DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_JSJitFrameIter_h
#define jit_JSJitFrameIter_h

#include "jstypes.h"

#include "jit/IonCode.h"
#include "jit/Snapshots.h"
#include "js/ProfilingFrameIterator.h"
#include "vm/JSFunction.h"
#include "vm/JSScript.h"

namespace js {

class ArgumentsObject;

namespace jit {

typedef void* CalleeToken;

enum class FrameType {
  // A JS frame is analogous to a js::InterpreterFrame, representing one
  // scripted function activation. IonJS frames are used by the optimizing
  // compiler.
  IonJS,

  // JS frame used by the baseline JIT.
  BaselineJS,

  // Frame pushed by Baseline stubs that make non-tail calls, so that the
  // return address -> ICEntry mapping works.
  BaselineStub,

  // The entry frame is the initial prologue block transitioning from the VM
  // into the Ion world.
  CppToJSJit,

  // A rectifier frame sits in between two JS frames, adapting argc != nargs
  // mismatches in calls.
  Rectifier,

  // Ion IC calling a scripted getter/setter or a VMFunction.
  IonICCall,

  // An exit frame is necessary for transitioning from a JS frame into C++.
  // From within C++, an exit frame is always the last frame in any
  // JitActivation.
  Exit,

  // A bailout frame is a special IonJS jit frame after a bailout, and before
  // the reconstruction of the BaselineJS frame. From within C++, a bailout
  // frame is always the last frame in a JitActivation iff the bailout frame
  // information is recorded on the JitActivation.
  Bailout,

  // A wasm to JS frame is constructed during fast calls from wasm to the JS
  // jits, used as a marker to interleave JS jit and wasm frames. From the
  // point of view of JS JITs, this is just another kind of entry frame.
  WasmToJSJit,

  // A JS to wasm frame is constructed during fast calls from any JS jits to
  // wasm, and is a special kind of exit frame that doesn't have the exit
  // footer. From the point of view of the jit, it can be skipped as an exit.
  JSJitToWasm,
};

enum ReadFrameArgsBehavior {
  // Only read formals (i.e. [0 ... callee()->nargs]
  ReadFrame_Formals,

  // Only read overflown args (i.e. [callee()->nargs ... numActuals()]
  ReadFrame_Overflown,

  // Read all args (i.e. [0 ... numActuals()])
  ReadFrame_Actuals
};

class CommonFrameLayout;
class JitFrameLayout;
class ExitFrameLayout;

class BaselineFrame;

class JitActivation;

// Iterate over the JIT stack to assert that all invariants are respected.
//  - Check that all entry frames are aligned on JitStackAlignment.
//  - Check that all rectifier frames keep the JitStackAlignment.

void AssertJitStackInvariants(JSContext* cx);

// A JSJitFrameIter can iterate over a linear frame group of JS jit frames
// only. It will stop at the first frame that is not of the same kind, or at
// the end of an activation.
//
// If you want to handle every kind of frames (including wasm frames), use
// JitFrameIter. If you want to skip interleaved frames of other kinds, use
// OnlyJSJitFrameIter.

class JSJitFrameIter {
 protected:
  uint8_t* current_;
  FrameType type_;
  uint8_t* resumePCinCurrentFrame_;
  size_t frameSize_;

 private:
  mutable const SafepointIndex* cachedSafepointIndex_;
  const JitActivation* activation_;

  void dumpBaseline() const;

 public:
  // See comment above the class.
  explicit JSJitFrameIter(const JitActivation* activation);

  // A constructor specialized for jit->wasm frames, which starts at a
  // specific FP.
  JSJitFrameIter(const JitActivation* activation, FrameType frameType,
                 uint8_t* fp);

  void setResumePCInCurrentFrame(uint8_t* newAddr) {
    resumePCinCurrentFrame_ = newAddr;
  }

  // Current frame information.
  FrameType type() const { return type_; }
  uint8_t* fp() const { return current_; }
  const JitActivation* activation() const { return activation_; }

  CommonFrameLayout* current() const { return (CommonFrameLayout*)current_; }

  inline uint8_t* returnAddress() const;

  // Return the pointer of the JitFrame, the iterator is assumed to be settled
  // on a scripted frame.
  JitFrameLayout* jsFrame() const;

  inline ExitFrameLayout* exitFrame() const;

  // Returns whether the JS frame has been invalidated and, if so,
  // places the invalidated Ion script in |ionScript|.
  bool checkInvalidation(IonScript** ionScript) const;
  bool checkInvalidation() const;

  bool isExitFrame() const { return type_ == FrameType::Exit; }
  bool isScripted() const {
    return type_ == FrameType::BaselineJS || type_ == FrameType::IonJS ||
           type_ == FrameType::Bailout;
  }
  bool isBaselineJS() const { return type_ == FrameType::BaselineJS; }
  bool isIonScripted() const {
    return type_ == FrameType::IonJS || type_ == FrameType::Bailout;
  }
  bool isIonJS() const { return type_ == FrameType::IonJS; }
  bool isIonICCall() const { return type_ == FrameType::IonICCall; }
  bool isBailoutJS() const { return type_ == FrameType::Bailout; }
  bool isBaselineStub() const { return type_ == FrameType::BaselineStub; }
  bool isRectifier() const { return type_ == FrameType::Rectifier; }
  bool isBareExit() const;
  template <typename T>
  bool isExitFrameLayout() const;

  static bool isEntry(FrameType type) {
    return type == FrameType::CppToJSJit || type == FrameType::WasmToJSJit;
  }
  bool isEntry() const { return isEntry(type_); }

  bool isFunctionFrame() const;

  bool isConstructing() const;

  void* calleeToken() const;
  JSFunction* callee() const;
  JSFunction* maybeCallee() const;
  unsigned numActualArgs() const;
  JSScript* script() const;
  void baselineScriptAndPc(JSScript** scriptRes, jsbytecode** pcRes) const;
  Value* actualArgs() const;

  // Returns the address of the next instruction that will execute in this
  // frame, once control returns to this frame.
  uint8_t* resumePCinCurrentFrame() const { return resumePCinCurrentFrame_; }

  // Previous frame information extracted from the current frame.
  inline size_t prevFrameLocalSize() const;
  inline FrameType prevType() const;
  uint8_t* prevFp() const;

  // Returns the stack space used by the current frame, in bytes. This does
  // not include the size of its fixed header.
  size_t frameSize() const {
    MOZ_ASSERT(!isExitFrame());
    return frameSize_;
  }

  // Functions used to iterate on frames. When prevType is an entry,
  // the current frame is the last JS Jit frame.
  bool done() const { return isEntry(); }
  void operator++();

  // Returns the IonScript associated with this JS frame.
  IonScript* ionScript() const;

  // Returns the IonScript associated with this JS frame; the frame must
  // not be invalidated.
  IonScript* ionScriptFromCalleeToken() const;

  // Returns the Safepoint associated with this JS frame. Incurs a lookup
  // overhead.
  const SafepointIndex* safepoint() const;

  // Returns the OSI index associated with this JS frame. Incurs a lookup
  // overhead.
  const OsiIndex* osiIndex() const;

  // Returns the Snapshot offset associated with this JS frame. Incurs a
  // lookup overhead.
  SnapshotOffset snapshotOffset() const;

  uintptr_t* spillBase() const;
  MachineState machineState() const;

  template <class Op>
  void unaliasedForEachActual(Op op, ReadFrameArgsBehavior behavior) const {
    MOZ_ASSERT(isBaselineJS());

    unsigned nactual = numActualArgs();
    unsigned start, end;
    switch (behavior) {
      case ReadFrame_Formals:
        start = 0;
        end = callee()->nargs();
        break;
      case ReadFrame_Overflown:
        start = callee()->nargs();
        end = nactual;
        break;
      case ReadFrame_Actuals:
        start = 0;
        end = nactual;
    }

    Value* argv = actualArgs();
    for (unsigned i = start; i < end; i++) {
      op(argv[i]);
    }
  }

  void dump() const;

  inline BaselineFrame* baselineFrame() const;

  // This function isn't used, but we keep it here (debug-only) because it is
  // helpful when chasing issues with the jitcode map.
#ifdef DEBUG
  bool verifyReturnAddressUsingNativeToBytecodeMap();
#else
  bool verifyReturnAddressUsingNativeToBytecodeMap() { return true; }
#endif
};

class JitcodeGlobalTable;

class JSJitProfilingFrameIterator {
  uint8_t* fp_;
  FrameType type_;
  void* resumePCinCurrentFrame_;

  inline JitFrameLayout* framePtr() const;
  inline JSScript* frameScript() const;
  MOZ_MUST_USE bool tryInitWithPC(void* pc);
  MOZ_MUST_USE bool tryInitWithTable(JitcodeGlobalTable* table, void* pc,
                                     bool forLastCallSite);

  void moveToCppEntryFrame();
  void moveToWasmFrame(CommonFrameLayout* frame);
  void moveToNextFrame(CommonFrameLayout* frame);

 public:
  JSJitProfilingFrameIterator(JSContext* cx, void* pc);
  explicit JSJitProfilingFrameIterator(CommonFrameLayout* exitFP);

  void operator++();
  bool done() const { return fp_ == nullptr; }

  const char* baselineInterpreterLabel() const;
  void baselineInterpreterScriptPC(JSScript** script, jsbytecode** pc) const;

  void* fp() const {
    MOZ_ASSERT(!done());
    return fp_;
  }
  void* stackAddress() const { return fp(); }
  FrameType frameType() const {
    MOZ_ASSERT(!done());
    return type_;
  }
  void* resumePCinCurrentFrame() const {
    MOZ_ASSERT(!done());
    return resumePCinCurrentFrame_;
  }
};

class RInstructionResults {
  // Vector of results of recover instructions.
  typedef mozilla::Vector<HeapPtr<Value>, 1, SystemAllocPolicy> Values;
  UniquePtr<Values> results_;

  // The frame pointer is used as a key to check if the current frame already
  // bailed out.
  JitFrameLayout* fp_;

  // Record if we tried and succeed at allocating and filling the vector of
  // recover instruction results, if needed.  This flag is needed in order to
  // avoid evaluating the recover instruction twice.
  bool initialized_;

 public:
  explicit RInstructionResults(JitFrameLayout* fp);
  RInstructionResults(RInstructionResults&& src);

  RInstructionResults& operator=(RInstructionResults&& rhs);

  ~RInstructionResults();

  MOZ_MUST_USE bool init(JSContext* cx, uint32_t numResults);
  bool isInitialized() const;
  size_t length() const;

  JitFrameLayout* frame() const;

  HeapPtr<Value>& operator[](size_t index);

  void trace(JSTracer* trc);
};

struct MaybeReadFallback {
  enum NoGCValue { NoGC_UndefinedValue, NoGC_MagicOptimizedOut };

  enum FallbackConsequence { Fallback_Invalidate, Fallback_DoNothing };

  JSContext* maybeCx;
  JitActivation* activation;
  const JSJitFrameIter* frame;
  const NoGCValue unreadablePlaceholder_;
  const FallbackConsequence consequence;

  explicit MaybeReadFallback(const Value& placeholder = UndefinedValue())
      : maybeCx(nullptr),
        activation(nullptr),
        frame(nullptr),
        unreadablePlaceholder_(noGCPlaceholder(placeholder)),
        consequence(Fallback_Invalidate) {}

  MaybeReadFallback(JSContext* cx, JitActivation* activation,
                    const JSJitFrameIter* frame,
                    FallbackConsequence consequence = Fallback_Invalidate)
      : maybeCx(cx),
        activation(activation),
        frame(frame),
        unreadablePlaceholder_(NoGC_UndefinedValue),
        consequence(consequence) {}

  bool canRecoverResults() { return maybeCx; }

  Value unreadablePlaceholder() const {
    if (unreadablePlaceholder_ == NoGC_MagicOptimizedOut) {
      return MagicValue(JS_OPTIMIZED_OUT);
    }
    return UndefinedValue();
  }

  NoGCValue noGCPlaceholder(const Value& v) const {
    if (v.isMagic(JS_OPTIMIZED_OUT)) {
      return NoGC_MagicOptimizedOut;
    }
    return NoGC_UndefinedValue;
  }
};

class RResumePoint;

// Reads frame information in snapshot-encoding order (that is, outermost frame
// to innermost frame).
class SnapshotIterator {
 protected:
  SnapshotReader snapshot_;
  RecoverReader recover_;
  JitFrameLayout* fp_;
  const MachineState* machine_;
  IonScript* ionScript_;
  RInstructionResults* instructionResults_;

  enum ReadMethod {
    // Read the normal value.
    RM_Normal = 1 << 0,

    // Read the default value, or the normal value if there is no default.
    RM_AlwaysDefault = 1 << 1,

    // Try to read the normal value if it is readable, otherwise default to
    // the Default value.
    RM_NormalOrDefault = RM_Normal | RM_AlwaysDefault,
  };

 private:
  // Read a spilled register from the machine state.
  bool hasRegister(Register reg) const { return machine_->has(reg); }
  uintptr_t fromRegister(Register reg) const { return machine_->read(reg); }

  bool hasRegister(FloatRegister reg) const { return machine_->has(reg); }
  double fromRegister(FloatRegister reg) const { return machine_->read(reg); }

  // Read an uintptr_t from the stack.
  bool hasStack(int32_t offset) const { return true; }
  uintptr_t fromStack(int32_t offset) const;

  bool hasInstructionResult(uint32_t index) const {
    return instructionResults_;
  }
  bool hasInstructionResults() const { return instructionResults_; }
  Value fromInstructionResult(uint32_t index) const;

  Value allocationValue(const RValueAllocation& a, ReadMethod rm = RM_Normal);
  MOZ_MUST_USE bool allocationReadable(const RValueAllocation& a,
                                       ReadMethod rm = RM_Normal);
  void writeAllocationValuePayload(const RValueAllocation& a, const Value& v);
  void warnUnreadableAllocation();

 private:
  const FloatRegisters::RegisterContent* floatAllocationPointer(
      const RValueAllocation& a) const;

 public:
  // Handle iterating over RValueAllocations of the snapshots.
  inline RValueAllocation readAllocation() {
    MOZ_ASSERT(moreAllocations());
    return snapshot_.readAllocation();
  }
  Value skip() {
    snapshot_.skipAllocation();
    return UndefinedValue();
  }

  const RResumePoint* resumePoint() const;
  const RInstruction* instruction() const { return recover_.instruction(); }

  uint32_t numAllocations() const;
  inline bool moreAllocations() const {
    return snapshot_.numAllocationsRead() < numAllocations();
  }

  int32_t readOuterNumActualArgs() const;

  // Used by recover instruction to store the value back into the instruction
  // results array.
  void storeInstructionResult(const Value& v);

 public:
  // Exhibits frame properties contained in the snapshot.
  uint32_t pcOffset() const;
  inline MOZ_MUST_USE bool resumeAfter() const {
    // Inline frames are inlined on calls, which are considered as being
    // resumed on the Call as baseline will push the pc once we return from
    // the call.
    if (moreFrames()) {
      return false;
    }
    return recover_.resumeAfter();
  }
  inline BailoutKind bailoutKind() const { return snapshot_.bailoutKind(); }

 public:
  // Read the next instruction available and get ready to either skip it or
  // evaluate it.
  inline void nextInstruction() {
    MOZ_ASSERT(snapshot_.numAllocationsRead() == numAllocations());
    recover_.nextInstruction();
    snapshot_.resetNumAllocationsRead();
  }

  // Skip an Instruction by walking to the next instruction and by skipping
  // all the allocations corresponding to this instruction.
  void skipInstruction();

  inline bool moreInstructions() const { return recover_.moreInstructions(); }

  // Register a vector used for storing the results of the evaluation of
  // recover instructions. This vector should be registered before the
  // beginning of the iteration. This function is in charge of allocating
  // enough space for all instructions results, and return false iff it fails.
  MOZ_MUST_USE bool initInstructionResults(MaybeReadFallback& fallback);

 protected:
  // This function is used internally for computing the result of the recover
  // instructions.
  MOZ_MUST_USE bool computeInstructionResults(
      JSContext* cx, RInstructionResults* results) const;

 public:
  // Handle iterating over frames of the snapshots.
  void nextFrame();
  void settleOnFrame();

  inline bool moreFrames() const {
    // The last instruction is recovering the innermost frame, so as long as
    // there is more instruction there is necesseray more frames.
    return moreInstructions();
  }

 public:
  // Connect all informations about the current script in order to recover the
  // content of baseline frames.

  SnapshotIterator(const JSJitFrameIter& iter,
                   const MachineState* machineState);
  SnapshotIterator();

  Value read() { return allocationValue(readAllocation()); }

  // Read the |Normal| value unless it is not available and that the snapshot
  // provides a |Default| value. This is useful to avoid invalidations of the
  // frame while we are only interested in a few properties which are provided
  // by the |Default| value.
  Value readWithDefault(RValueAllocation* alloc) {
    *alloc = RValueAllocation();
    RValueAllocation a = readAllocation();
    if (allocationReadable(a)) {
      return allocationValue(a);
    }

    *alloc = a;
    return allocationValue(a, RM_AlwaysDefault);
  }

  Value maybeRead(const RValueAllocation& a, MaybeReadFallback& fallback);
  Value maybeRead(MaybeReadFallback& fallback) {
    RValueAllocation a = readAllocation();
    return maybeRead(a, fallback);
  }

  void traceAllocation(JSTracer* trc);

  template <class Op>
  void readFunctionFrameArgs(Op& op, ArgumentsObject** argsObj, Value* thisv,
                             unsigned start, unsigned end, JSScript* script,
                             MaybeReadFallback& fallback) {
    // Assumes that the common frame arguments have already been read.
    if (script->argumentsHasVarBinding()) {
      if (argsObj) {
        Value v = read();
        if (v.isObject()) {
          *argsObj = &v.toObject().as<ArgumentsObject>();
        }
      } else {
        skip();
      }
    }

    if (thisv) {
      *thisv = maybeRead(fallback);
    } else {
      skip();
    }

    unsigned i = 0;
    if (end < start) {
      i = start;
    }

    for (; i < start; i++) {
      skip();
    }
    for (; i < end; i++) {
      // We are not always able to read values from the snapshots, some values
      // such as non-gc things may still be live in registers and cause an
      // error while reading the machine state.
      Value v = maybeRead(fallback);
      op(v);
    }
  }

  // Iterate over all the allocations and return only the value of the
  // allocation located at one index.
  Value maybeReadAllocByIndex(size_t index);

#ifdef TRACK_SNAPSHOTS
  void spewBailingFrom() const { snapshot_.spewBailingFrom(); }
#endif
};

// Reads frame information in callstack order (that is, innermost frame to
// outermost frame).
class InlineFrameIterator {
  const JSJitFrameIter* frame_;
  SnapshotIterator start_;
  SnapshotIterator si_;
  uint32_t framesRead_;

  // When the inline-frame-iterator is created, this variable is defined to
  // UINT32_MAX. Then the first iteration of findNextFrame, which settle on
  // the innermost frame, is used to update this counter to the number of
  // frames contained in the recover buffer.
  uint32_t frameCount_;

  // The |calleeTemplate_| fields contains either the JSFunction or the
  // template from which it is supposed to be cloned. The |calleeRVA_| is an
  // Invalid value allocation, if the |calleeTemplate_| field is the effective
  // JSFunction, and not its template. On the other hand, any other value
  // allocation implies that the |calleeTemplate_| is the template JSFunction
  // from which the effective one would be derived and cached by the Recover
  // instruction result.
  RootedFunction calleeTemplate_;
  RValueAllocation calleeRVA_;

  RootedScript script_;
  jsbytecode* pc_;
  uint32_t numActualArgs_;

  // Register state, used by all snapshot iterators.
  MachineState machine_;

  struct Nop {
    void operator()(const Value& v) {}
  };

 private:
  void findNextFrame();
  JSObject* computeEnvironmentChain(const Value& envChainValue,
                                    MaybeReadFallback& fallback,
                                    bool* hasInitialEnv = nullptr) const;

 public:
  InlineFrameIterator(JSContext* cx, const JSJitFrameIter* iter);
  InlineFrameIterator(JSContext* cx, const InlineFrameIterator* iter);

  bool more() const { return frame_ && framesRead_ < frameCount_; }

  // Due to optimizations, we are not always capable of reading the callee of
  // inlined frames without invalidating the IonCode. This function might
  // return either the effective callee of the JSFunction which might be used
  // to create it.
  //
  // As such, the |calleeTemplate()| can be used to read most of the metadata
  // which are conserved across clones.
  JSFunction* calleeTemplate() const {
    MOZ_ASSERT(isFunctionFrame());
    return calleeTemplate_;
  }
  JSFunction* maybeCalleeTemplate() const { return calleeTemplate_; }

  JSFunction* callee(MaybeReadFallback& fallback) const;

  unsigned numActualArgs() const {
    // The number of actual arguments of inline frames is recovered by the
    // iteration process. It is recovered from the bytecode because this
    // property still hold since the for inlined frames. This property does not
    // hold for the parent frame because it can have optimize a call to
    // js_fun_call or js_fun_apply.
    if (more()) {
      return numActualArgs_;
    }

    return frame_->numActualArgs();
  }

  template <class ArgOp, class LocalOp>
  void readFrameArgsAndLocals(JSContext* cx, ArgOp& argOp, LocalOp& localOp,
                              JSObject** envChain, bool* hasInitialEnv,
                              Value* rval, ArgumentsObject** argsObj,
                              Value* thisv, Value* newTarget,
                              ReadFrameArgsBehavior behavior,
                              MaybeReadFallback& fallback) const {
    SnapshotIterator s(si_);

    // Read the env chain.
    if (envChain) {
      Value envChainValue = s.maybeRead(fallback);
      *envChain =
          computeEnvironmentChain(envChainValue, fallback, hasInitialEnv);
    } else {
      s.skip();
    }

    // Read return value.
    if (rval) {
      *rval = s.maybeRead(fallback);
    } else {
      s.skip();
    }

    if (newTarget) {
      // For now, only support reading new.target when we are reading
      // overflown arguments.
      MOZ_ASSERT(behavior != ReadFrame_Formals);
      newTarget->setUndefined();
    }

    // Read arguments, which only function frames have.
    if (isFunctionFrame()) {
      unsigned nactual = numActualArgs();
      unsigned nformal = calleeTemplate()->nargs();

      // Get the non overflown arguments, which are taken from the inlined
      // frame, because it will have the updated value when JSOP_SETARG is
      // done.
      if (behavior != ReadFrame_Overflown) {
        s.readFunctionFrameArgs(argOp, argsObj, thisv, 0, nformal, script(),
                                fallback);
      }

      if (behavior != ReadFrame_Formals) {
        if (more()) {
          // There is still a parent frame of this inlined frame.  All
          // arguments (also the overflown) are the last pushed values
          // in the parent frame.  To get the overflown arguments, we
          // need to take them from there.

          // The overflown arguments are not available in current frame.
          // They are the last pushed arguments in the parent frame of
          // this inlined frame.
          InlineFrameIterator it(cx, this);
          ++it;
          unsigned argsObjAdj = it.script()->argumentsHasVarBinding() ? 1 : 0;
          bool hasNewTarget = isConstructing();
          SnapshotIterator parent_s(it.snapshotIterator());

          // Skip over all slots until we get to the last slots
          // (= arguments slots of callee) the +3 is for [this], [returnvalue],
          // [envchain], and maybe +1 for [argsObj]
          MOZ_ASSERT(parent_s.numAllocations() >=
                     nactual + 3 + argsObjAdj + hasNewTarget);
          unsigned skip = parent_s.numAllocations() - nactual - 3 - argsObjAdj -
                          hasNewTarget;
          for (unsigned j = 0; j < skip; j++) {
            parent_s.skip();
          }

          // Get the overflown arguments
          MaybeReadFallback unusedFallback;
          parent_s.skip();  // env chain
          parent_s.skip();  // return value
          parent_s.readFunctionFrameArgs(argOp, nullptr, nullptr, nformal,
                                         nactual, it.script(), fallback);
          if (newTarget && isConstructing()) {
            *newTarget = parent_s.maybeRead(fallback);
          }
        } else {
          // There is no parent frame to this inlined frame, we can read
          // from the frame's Value vector directly.
          Value* argv = frame_->actualArgs();
          for (unsigned i = nformal; i < nactual; i++) {
            argOp(argv[i]);
          }
          if (newTarget && isConstructing()) {
            *newTarget = argv[nactual];
          }
        }
      }
    }

    // At this point we've read all the formals in s, and can read the
    // locals.
    for (unsigned i = 0; i < script()->nfixed(); i++) {
      localOp(s.maybeRead(fallback));
    }
  }

  template <class Op>
  void unaliasedForEachActual(JSContext* cx, Op op,
                              ReadFrameArgsBehavior behavior,
                              MaybeReadFallback& fallback) const {
    Nop nop;
    readFrameArgsAndLocals(cx, op, nop, nullptr, nullptr, nullptr, nullptr,
                           nullptr, nullptr, behavior, fallback);
  }

  JSScript* script() const { return script_; }
  jsbytecode* pc() const { return pc_; }
  SnapshotIterator snapshotIterator() const { return si_; }
  bool isFunctionFrame() const;
  bool isModuleFrame() const;
  bool isConstructing() const;

  JSObject* environmentChain(MaybeReadFallback& fallback,
                             bool* hasInitialEnvironment = nullptr) const {
    SnapshotIterator s(si_);

    // envChain
    Value v = s.maybeRead(fallback);
    return computeEnvironmentChain(v, fallback, hasInitialEnvironment);
  }

  Value thisArgument(MaybeReadFallback& fallback) const {
    SnapshotIterator s(si_);

    // envChain
    s.skip();

    // return value
    s.skip();

    // Arguments object.
    if (script()->argumentsHasVarBinding()) {
      s.skip();
    }

    return s.maybeRead(fallback);
  }

  InlineFrameIterator& operator++() {
    findNextFrame();
    return *this;
  }

  void dump() const;

  void resetOn(const JSJitFrameIter* iter);

  const JSJitFrameIter& frame() const { return *frame_; }

  // Inline frame number, 0 for the outermost (non-inlined) frame.
  size_t frameNo() const { return frameCount() - framesRead_; }
  size_t frameCount() const {
    MOZ_ASSERT(frameCount_ != UINT32_MAX);
    return frameCount_;
  }

 private:
  InlineFrameIterator() = delete;
  InlineFrameIterator(const InlineFrameIterator& iter) = delete;
};

}  // namespace jit
}  // namespace js

#endif /* jit_JSJitFrameIter_h */