DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/EffectiveAddressAnalysis.h"

#include "jsnum.h"

#include "jit/IonAnalysis.h"
#include "jit/MIR.h"
#include "jit/MIRGraph.h"

using namespace js;
using namespace jit;

static void AnalyzeLsh(TempAllocator& alloc, MLsh* lsh) {
  if (lsh->specialization() != MIRType::Int32) {
    return;
  }

  if (lsh->isRecoveredOnBailout()) {
    return;
  }

  MDefinition* index = lsh->lhs();
  MOZ_ASSERT(index->type() == MIRType::Int32);

  MConstant* shiftValue = lsh->rhs()->maybeConstantValue();
  if (!shiftValue) {
    return;
  }

  if (shiftValue->type() != MIRType::Int32 ||
      !IsShiftInScaleRange(shiftValue->toInt32())) {
    return;
  }

  Scale scale = ShiftToScale(shiftValue->toInt32());

  int32_t displacement = 0;
  MInstruction* last = lsh;
  MDefinition* base = nullptr;
  while (true) {
    if (!last->hasOneUse()) {
      break;
    }

    MUseIterator use = last->usesBegin();
    if (!use->consumer()->isDefinition() ||
        !use->consumer()->toDefinition()->isAdd()) {
      break;
    }

    MAdd* add = use->consumer()->toDefinition()->toAdd();
    if (add->specialization() != MIRType::Int32 || !add->isTruncated()) {
      break;
    }

    MDefinition* other = add->getOperand(1 - add->indexOf(*use));

    if (MConstant* otherConst = other->maybeConstantValue()) {
      displacement += otherConst->toInt32();
    } else {
      if (base) {
        break;
      }
      base = other;
    }

    last = add;
    if (last->isRecoveredOnBailout()) {
      return;
    }
  }

  if (!base) {
    uint32_t elemSize = 1 << ScaleToShift(scale);
    if (displacement % elemSize != 0) {
      return;
    }

    if (!last->hasOneUse()) {
      return;
    }

    MUseIterator use = last->usesBegin();
    if (!use->consumer()->isDefinition() ||
        !use->consumer()->toDefinition()->isBitAnd()) {
      return;
    }

    MBitAnd* bitAnd = use->consumer()->toDefinition()->toBitAnd();
    if (bitAnd->isRecoveredOnBailout()) {
      return;
    }

    MDefinition* other = bitAnd->getOperand(1 - bitAnd->indexOf(*use));
    MConstant* otherConst = other->maybeConstantValue();
    if (!otherConst || otherConst->type() != MIRType::Int32) {
      return;
    }

    uint32_t bitsClearedByShift = elemSize - 1;
    uint32_t bitsClearedByMask = ~uint32_t(otherConst->toInt32());
    if ((bitsClearedByShift & bitsClearedByMask) != bitsClearedByMask) {
      return;
    }

    bitAnd->replaceAllUsesWith(last);
    return;
  }

  if (base->isRecoveredOnBailout()) {
    return;
  }

  MEffectiveAddress* eaddr =
      MEffectiveAddress::New(alloc, base, index, scale, displacement);
  last->replaceAllUsesWith(eaddr);
  last->block()->insertAfter(last, eaddr);
}

// Transform:
//
//   [AddI]
//   addl       $9, %esi
//   [LoadUnboxedScalar]
//   movsd      0x0(%rbx,%rsi,8), %xmm4
//
// into:
//
//   [LoadUnboxedScalar]
//   movsd      0x48(%rbx,%rsi,8), %xmm4
//
// This is possible when the AddI is only used by the LoadUnboxedScalar opcode.
static void AnalyzeLoadUnboxedScalar(MLoadUnboxedScalar* load) {
  if (load->isRecoveredOnBailout()) {
    return;
  }

  if (!load->getOperand(1)->isAdd()) {
    return;
  }

  JitSpew(JitSpew_EAA, "analyze: %s%u", load->opName(), load->id());

  MAdd* add = load->getOperand(1)->toAdd();

  if (add->specialization() != MIRType::Int32 || !add->hasUses() ||
      add->truncateKind() != MDefinition::TruncateKind::Truncate) {
    return;
  }

  MDefinition* lhs = add->lhs();
  MDefinition* rhs = add->rhs();
  MDefinition* constant = nullptr;
  MDefinition* node = nullptr;

  if (lhs->isConstant()) {
    constant = lhs;
    node = rhs;
  } else if (rhs->isConstant()) {
    constant = rhs;
    node = lhs;
  } else
    return;

  MOZ_ASSERT(constant->type() == MIRType::Int32);

  size_t storageSize = Scalar::byteSize(load->storageType());
  int32_t c1 = load->offsetAdjustment();
  int32_t c2 = 0;
  if (!SafeMul(constant->maybeConstantValue()->toInt32(), storageSize, &c2)) {
    return;
  }

  int32_t offset = 0;
  if (!SafeAdd(c1, c2, &offset)) {
    return;
  }

  JitSpew(JitSpew_EAA, "set offset: %d + %d = %d on: %s%u", c1, c2, offset,
          load->opName(), load->id());
  load->setOffsetAdjustment(offset);
  load->replaceOperand(1, node);

  if (!add->hasLiveDefUses() && DeadIfUnused(add) &&
      add->canRecoverOnBailout()) {
    JitSpew(JitSpew_EAA, "mark as recovered on bailout: %s%u", add->opName(),
            add->id());
    add->setRecoveredOnBailoutUnchecked();
  }
}

template <typename AsmJSMemoryAccess>
void EffectiveAddressAnalysis::analyzeAsmJSHeapAccess(AsmJSMemoryAccess* ins) {
  MDefinition* base = ins->base();

  if (base->isConstant()) {
    // If the index is within the minimum heap length, we can optimize
    // away the bounds check.
    int32_t imm = base->toConstant()->toInt32();
    if (imm >= 0) {
      int32_t end = (uint32_t)imm + ins->byteSize();
      if (end >= imm && (uint32_t)end <= mir_->minWasmHeapLength()) {
        ins->removeBoundsCheck();
      }
    }
  }
}

// This analysis converts patterns of the form:
//   truncate(x + (y << {0,1,2,3}))
//   truncate(x + (y << {0,1,2,3}) + imm32)
// into a single lea instruction, and patterns of the form:
//   asmload(x + imm32)
//   asmload(x << {0,1,2,3})
//   asmload((x << {0,1,2,3}) + imm32)
//   asmload((x << {0,1,2,3}) & mask)            (where mask is redundant
//                                                with shift)
//   asmload(((x << {0,1,2,3}) + imm32) & mask)  (where mask is redundant
//                                                with shift + imm32)
// into a single asmload instruction (and for asmstore too).
//
// Additionally, we should consider the general forms:
//   truncate(x + y + imm32)
//   truncate((y << {0,1,2,3}) + imm32)
bool EffectiveAddressAnalysis::analyze() {
  for (ReversePostorderIterator block(graph_.rpoBegin());
       block != graph_.rpoEnd(); block++) {
    for (MInstructionIterator i = block->begin(); i != block->end(); i++) {
      if (!graph_.alloc().ensureBallast()) {
        return false;
      }

      // Note that we don't check for MWasmCompareExchangeHeap
      // or MWasmAtomicBinopHeap, because the backend and the OOB
      // mechanism don't support non-zero offsets for them yet
      // (TODO bug 1254935).
      if (i->isLsh()) {
        AnalyzeLsh(graph_.alloc(), i->toLsh());
      } else if (i->isLoadUnboxedScalar()) {
        AnalyzeLoadUnboxedScalar(i->toLoadUnboxedScalar());
      } else if (i->isAsmJSLoadHeap()) {
        analyzeAsmJSHeapAccess(i->toAsmJSLoadHeap());
      } else if (i->isAsmJSStoreHeap()) {
        analyzeAsmJSHeapAccess(i->toAsmJSStoreHeap());
      }
    }
  }
  return true;
}