DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_BaselineFrameInfo_h
#define jit_BaselineFrameInfo_h

#include "mozilla/Attributes.h"

#include <new>

#include "jit/BaselineFrame.h"
#include "jit/BaselineJIT.h"
#include "jit/FixedList.h"
#include "jit/MacroAssembler.h"
#include "jit/SharedICRegisters.h"

namespace js {
namespace jit {

struct BytecodeInfo;

// [SMDOC] Baseline FrameInfo overview.
//
// FrameInfo is used by BaselineCodeGen to track values stored in the frame.
// There are two implementations:
//
// InterpreterFrameInfo
// --------------------
// The InterpreterFrameInfo class is used by the interpreter generator and is
// a very simple interface on top of the MacroAssembler, because the stack is
// always synced.
//
// CompilerFrameInfo
// -----------------
// The CompilerFrameInfo class is more complicated because it maintains a
// virtual stack to optimize some common stack operations. Locals and arguments
// are always fully synced. Stack values can either be synced, stored as
// constant, stored in a Value register or refer to a local slot. Syncing a
// StackValue ensures it's stored on the stack, e.g. kind == Stack.
//
// To see how this works, consider the following statement:
//
//    var y = x + 9;
//
// Here two values are pushed: StackValue(LocalSlot(0)) and
// StackValue(Int32Value(9)). Only when we reach the ADD op, code is generated
// to load the operands directly into the right operand registers and sync all
// other stack values.
//
// For stack values, the following invariants hold (and are checked between
// ops):
//
// (1) If a value is synced (kind == Stack), all values below it must also be
//     synced. In other words, values with kind other than Stack can only appear
//     on top of the abstract stack.
//
// (2) When we call a stub or IC, all values still on the stack must be synced.

// Represents a value pushed on the stack. Note that StackValue is not used for
// locals or arguments since these are always fully synced.
class StackValue {
 public:
  enum Kind {
    Constant,
    Register,
    Stack,
    LocalSlot,
    ArgSlot,
    ThisSlot,
    EvalNewTargetSlot
#ifdef DEBUG
    // In debug builds, assert Kind is initialized.
    ,
    Uninitialized
#endif
  };

 private:
  MOZ_INIT_OUTSIDE_CTOR Kind kind_;

  MOZ_INIT_OUTSIDE_CTOR union Data {
    JS::Value constant;
    ValueOperand reg;
    uint32_t localSlot;
    uint32_t argSlot;

    // |constant| has a non-trivial constructor and therefore MUST be
    // placement-new'd into existence.
    MOZ_PUSH_DISABLE_NONTRIVIAL_UNION_WARNINGS
    Data() {}
    MOZ_POP_DISABLE_NONTRIVIAL_UNION_WARNINGS
  } data;

  MOZ_INIT_OUTSIDE_CTOR JSValueType knownType_;

 public:
  StackValue() { reset(); }

  Kind kind() const { return kind_; }
  bool hasKnownType() const { return knownType_ != JSVAL_TYPE_UNKNOWN; }
  bool hasKnownType(JSValueType type) const {
    MOZ_ASSERT(type != JSVAL_TYPE_UNKNOWN);
    return knownType_ == type;
  }
  JSValueType knownType() const {
    MOZ_ASSERT(hasKnownType());
    return knownType_;
  }
  void reset() {
#ifdef DEBUG
    kind_ = Uninitialized;
    knownType_ = JSVAL_TYPE_UNKNOWN;
#endif
  }
  Value constant() const {
    MOZ_ASSERT(kind_ == Constant);
    return data.constant;
  }
  ValueOperand reg() const {
    MOZ_ASSERT(kind_ == Register);
    return data.reg;
  }
  uint32_t localSlot() const {
    MOZ_ASSERT(kind_ == LocalSlot);
    return data.localSlot;
  }
  uint32_t argSlot() const {
    MOZ_ASSERT(kind_ == ArgSlot);
    return data.argSlot;
  }

  void setConstant(const Value& v) {
    kind_ = Constant;
    new (&data.constant) Value(v);
    knownType_ = v.isDouble() ? JSVAL_TYPE_DOUBLE : v.extractNonDoubleType();
  }
  void setRegister(const ValueOperand& val,
                   JSValueType knownType = JSVAL_TYPE_UNKNOWN) {
    kind_ = Register;
    new (&data.reg) ValueOperand(val);
    knownType_ = knownType;
  }
  void setLocalSlot(uint32_t slot) {
    kind_ = LocalSlot;
    new (&data.localSlot) uint32_t(slot);
    knownType_ = JSVAL_TYPE_UNKNOWN;
  }
  void setArgSlot(uint32_t slot) {
    kind_ = ArgSlot;
    new (&data.argSlot) uint32_t(slot);
    knownType_ = JSVAL_TYPE_UNKNOWN;
  }
  void setThis() {
    kind_ = ThisSlot;
    knownType_ = JSVAL_TYPE_UNKNOWN;
  }
  void setEvalNewTarget() {
    kind_ = EvalNewTargetSlot;
    knownType_ = JSVAL_TYPE_UNKNOWN;
  }
  void setStack() {
    kind_ = Stack;
    knownType_ = JSVAL_TYPE_UNKNOWN;
  }
};

enum StackAdjustment { AdjustStack, DontAdjustStack };

class FrameInfo {
 protected:
  MacroAssembler& masm;

 public:
  explicit FrameInfo(MacroAssembler& masm) : masm(masm) {}

  Address addressOfLocal(size_t local) const {
    return Address(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfLocal(local));
  }
  Address addressOfArg(size_t arg) const {
    return Address(BaselineFrameReg, BaselineFrame::offsetOfArg(arg));
  }
  Address addressOfThis() const {
    return Address(BaselineFrameReg, BaselineFrame::offsetOfThis());
  }
  Address addressOfEvalNewTarget() const {
    return Address(BaselineFrameReg, BaselineFrame::offsetOfEvalNewTarget());
  }
  Address addressOfCalleeToken() const {
    return Address(BaselineFrameReg, BaselineFrame::offsetOfCalleeToken());
  }
  Address addressOfEnvironmentChain() const {
    return Address(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfEnvironmentChain());
  }
  Address addressOfFlags() const {
    return Address(BaselineFrameReg, BaselineFrame::reverseOffsetOfFlags());
  }
  Address addressOfReturnValue() const {
    return Address(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfReturnValue());
  }
  Address addressOfArgsObj() const {
    return Address(BaselineFrameReg, BaselineFrame::reverseOffsetOfArgsObj());
  }
  Address addressOfScratchValue() const {
    return Address(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfScratchValue());
  }
  Address addressOfScratchValueLow32() const {
    return Address(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfScratchValueLow32());
  }
  Address addressOfScratchValueHigh32() const {
    return Address(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfScratchValueHigh32());
  }
};

class CompilerFrameInfo : public FrameInfo {
  JSScript* script;
  FixedList<StackValue> stack;
  size_t spIndex;

 public:
  CompilerFrameInfo(JSScript* script, MacroAssembler& masm)
      : FrameInfo(masm), script(script), stack(), spIndex(0) {}
  MOZ_MUST_USE bool init(TempAllocator& alloc);

  size_t nlocals() const { return script->nfixed(); }
  size_t nargs() const { return script->functionNonDelazifying()->nargs(); }

 private:
  inline StackValue* rawPush() {
    StackValue* val = &stack[spIndex++];
    val->reset();
    return val;
  }

  inline StackValue* peek(int32_t index) const {
    MOZ_ASSERT(index < 0);
    return const_cast<StackValue*>(&stack[spIndex + index]);
  }

 public:
  inline size_t stackDepth() const { return spIndex; }
  inline void setStackDepth(uint32_t newDepth) {
    if (newDepth <= stackDepth()) {
      spIndex = newDepth;
    } else {
      uint32_t diff = newDepth - stackDepth();
      for (uint32_t i = 0; i < diff; i++) {
        StackValue* val = rawPush();
        val->setStack();
      }

      MOZ_ASSERT(spIndex == newDepth);
    }
  }

  void assertStackDepth(uint32_t depth) { MOZ_ASSERT(stackDepth() == depth); }
  void incStackDepth(int32_t diff) { setStackDepth(stackDepth() + diff); }
  bool hasKnownStackDepth(uint32_t depth) { return stackDepth() == depth; }

  inline void pop(StackAdjustment adjust = AdjustStack);
  inline void popn(uint32_t n, StackAdjustment adjust = AdjustStack);
  inline void push(const Value& val) {
    StackValue* sv = rawPush();
    sv->setConstant(val);
  }
  inline void push(const ValueOperand& val,
                   JSValueType knownType = JSVAL_TYPE_UNKNOWN) {
    StackValue* sv = rawPush();
    sv->setRegister(val, knownType);
  }
  inline void pushLocal(uint32_t local) {
    MOZ_ASSERT(local < nlocals());
    StackValue* sv = rawPush();
    sv->setLocalSlot(local);
  }
  inline void pushArg(uint32_t arg) {
    StackValue* sv = rawPush();
    sv->setArgSlot(arg);
  }
  inline void pushThis() {
    StackValue* sv = rawPush();
    sv->setThis();
  }
  inline void pushEvalNewTarget() {
    MOZ_ASSERT(script->isForEval());
    StackValue* sv = rawPush();
    sv->setEvalNewTarget();
  }

  inline void pushScratchValue() {
    masm.pushValue(addressOfScratchValue());
    StackValue* sv = rawPush();
    sv->setStack();
  }

  Address addressOfLocal(size_t local) const {
    MOZ_ASSERT(local < nlocals());
    return FrameInfo::addressOfLocal(local);
  }
  Address addressOfArg(size_t arg) const {
    MOZ_ASSERT(arg < nargs());
    return FrameInfo::addressOfArg(arg);
  }

  Address addressOfStackValue(int32_t depth) const {
    const StackValue* value = peek(depth);
    MOZ_ASSERT(value->kind() == StackValue::Stack);
    size_t slot = value - &stack[0];
    MOZ_ASSERT(slot < stackDepth());
    return Address(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfLocal(nlocals() + slot));
  }

  void popValue(ValueOperand dest);

  void sync(StackValue* val);
  void syncStack(uint32_t uses);
  uint32_t numUnsyncedSlots();
  void popRegsAndSync(uint32_t uses);

  void assertSyncedStack() const {
    MOZ_ASSERT_IF(stackDepth() > 0, peek(-1)->kind() == StackValue::Stack);
  }

  bool stackValueHasKnownType(int32_t depth, JSValueType type) const {
    return peek(depth)->hasKnownType(type);
  }

  void storeStackValue(int32_t depth, const Address& dest,
                       const ValueOperand& scratch);

#ifdef DEBUG
  // Assert the state is valid before excuting "pc".
  void assertValidState(const BytecodeInfo& info);
#else
  inline void assertValidState(const BytecodeInfo& info) {}
#endif
};

class InterpreterFrameInfo : public FrameInfo {
 public:
  explicit InterpreterFrameInfo(MacroAssembler& masm) : FrameInfo(masm) {}

  // These methods are no-ops in the interpreter, because we don't have a
  // virtual stack there.
  void syncStack(uint32_t uses) {}
  void assertSyncedStack() const {}
  void assertStackDepth(uint32_t depth) {}
  void incStackDepth(int32_t diff) {}
  bool hasKnownStackDepth(uint32_t depth) { return false; }
  uint32_t numUnsyncedSlots() { return 0; }

  bool stackValueHasKnownType(int32_t depth, JSValueType type) const {
    return false;
  }

  Address addressOfStackValue(int depth) const {
    MOZ_ASSERT(depth < 0);
    return Address(masm.getStackPointer(),
                   masm.framePushed() + size_t(-(depth + 1)) * sizeof(Value));
  }

  BaseIndex addressOfStackValue(Register index, int32_t offset = 0) const {
    return BaseIndex(masm.getStackPointer(), index, ValueScale, offset);
  }

  void popRegsAndSync(uint32_t uses);

  void pop() { popn(1); }

  void popn(uint32_t n) { masm.addToStackPtr(Imm32(n * sizeof(Value))); }

  void popn(Register reg) {
    // sp := sp + reg * sizeof(Value)
    Register spReg = AsRegister(masm.getStackPointer());
    masm.computeEffectiveAddress(BaseValueIndex(spReg, reg), spReg);
  }

  void popValue(ValueOperand dest) { masm.popValue(dest); }

  void push(const ValueOperand& val,
            JSValueType knownType = JSVAL_TYPE_UNKNOWN) {
    masm.pushValue(val);
  }
  void push(const Value& val) { masm.pushValue(val); }

  void pushThis() { masm.pushValue(addressOfThis()); }
  void pushEvalNewTarget() { masm.pushValue(addressOfEvalNewTarget()); }
  void pushScratchValue() { masm.pushValue(addressOfScratchValue()); }

  void storeStackValue(int32_t depth, const Address& dest,
                       const ValueOperand& scratch) {
    masm.loadValue(addressOfStackValue(depth), scratch);
    masm.storeValue(scratch, dest);
  }

  void bumpInterpreterICEntry();

  Address addressOfInterpreterScript() const {
    return Address(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfInterpreterScript());
  }
  Address addressOfInterpreterPC() const {
    return Address(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfInterpreterPC());
  }
  Address addressOfInterpreterICEntry() const {
    return Address(BaselineFrameReg,
                   BaselineFrame::reverseOffsetOfInterpreterICEntry());
  }
};

}  // namespace jit
}  // namespace js

#endif /* jit_BaselineFrameInfo_h */