DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_BaselineFrame_h
#define jit_BaselineFrame_h

#include "jit/JitFrames.h"
#include "vm/Stack.h"

namespace js {
namespace jit {

class ICEntry;

// The stack looks like this, fp is the frame pointer:
//
// fp+y   arguments
// fp+x   JitFrameLayout (frame header)
// fp  => saved frame pointer
// fp-x   BaselineFrame
//        locals
//        stack values

class BaselineFrame {
 public:
  enum Flags : uint32_t {
    // The frame has a valid return value. See also InterpreterFrame::HAS_RVAL.
    HAS_RVAL = 1 << 0,

    // The frame is running in the Baseline interpreter instead of JIT.
    RUNNING_IN_INTERPRETER = 1 << 1,

    // An initial environment has been pushed on the environment chain for
    // function frames that need a CallObject or eval frames that need a
    // VarEnvironmentObject.
    HAS_INITIAL_ENV = 1 << 2,

    // Frame has an arguments object, argsObj_.
    HAS_ARGS_OBJ = 1 << 4,

    // See InterpreterFrame::PREV_UP_TO_DATE.
    PREV_UP_TO_DATE = 1 << 5,

    // Frame has execution observed by a Debugger.
    //
    // See comment above 'isDebuggee' in vm/Realm.h for explanation
    // of invariants of debuggee compartments, scripts, and frames.
    DEBUGGEE = 1 << 6,
  };

 protected:  // Silence Clang warning about unused private fields.
  // The fields below are only valid if RUNNING_IN_INTERPRETER.
  JSScript* interpreterScript_;
  jsbytecode* interpreterPC_;
  ICEntry* interpreterICEntry_;

  JSObject* envChain_;        // Environment chain (always initialized).
  ArgumentsObject* argsObj_;  // If HAS_ARGS_OBJ, the arguments object.

  // We need to split the Value into 2 fields of 32 bits, otherwise the C++
  // compiler may add some padding between the fields.
  uint32_t loScratchValue_;
  uint32_t hiScratchValue_;
  uint32_t flags_;
  uint32_t frameSize_;
  uint32_t loReturnValue_;  // If HAS_RVAL, the frame's return value.
  uint32_t hiReturnValue_;

 public:
  // Distance between the frame pointer and the frame header (return address).
  // This is the old frame pointer saved in the prologue.
  static const uint32_t FramePointerOffset = sizeof(void*);

  MOZ_MUST_USE bool initForOsr(InterpreterFrame* fp, uint32_t numStackValues);

  uint32_t frameSize() const { return frameSize_; }
  void setFrameSize(uint32_t frameSize) { frameSize_ = frameSize; }
  inline uint32_t* addressOfFrameSize() { return &frameSize_; }
  JSObject* environmentChain() const { return envChain_; }
  void setEnvironmentChain(JSObject* envChain) { envChain_ = envChain; }
  inline JSObject** addressOfEnvironmentChain() { return &envChain_; }

  template <typename SpecificEnvironment>
  inline void pushOnEnvironmentChain(SpecificEnvironment& env);
  template <typename SpecificEnvironment>
  inline void popOffEnvironmentChain();
  inline void replaceInnermostEnvironment(EnvironmentObject& env);

  CalleeToken calleeToken() const {
    uint8_t* pointer = (uint8_t*)this + Size() + offsetOfCalleeToken();
    return *(CalleeToken*)pointer;
  }
  void replaceCalleeToken(CalleeToken token) {
    uint8_t* pointer = (uint8_t*)this + Size() + offsetOfCalleeToken();
    *(CalleeToken*)pointer = token;
  }
  bool isConstructing() const {
    return CalleeTokenIsConstructing(calleeToken());
  }
  JSScript* script() const { return ScriptFromCalleeToken(calleeToken()); }
  JSFunction* callee() const { return CalleeTokenToFunction(calleeToken()); }
  Value calleev() const { return ObjectValue(*callee()); }
  size_t numValueSlots() const {
    size_t size = frameSize();

    MOZ_ASSERT(size >=
               BaselineFrame::FramePointerOffset + BaselineFrame::Size());
    size -= BaselineFrame::FramePointerOffset + BaselineFrame::Size();

    MOZ_ASSERT((size % sizeof(Value)) == 0);
    return size / sizeof(Value);
  }
  Value* valueSlot(size_t slot) const {
    MOZ_ASSERT(slot < numValueSlots());
    return (Value*)this - (slot + 1);
  }

  Value topStackValue() const {
    size_t numSlots = numValueSlots();
    MOZ_ASSERT(numSlots > 0);
    return *valueSlot(numSlots - 1);
  }

  Value& unaliasedFormal(
      unsigned i, MaybeCheckAliasing checkAliasing = CHECK_ALIASING) const {
    MOZ_ASSERT(i < numFormalArgs());
    MOZ_ASSERT_IF(checkAliasing, !script()->argsObjAliasesFormals() &&
                                     !script()->formalIsAliased(i));
    return argv()[i];
  }

  Value& unaliasedActual(
      unsigned i, MaybeCheckAliasing checkAliasing = CHECK_ALIASING) const {
    MOZ_ASSERT(i < numActualArgs());
    MOZ_ASSERT_IF(checkAliasing, !script()->argsObjAliasesFormals());
    MOZ_ASSERT_IF(checkAliasing && i < numFormalArgs(),
                  !script()->formalIsAliased(i));
    return argv()[i];
  }

  Value& unaliasedLocal(uint32_t i) const {
    MOZ_ASSERT(i < script()->nfixed());
    return *valueSlot(i);
  }

  unsigned numActualArgs() const {
    return *(size_t*)(reinterpret_cast<const uint8_t*>(this) +
                      BaselineFrame::Size() + offsetOfNumActualArgs());
  }
  unsigned numFormalArgs() const {
    return script()->functionNonDelazifying()->nargs();
  }
  Value& thisArgument() const {
    MOZ_ASSERT(isFunctionFrame());
    return *(Value*)(reinterpret_cast<const uint8_t*>(this) +
                     BaselineFrame::Size() + offsetOfThis());
  }
  Value* argv() const {
    return (Value*)(reinterpret_cast<const uint8_t*>(this) +
                    BaselineFrame::Size() + offsetOfArg(0));
  }

 private:
  Value* evalNewTargetAddress() const {
    MOZ_ASSERT(isEvalFrame());
    MOZ_ASSERT(script()->isDirectEvalInFunction());
    return (Value*)(reinterpret_cast<const uint8_t*>(this) +
                    BaselineFrame::Size() + offsetOfEvalNewTarget());
  }

 public:
  Value newTarget() const {
    if (isEvalFrame()) {
      return *evalNewTargetAddress();
    }
    MOZ_ASSERT(isFunctionFrame());
    if (callee()->isArrow()) {
      return callee()->getExtendedSlot(FunctionExtended::ARROW_NEWTARGET_SLOT);
    }
    if (isConstructing()) {
      return *(Value*)(reinterpret_cast<const uint8_t*>(this) +
                       BaselineFrame::Size() +
                       offsetOfArg(Max(numFormalArgs(), numActualArgs())));
    }
    return UndefinedValue();
  }

  void prepareForBaselineInterpreterToJitOSR() {
    // Clearing the RUNNING_IN_INTERPRETER flag is sufficient, but we also null
    // out the interpreter fields to ensure we don't use stale values.
    flags_ &= ~RUNNING_IN_INTERPRETER;
    interpreterScript_ = nullptr;
    interpreterPC_ = nullptr;
    interpreterICEntry_ = nullptr;
  }

  void initInterpFieldsForGeneratorThrowOrReturn(JSScript* script,
                                                 jsbytecode* pc) {
    // Note: we can initialize interpreterICEntry_ to nullptr because it won't
    // be used anyway (we are going to enter the exception handler).
    flags_ |= RUNNING_IN_INTERPRETER;
    interpreterScript_ = script;
    interpreterPC_ = pc;
    interpreterICEntry_ = nullptr;
  }

  // Switch a JIT frame on the stack to Interpreter mode. The caller is
  // responsible for patching the return address into this frame to a location
  // in the interpreter code. Also assert profiler sampling has been suppressed
  // so the sampler thread doesn't see an inconsistent state while we are
  // patching frames.
  void switchFromJitToInterpreter(JSContext* cx, jsbytecode* pc) {
    MOZ_ASSERT(!cx->isProfilerSamplingEnabled());
    MOZ_ASSERT(!runningInInterpreter());
    flags_ |= RUNNING_IN_INTERPRETER;
    setInterpreterFields(pc);
  }

  // Like switchFromJitToInterpreter, but set the interpreterICEntry_ field to
  // nullptr. Initializing this field requires a binary search on the
  // JitScript's ICEntry list but the exception handler never returns to this
  // pc anyway so we can avoid the overhead.
  void switchFromJitToInterpreterForExceptionHandler(JSContext* cx,
                                                     jsbytecode* pc) {
    MOZ_ASSERT(!cx->isProfilerSamplingEnabled());
    MOZ_ASSERT(!runningInInterpreter());
    flags_ |= RUNNING_IN_INTERPRETER;
    interpreterScript_ = script();
    interpreterPC_ = pc;
    interpreterICEntry_ = nullptr;
  }

  bool runningInInterpreter() const { return flags_ & RUNNING_IN_INTERPRETER; }

  JSScript* interpreterScript() const {
    MOZ_ASSERT(runningInInterpreter());
    return interpreterScript_;
  }

  jsbytecode* interpreterPC() const {
    MOZ_ASSERT(runningInInterpreter());
    return interpreterPC_;
  }

  void setInterpreterFields(JSScript* script, jsbytecode* pc);

  void setInterpreterFields(jsbytecode* pc) {
    setInterpreterFields(script(), pc);
  }

  void setInterpreterFieldsForPrologueBailout(JSScript* script);

  bool hasReturnValue() const { return flags_ & HAS_RVAL; }
  MutableHandleValue returnValue() {
    if (!hasReturnValue()) {
      addressOfReturnValue()->setUndefined();
    }
    return MutableHandleValue::fromMarkedLocation(addressOfReturnValue());
  }
  void setReturnValue(const Value& v) {
    returnValue().set(v);
    flags_ |= HAS_RVAL;
  }
  inline Value* addressOfReturnValue() {
    return reinterpret_cast<Value*>(&loReturnValue_);
  }

  bool hasInitialEnvironment() const { return flags_ & HAS_INITIAL_ENV; }

  inline CallObject& callObj() const;

  void setFlags(uint32_t flags) { flags_ = flags; }
  uint32_t* addressOfFlags() { return &flags_; }

  inline MOZ_MUST_USE bool pushLexicalEnvironment(JSContext* cx,
                                                  Handle<LexicalScope*> scope);
  inline MOZ_MUST_USE bool freshenLexicalEnvironment(JSContext* cx);
  inline MOZ_MUST_USE bool recreateLexicalEnvironment(JSContext* cx);

  MOZ_MUST_USE bool initFunctionEnvironmentObjects(JSContext* cx);
  MOZ_MUST_USE bool pushVarEnvironment(JSContext* cx, HandleScope scope);

  void initArgsObjUnchecked(ArgumentsObject& argsobj) {
    flags_ |= HAS_ARGS_OBJ;
    argsObj_ = &argsobj;
  }
  void initArgsObj(ArgumentsObject& argsobj) {
    MOZ_ASSERT(script()->needsArgsObj());
    initArgsObjUnchecked(argsobj);
  }
  bool hasArgsObj() const { return flags_ & HAS_ARGS_OBJ; }
  ArgumentsObject& argsObj() const {
    MOZ_ASSERT(hasArgsObj());
    MOZ_ASSERT(script()->needsArgsObj());
    return *argsObj_;
  }

  bool prevUpToDate() const { return flags_ & PREV_UP_TO_DATE; }
  void setPrevUpToDate() { flags_ |= PREV_UP_TO_DATE; }
  void unsetPrevUpToDate() { flags_ &= ~PREV_UP_TO_DATE; }

  bool isDebuggee() const { return flags_ & DEBUGGEE; }
  void setIsDebuggee() { flags_ |= DEBUGGEE; }
  inline void unsetIsDebuggee();

  void trace(JSTracer* trc, const JSJitFrameIter& frame);

  bool isGlobalFrame() const { return script()->isGlobalCode(); }
  bool isModuleFrame() const { return script()->module(); }
  bool isEvalFrame() const { return script()->isForEval(); }
  bool isStrictEvalFrame() const { return isEvalFrame() && script()->strict(); }
  bool isNonStrictEvalFrame() const {
    return isEvalFrame() && !script()->strict();
  }
  bool isNonGlobalEvalFrame() const;
  bool isNonStrictDirectEvalFrame() const {
    return isNonStrictEvalFrame() && isNonGlobalEvalFrame();
  }
  bool isFunctionFrame() const { return CalleeTokenIsFunction(calleeToken()); }
  bool isDebuggerEvalFrame() const { return false; }

  JitFrameLayout* framePrefix() const {
    uint8_t* fp = (uint8_t*)this + Size() + FramePointerOffset;
    return (JitFrameLayout*)fp;
  }

  // Methods below are used by the compiler.
  static size_t offsetOfCalleeToken() {
    return FramePointerOffset + js::jit::JitFrameLayout::offsetOfCalleeToken();
  }
  static size_t offsetOfThis() {
    return FramePointerOffset + js::jit::JitFrameLayout::offsetOfThis();
  }
  static size_t offsetOfEvalNewTarget() {
    return FramePointerOffset +
           js::jit::JitFrameLayout::offsetOfEvalNewTarget();
  }
  static size_t offsetOfArg(size_t index) {
    return FramePointerOffset +
           js::jit::JitFrameLayout::offsetOfActualArg(index);
  }
  static size_t offsetOfNumActualArgs() {
    return FramePointerOffset +
           js::jit::JitFrameLayout::offsetOfNumActualArgs();
  }
  static size_t Size() { return sizeof(BaselineFrame); }

  // The reverseOffsetOf methods below compute the offset relative to the
  // frame's base pointer. Since the stack grows down, these offsets are
  // negative.
  static int reverseOffsetOfFrameSize() {
    return -int(Size()) + offsetof(BaselineFrame, frameSize_);
  }

  // The scratch value slot can either be used as a Value slot or as two
  // separate 32-bit integer slots.
  static int reverseOffsetOfScratchValueLow32() {
    return -int(Size()) + offsetof(BaselineFrame, loScratchValue_);
  }
  static int reverseOffsetOfScratchValueHigh32() {
    return -int(Size()) + offsetof(BaselineFrame, hiScratchValue_);
  }
  static int reverseOffsetOfScratchValue() {
    return reverseOffsetOfScratchValueLow32();
  }

  static int reverseOffsetOfEnvironmentChain() {
    return -int(Size()) + offsetof(BaselineFrame, envChain_);
  }
  static int reverseOffsetOfArgsObj() {
    return -int(Size()) + offsetof(BaselineFrame, argsObj_);
  }
  static int reverseOffsetOfFlags() {
    return -int(Size()) + offsetof(BaselineFrame, flags_);
  }
  static int reverseOffsetOfReturnValue() {
    return -int(Size()) + offsetof(BaselineFrame, loReturnValue_);
  }
  static int reverseOffsetOfInterpreterScript() {
    return -int(Size()) + offsetof(BaselineFrame, interpreterScript_);
  }
  static int reverseOffsetOfInterpreterPC() {
    return -int(Size()) + offsetof(BaselineFrame, interpreterPC_);
  }
  static int reverseOffsetOfInterpreterICEntry() {
    return -int(Size()) + offsetof(BaselineFrame, interpreterICEntry_);
  }
  static int reverseOffsetOfLocal(size_t index) {
    return -int(Size()) - (index + 1) * sizeof(Value);
  }
};

// Ensure the frame is 8-byte aligned (required on ARM).
static_assert(((sizeof(BaselineFrame) + BaselineFrame::FramePointerOffset) %
               8) == 0,
              "frame (including frame pointer) must be 8-byte aligned");

}  // namespace jit
}  // namespace js

#endif /* jit_BaselineFrame_h */