5), temp1);
  loadPtr(BaseIndex(temp2, temp1, TimesFour, gc::ChunkMarkBitmapOffset), temp2);
#endif

  // Load the mask in temp1.
  //
  // mask = uintptr_t(1) << (bit % nbits);
  andPtr(Imm32(nbits - 1), temp3);
  move32(Imm32(1), temp1);
#ifdef JS_CODEGEN_X64
  MOZ_ASSERT(temp3 == rcx);
  shlq_cl(temp1);
#elif JS_CODEGEN_X86
  MOZ_ASSERT(temp3 == ecx);
  shll_cl(temp1);
#elif JS_CODEGEN_ARM
  ma_lsl(temp3, temp1, temp1);
#elif JS_CODEGEN_ARM64
  Lsl(ARMRegister(temp1, 64), ARMRegister(temp1, 64), ARMRegister(temp3, 64));
#elif JS_CODEGEN_MIPS32
  ma_sll(temp1, temp1, temp3);
#elif JS_CODEGEN_MIPS64
  ma_dsll(temp1, temp1, temp3);
#elif JS_CODEGEN_NONE
  MOZ_CRASH();
#else
#  error "Unknown architecture"
#endif

  // No barrier is needed if the bit is set, |word & mask != 0|.
  branchTestPtr(Assembler::NonZero, temp2, temp1, noBarrier);
}

// ========================================================================
// Spectre Mitigations.

void MacroAssembler::spectreMaskIndex(Register index, Register length,
                                      Register output) {
  MOZ_ASSERT(JitOptions.spectreIndexMasking);
  MOZ_ASSERT(length != output);
  MOZ_ASSERT(index != output);

  move32(Imm32(0), output);
  cmp32Move32(Assembler::Below, index, length, index, output);
}

void MacroAssembler::spectreMaskIndex(Register index, const Address& length,
                                      Register output) {
  MOZ_ASSERT(JitOptions.spectreIndexMasking);
  MOZ_ASSERT(index != length.base);
  MOZ_ASSERT(length.base != output);
  MOZ_ASSERT(index != output);

  move32(Imm32(0), output);
  cmp32Move32(Assembler::Below, index, length, index, output);
}

void MacroAssembler::boundsCheck32PowerOfTwo(Register index, uint32_t length,
                                             Label* failure) {
  MOZ_ASSERT(mozilla::IsPowerOfTwo(length));
  branch32(Assembler::AboveOrEqual, index, Imm32(length), failure);

  // Note: it's fine to clobber the input register, as this is a no-op: it
  // only affects speculative execution.
  if (JitOptions.spectreIndexMasking) {
    and32(Imm32(length - 1), index);
  }
}

//}}} check_macroassembler_style

void MacroAssembler::memoryBarrierBefore(const Synchronization& sync) {
  memoryBarrier(sync.barrierBefore);
}

void MacroAssembler::memoryBarrierAfter(const Synchronization& sync) {
  memoryBarrier(sync.barrierAfter);
}

void MacroAssembler::loadWasmTlsRegFromFrame(Register dest) {
  loadPtr(
      Address(getStackPointer(), framePushed() + offsetof(wasm::Frame, tls)),
      dest);
}

void MacroAssembler::BranchGCPtr::emit(MacroAssembler& masm) {
  MOZ_ASSERT(isInitialized());
  masm.branchPtr(cond(), reg(), ptr_, jump());
}

void MacroAssembler::debugAssertIsObject(const ValueOperand& val) {
#ifdef DEBUG
  Label ok;
  branchTestObject(Assembler::Equal, val, &ok);
  assumeUnreachable("Expected an object!");
  bind(&ok);
#endif
}

void MacroAssembler::debugAssertObjHasFixedSlots(Register obj,
                                                 Register scratch) {
#ifdef DEBUG
  Label hasFixedSlots;
  loadPtr(Address(obj, JSObject::offsetOfShape()), scratch);
  branchTest32(Assembler::NonZero,
               Address(scratch, Shape::offsetOfImmutableFlags()),
               Imm32(Shape::fixedSlotsMask()), &hasFixedSlots);
  assumeUnreachable("Expected a fixed slot");
  bind(&hasFixedSlots);
#endif
}

void MacroAssembler::branchIfNativeIteratorNotReusable(Register ni,
                                                       Label* notReusable) {
  // See NativeIterator::isReusable.
  Address flagsAddr(ni, NativeIterator::offsetOfFlagsAndCount());

#ifdef DEBUG
  Label niIsInitialized;
  branchTest32(Assembler::NonZero, flagsAddr,
               Imm32(NativeIterator::Flags::Initialized), &niIsInitialized);
  assumeUnreachable(
      "Expected a NativeIterator that's been completely "
      "initialized");
  bind(&niIsInitialized);
#endif

  branchTest32(Assembler::NonZero, flagsAddr,
               Imm32(NativeIterator::Flags::NotReusable), notReusable);
}

static void LoadNativeIterator(MacroAssembler& masm, Register obj,
                               Register dest) {
  MOZ_ASSERT(obj != dest);

#ifdef DEBUG
  // Assert we have a PropertyIteratorObject.
  Label ok;
  masm.branchTestObjClass(Assembler::Equal, obj,
                          &PropertyIteratorObject::class_, dest, obj, &ok);
  masm.assumeUnreachable("Expected PropertyIteratorObject!");
  masm.bind(&ok);
#endif

  // Load NativeIterator object.
  masm.loadObjPrivate(obj, PropertyIteratorObject::NUM_FIXED_SLOTS, dest);
}

void MacroAssembler::iteratorMore(Register obj, ValueOperand output,
                                  Register temp) {
  Label done;
  Register outputScratch = output.scratchReg();
  LoadNativeIterator(*this, obj, outputScratch);

  // If propertyCursor_ < propertiesEnd_, load the next string and advance
  // the cursor.  Otherwise return MagicValue(JS_NO_ITER_VALUE).
  Label iterDone;
  Address cursorAddr(outputScratch, NativeIterator::offsetOfPropertyCursor());
  Address cursorEndAddr(outputScratch, NativeIterator::offsetOfPropertiesEnd());
  loadPtr(cursorAddr, temp);
  branchPtr(Assembler::BelowOrEqual, cursorEndAddr, temp, &iterDone);

  // Get next string.
  loadPtr(Address(temp, 0), temp);

  // Increase the cursor.
  addPtr(Imm32(sizeof(GCPtrFlatString)), cursorAddr);

  tagValue(JSVAL_TYPE_STRING, temp, output);
  jump(&done);

  bind(&iterDone);
  moveValue(MagicValue(JS_NO_ITER_VALUE), output);

  bind(&done);
}

void MacroAssembler::iteratorClose(Register obj, Register temp1, Register temp2,
                                   Register temp3) {
  LoadNativeIterator(*this, obj, temp1);

  // Clear active bit.
  and32(Imm32(~NativeIterator::Flags::Active),
        Address(temp1, NativeIterator::offsetOfFlagsAndCount()));

  // Reset property cursor.
  loadPtr(Address(temp1, NativeIterator::offsetOfGuardsEnd()), temp2);
  storePtr(temp2, Address(temp1, NativeIterator::offsetOfPropertyCursor()));

  // Unlink from the iterator list.
  const Register next = temp2;
  const Register prev = temp3;
  loadPtr(Address(temp1, NativeIterator::offsetOfNext()), next);
  loadPtr(Address(temp1, NativeIterator::offsetOfPrev()), prev);
  storePtr(prev, Address(next, NativeIterator::offsetOfPrev()));
  storePtr(next, Address(prev, NativeIterator::offsetOfNext()));
#ifdef DEBUG
  storePtr(ImmPtr(nullptr), Address(temp1, NativeIterator::offsetOfNext()));
  storePtr(ImmPtr(nullptr), Address(temp1, NativeIterator::offsetOfPrev()));
#endif
}

template <typename T, size_t N, typename P>
static bool AddPendingReadBarrier(Vector<T*, N, P>& list, T* value) {
  // Check if value is already present in tail of list.
  // TODO: Consider using a hash table here.
  const size_t TailWindow = 4;

  size_t len = list.length();
  for (size_t i = 0; i < Min(len, TailWindow); i++) {
    if (list[len - i - 1] == value) {
      return true;
    }
  }

  return list.append(value);
}

JSObject* MacroAssembler::getSingletonAndDelayBarrier(const TypeSet* types,
                                                      size_t i) {
  JSObject* object = types->getSingletonNoBarrier(i);
  if (!object) {
    return nullptr;
  }

  if (!AddPendingReadBarrier(pendingObjectReadBarriers_, object)) {
    setOOM();
  }

  return object;
}

ObjectGroup* MacroAssembler::getGroupAndDelayBarrier(const TypeSet* types,
                                                     size_t i) {
  ObjectGroup* group = types->getGroupNoBarrier(i);
  if (!group) {
    return nullptr;
  }

  if (!AddPendingReadBarrier(pendingObjectGroupReadBarriers_, group)) {
    setOOM();
  }

  return group;
}

void MacroAssembler::performPendingReadBarriers() {
  for (JSObject* object : pendingObjectReadBarriers_) {
    JSObject::readBarrier(object);
  }
  for (ObjectGroup* group : pendingObjectGroupReadBarriers_) {
    ObjectGroup::readBarrier(group);
  }
}

// Can't push large frames blindly on windows, so we must touch frame memory
// incrementally, with no more than 4096 - 1 bytes between touches.
//
// This is used across all platforms for simplicity.
void MacroAssembler::touchFrameValues(Register numStackValues,
                                      Register scratch1, Register scratch2) {
  const size_t FRAME_TOUCH_INCREMENT = 2048;
  static_assert(FRAME_TOUCH_INCREMENT < 4096 - 1,
                "Frame increment is too large");

  moveStackPtrTo(scratch2);
  mov(numStackValues, scratch1);
  lshiftPtr(Imm32(3), scratch1);
  subPtr(scratch1, scratch2);
  {
    moveStackPtrTo(scratch1);
    subPtr(Imm32(FRAME_TOUCH_INCREMENT), scratch1);

    Label touchFrameLoop;
    Label touchFrameLoopEnd;
    bind(&touchFrameLoop);
    branchPtr(Assembler::Below, scratch1, scratch2, &touchFrameLoopEnd);
    store32(Imm32(0), Address(scratch1, 0));
    subPtr(Imm32(FRAME_TOUCH_INCREMENT), scratch1);
    jump(&touchFrameLoop);
    bind(&touchFrameLoopEnd);
  }
}

namespace js {
namespace jit {

#ifdef DEBUG
template <class RegisterType>
AutoGenericRegisterScope<RegisterType>::AutoGenericRegisterScope(
    MacroAssembler& masm, RegisterType reg)
    : RegisterType(reg), masm_(masm), released_(false) {
  masm.debugTrackedRegisters_.add(reg);
}

template AutoGenericRegisterScope<Register>::AutoGenericRegisterScope(
    MacroAssembler& masm, Register reg);
template AutoGenericRegisterScope<FloatRegister>::AutoGenericRegisterScope(
    MacroAssembler& masm, FloatRegister reg);
#endif  // DEBUG

#ifdef DEBUG
template <class RegisterType>
AutoGenericRegisterScope<RegisterType>::~AutoGenericRegisterScope() {
  if (!released_) {
    release();
  }
}

template AutoGenericRegisterScope<Register>::~AutoGenericRegisterScope();
template AutoGenericRegisterScope<FloatRegister>::~AutoGenericRegisterScope();

template <class RegisterType>
void AutoGenericRegisterScope<RegisterType>::release() {
  MOZ_ASSERT(!released_);
  released_ = true;
  const RegisterType& reg = *dynamic_cast<RegisterType*>(this);
  masm_.debugTrackedRegisters_.take(reg);
}

template void AutoGenericRegisterScope<Register>::release();
template void AutoGenericRegisterScope<FloatRegister>::release();

template <class RegisterType>
void AutoGenericRegisterScope<RegisterType>::reacquire() {
  MOZ_ASSERT(released_);
  released_ = false;
  const RegisterType& reg = *dynamic_cast<RegisterType*>(this);
  masm_.debugTrackedRegisters_.add(reg);
}

template void AutoGenericRegisterScope<Register>::reacquire();
template void AutoGenericRegisterScope<FloatRegister>::reacquire();

#endif  // DEBUG

}  // namespace jit
}  // namespace js