DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef gc_StoreBuffer_h
#define gc_StoreBuffer_h

#include "mozilla/Attributes.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/ReentrancyGuard.h"

#include <algorithm>

#include "ds/BitArray.h"
#include "ds/LifoAlloc.h"
#include "gc/Nursery.h"
#include "js/AllocPolicy.h"
#include "js/MemoryMetrics.h"
#include "js/UniquePtr.h"

namespace js {
namespace gc {

class Arena;
class ArenaCellSet;

/*
 * BufferableRef represents an abstract reference for use in the generational
 * GC's remembered set. Entries in the store buffer that cannot be represented
 * with the simple pointer-to-a-pointer scheme must derive from this class and
 * use the generic store buffer interface.
 *
 * A single BufferableRef entry in the generic buffer can represent many entries
 * in the remembered set.  For example js::OrderedHashTableRef represents all
 * the incoming edges corresponding to keys in an ordered hash table.
 */
class BufferableRef {
 public:
  virtual void trace(JSTracer* trc) = 0;
  bool maybeInRememberedSet(const Nursery&) const { return true; }
};

typedef HashSet<void*, PointerHasher<void*>, SystemAllocPolicy> EdgeSet;

/* The size of a single block of store buffer storage space. */
static const size_t LifoAllocBlockSize = 8 * 1024;

/*
 * The StoreBuffer observes all writes that occur in the system and performs
 * efficient filtering of them to derive a remembered set for nursery GC.
 */
class StoreBuffer {
  friend class mozilla::ReentrancyGuard;

  /* The size at which a block is about to overflow for the generic buffer. */
  static const size_t GenericBufferLowAvailableThreshold =
      LifoAllocBlockSize / 2;

  /* The size at which the whole cell buffer is about to overflow. */
  static const size_t WholeCellBufferOverflowThresholdBytes = 128 * 1024;

  /*
   * This buffer holds only a single type of edge. Using this buffer is more
   * efficient than the generic buffer when many writes will be to the same
   * type of edge: e.g. Value or Cell*.
   */
  template <typename T>
  struct MonoTypeBuffer {
    /* The canonical set of stores. */
    typedef HashSet<T, typename T::Hasher, SystemAllocPolicy> StoreSet;
    StoreSet stores_;

    /*
     * A one element cache in front of the canonical set to speed up
     * temporary instances of HeapPtr.
     */
    T last_;

    StoreBuffer* owner_;

    JS::GCReason gcReason_;

    /* Maximum number of entries before we request a minor GC. */
    const static size_t MaxEntries = 48 * 1024 / sizeof(T);

    explicit MonoTypeBuffer(StoreBuffer* owner, JS::GCReason reason)
        : last_(T()), owner_(owner), gcReason_(reason) {}

    void clear() {
      last_ = T();
      stores_.clear();
    }

    /* Add one item to the buffer. */
    void put(const T& t) {
      sinkStore();
      last_ = t;
    }

    /* Remove an item from the store buffer. */
    void unput(const T& v) {
      // Fast, hashless remove of last put.
      if (last_ == v) {
        last_ = T();
        return;
      }
      stores_.remove(v);
    }

    /* Move any buffered stores to the canonical store set. */
    void sinkStore() {
      if (last_) {
        AutoEnterOOMUnsafeRegion oomUnsafe;
        if (!stores_.put(last_)) {
          oomUnsafe.crash("Failed to allocate for MonoTypeBuffer::put.");
        }
      }
      last_ = T();

      if (MOZ_UNLIKELY(stores_.count() > MaxEntries)) {
        owner_->setAboutToOverflow(gcReason_);
      }
    }

    /* Trace the source of all edges in the store buffer. */
    void trace(TenuringTracer& mover);

    template <typename CellType>
    void traceTyped(TenuringTracer& mover);

    size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) {
      return stores_.shallowSizeOfExcludingThis(mallocSizeOf);
    }

    bool isEmpty() const { return last_ == T() && stores_.empty(); }

   private:
    MonoTypeBuffer(const MonoTypeBuffer& other) = delete;
    MonoTypeBuffer& operator=(const MonoTypeBuffer& other) = delete;
  };

  struct WholeCellBuffer {
    UniquePtr<LifoAlloc> storage_;
    ArenaCellSet* head_;
    StoreBuffer* owner_;

    explicit WholeCellBuffer(StoreBuffer* owner)
        : storage_(nullptr), head_(nullptr), owner_(owner) {}

    MOZ_MUST_USE bool init();

    void clear();

    bool isAboutToOverflow() const {
      return !storage_->isEmpty() &&
             storage_->used() > WholeCellBufferOverflowThresholdBytes;
    }

    void trace(TenuringTracer& mover);

    inline void put(const Cell* cell);

    size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) {
      return storage_ ? storage_->sizeOfIncludingThis(mallocSizeOf) : 0;
    }

    bool isEmpty() const {
      MOZ_ASSERT_IF(!head_, !storage_ || storage_->isEmpty());
      return !head_;
    }

   private:
    ArenaCellSet* allocateCellSet(Arena* arena);

    WholeCellBuffer(const WholeCellBuffer& other) = delete;
    WholeCellBuffer& operator=(const WholeCellBuffer& other) = delete;
  };

  struct GenericBuffer {
    UniquePtr<LifoAlloc> storage_;
    StoreBuffer* owner_;

    explicit GenericBuffer(StoreBuffer* owner)
        : storage_(nullptr), owner_(owner) {}

    MOZ_MUST_USE bool init();

    void clear() {
      if (storage_) {
        storage_->used() ? storage_->releaseAll() : storage_->freeAll();
      }
    }

    bool isAboutToOverflow() const {
      return !storage_->isEmpty() && storage_->availableInCurrentChunk() <
                                         GenericBufferLowAvailableThreshold;
    }

    /* Trace all generic edges. */
    void trace(JSTracer* trc);

    template <typename T>
    void put(const T& t) {
      MOZ_ASSERT(storage_);

      /* Ensure T is derived from BufferableRef. */
      (void)static_cast<const BufferableRef*>(&t);

      AutoEnterOOMUnsafeRegion oomUnsafe;
      unsigned size = sizeof(T);
      unsigned* sizep = storage_->pod_malloc<unsigned>();
      if (!sizep) {
        oomUnsafe.crash("Failed to allocate for GenericBuffer::put.");
      }
      *sizep = size;

      T* tp = storage_->new_<T>(t);
      if (!tp) {
        oomUnsafe.crash("Failed to allocate for GenericBuffer::put.");
      }

      if (isAboutToOverflow()) {
        owner_->setAboutToOverflow(JS::GCReason::FULL_GENERIC_BUFFER);
      }
    }

    size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) {
      return storage_ ? storage_->sizeOfIncludingThis(mallocSizeOf) : 0;
    }

    bool isEmpty() const { return !storage_ || storage_->isEmpty(); }

   private:
    GenericBuffer(const GenericBuffer& other) = delete;
    GenericBuffer& operator=(const GenericBuffer& other) = delete;
  };

  template <typename Edge>
  struct PointerEdgeHasher {
    typedef Edge Lookup;
    static HashNumber hash(const Lookup& l) {
      return mozilla::HashGeneric(l.edge);
    }
    static bool match(const Edge& k, const Lookup& l) { return k == l; }
  };

  struct CellPtrEdge {
    Cell** edge;

    CellPtrEdge() : edge(nullptr) {}
    explicit CellPtrEdge(Cell** v) : edge(v) {}
    explicit CellPtrEdge(JSString** v) : edge(reinterpret_cast<Cell**>(v)) {}
    explicit CellPtrEdge(JSObject** v) : edge(reinterpret_cast<Cell**>(v)) {}
    bool operator==(const CellPtrEdge& other) const {
      return edge == other.edge;
    }
    bool operator!=(const CellPtrEdge& other) const {
      return edge != other.edge;
    }

    bool maybeInRememberedSet(const Nursery& nursery) const {
      MOZ_ASSERT(IsInsideNursery(*edge));
      return !nursery.isInside(edge);
    }

    template <typename CellType>
    void traceTyped(TenuringTracer& mover) const;

    CellPtrEdge tagged() const {
      return CellPtrEdge((Cell**)(uintptr_t(edge) | 1));
    }
    CellPtrEdge untagged() const {
      return CellPtrEdge((Cell**)(uintptr_t(edge) & ~1));
    }
    bool isTagged() const { return bool(uintptr_t(edge) & 1); }

    explicit operator bool() const { return edge != nullptr; }

    typedef PointerEdgeHasher<CellPtrEdge> Hasher;
  };

  struct ValueEdge {
    JS::Value* edge;

    ValueEdge() : edge(nullptr) {}
    explicit ValueEdge(JS::Value* v) : edge(v) {}
    bool operator==(const ValueEdge& other) const { return edge == other.edge; }
    bool operator!=(const ValueEdge& other) const { return edge != other.edge; }

    Cell* deref() const {
      return edge->isGCThing() ? static_cast<Cell*>(edge->toGCThing())
                               : nullptr;
    }

    bool maybeInRememberedSet(const Nursery& nursery) const {
      MOZ_ASSERT(IsInsideNursery(deref()));
      return !nursery.isInside(edge);
    }

    void trace(TenuringTracer& mover) const;

    ValueEdge tagged() const {
      return ValueEdge((JS::Value*)(uintptr_t(edge) | 1));
    }
    ValueEdge untagged() const {
      return ValueEdge((JS::Value*)(uintptr_t(edge) & ~1));
    }
    bool isTagged() const { return bool(uintptr_t(edge) & 1); }

    explicit operator bool() const { return edge != nullptr; }

    typedef PointerEdgeHasher<ValueEdge> Hasher;
  };

  struct SlotsEdge {
    // These definitions must match those in HeapSlot::Kind.
    const static int SlotKind = 0;
    const static int ElementKind = 1;

    uintptr_t objectAndKind_;  // NativeObject* | Kind
    uint32_t start_;
    uint32_t count_;

    SlotsEdge() : objectAndKind_(0), start_(0), count_(0) {}
    SlotsEdge(NativeObject* object, int kind, uint32_t start, uint32_t count)
        : objectAndKind_(uintptr_t(object) | kind),
          start_(start),
          count_(count) {
      MOZ_ASSERT((uintptr_t(object) & 1) == 0);
      MOZ_ASSERT(kind <= 1);
      MOZ_ASSERT(count > 0);
      MOZ_ASSERT(start + count > start);
    }

    NativeObject* object() const {
      return reinterpret_cast<NativeObject*>(objectAndKind_ & ~1);
    }
    int kind() const { return (int)(objectAndKind_ & 1); }

    bool operator==(const SlotsEdge& other) const {
      return objectAndKind_ == other.objectAndKind_ && start_ == other.start_ &&
             count_ == other.count_;
    }

    bool operator!=(const SlotsEdge& other) const { return !(*this == other); }

    // True if this SlotsEdge range overlaps with the other SlotsEdge range,
    // false if they do not overlap.
    bool overlaps(const SlotsEdge& other) const {
      if (objectAndKind_ != other.objectAndKind_) {
        return false;
      }

      // Widen our range by one on each side so that we consider
      // adjacent-but-not-actually-overlapping ranges as overlapping. This
      // is particularly useful for coalescing a series of increasing or
      // decreasing single index writes 0, 1, 2, ..., N into a SlotsEdge
      // range of elements [0, N].
      uint32_t end = start_ + count_ + 1;
      uint32_t start = start_ > 0 ? start_ - 1 : 0;
      MOZ_ASSERT(start < end);

      uint32_t otherEnd = other.start_ + other.count_;
      MOZ_ASSERT(other.start_ <= otherEnd);
      return (start <= other.start_ && other.start_ <= end) ||
             (start <= otherEnd && otherEnd <= end);
    }

    // Destructively make this SlotsEdge range the union of the other
    // SlotsEdge range and this one. A precondition is that the ranges must
    // overlap.
    void merge(const SlotsEdge& other) {
      MOZ_ASSERT(overlaps(other));
      uint32_t end = Max(start_ + count_, other.start_ + other.count_);
      start_ = Min(start_, other.start_);
      count_ = end - start_;
    }

    bool maybeInRememberedSet(const Nursery& n) const {
      return !IsInsideNursery(reinterpret_cast<Cell*>(object()));
    }

    void trace(TenuringTracer& mover) const;

    explicit operator bool() const { return objectAndKind_ != 0; }

    typedef struct {
      typedef SlotsEdge Lookup;
      static HashNumber hash(const Lookup& l) {
        return mozilla::HashGeneric(l.objectAndKind_, l.start_, l.count_);
      }
      static bool match(const SlotsEdge& k, const Lookup& l) { return k == l; }
    } Hasher;
  };

  template <typename Buffer, typename Edge>
  void unput(Buffer& buffer, const Edge& edge) {
    MOZ_ASSERT(!JS::RuntimeHeapIsBusy());
    MOZ_ASSERT(CurrentThreadCanAccessRuntime(runtime_));
    if (!isEnabled()) {
      return;
    }
    mozilla::ReentrancyGuard g(*this);
    buffer.unput(edge);
  }

  template <typename Buffer, typename Edge>
  void put(Buffer& buffer, const Edge& edge) {
    MOZ_ASSERT(!JS::RuntimeHeapIsBusy());
    MOZ_ASSERT(CurrentThreadCanAccessRuntime(runtime_));
    if (!isEnabled()) {
      return;
    }
    mozilla::ReentrancyGuard g(*this);
    if (edge.maybeInRememberedSet(nursery_)) {
      buffer.put(edge);
    }
  }

  MonoTypeBuffer<ValueEdge> bufferVal;
  MonoTypeBuffer<CellPtrEdge> bufStrCell;
  MonoTypeBuffer<CellPtrEdge> bufObjCell;
  MonoTypeBuffer<SlotsEdge> bufferSlot;
  WholeCellBuffer bufferWholeCell;
  GenericBuffer bufferGeneric;
  bool cancelIonCompilations_;

  JSRuntime* runtime_;
  const Nursery& nursery_;

  bool aboutToOverflow_;
  bool enabled_;
#ifdef DEBUG
  bool mEntered; /* For ReentrancyGuard. */
#endif

 public:
  explicit StoreBuffer(JSRuntime* rt, const Nursery& nursery);
  MOZ_MUST_USE bool enable();

  void disable();
  bool isEnabled() const { return enabled_; }

  void clear();

  const Nursery& nursery() const { return nursery_; }

  /* Get the overflowed status. */
  bool isAboutToOverflow() const { return aboutToOverflow_; }

  bool cancelIonCompilations() const { return cancelIonCompilations_; }

  /* Insert a single edge into the buffer/remembered set. */
  void putValue(JS::Value* vp) { put(bufferVal, ValueEdge(vp)); }
  void unputValue(JS::Value* vp) { unput(bufferVal, ValueEdge(vp)); }

  void putCell(JSString** strp) { put(bufStrCell, CellPtrEdge(strp)); }
  void unputCell(JSString** strp) { unput(bufStrCell, CellPtrEdge(strp)); }

  void putCell(JSObject** strp) { put(bufObjCell, CellPtrEdge(strp)); }
  void unputCell(JSObject** strp) { unput(bufObjCell, CellPtrEdge(strp)); }

  void putSlot(NativeObject* obj, int kind, uint32_t start, uint32_t count) {
    SlotsEdge edge(obj, kind, start, count);
    if (bufferSlot.last_.overlaps(edge)) {
      bufferSlot.last_.merge(edge);
    } else {
      put(bufferSlot, edge);
    }
  }

  inline void putWholeCell(Cell* cell);

  /* Insert an entry into the generic buffer. */
  template <typename T>
  void putGeneric(const T& t) {
    put(bufferGeneric, t);
  }

  void setShouldCancelIonCompilations() { cancelIonCompilations_ = true; }

  /* Methods to trace the source of all edges in the store buffer. */
  void traceValues(TenuringTracer& mover) { bufferVal.trace(mover); }
  void traceCells(TenuringTracer& mover) {
    bufStrCell.traceTyped<JSString>(mover);
    bufObjCell.traceTyped<JSObject>(mover);
  }
  void traceSlots(TenuringTracer& mover) { bufferSlot.trace(mover); }
  void traceWholeCells(TenuringTracer& mover) { bufferWholeCell.trace(mover); }
  void traceGenericEntries(JSTracer* trc) { bufferGeneric.trace(trc); }

  /* For use by our owned buffers and for testing. */
  void setAboutToOverflow(JS::GCReason);

  void addSizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf,
                              JS::GCSizes* sizes);

  void checkEmpty() const;
};

// A set of cells in an arena used to implement the whole cell store buffer.
class ArenaCellSet {
  friend class StoreBuffer;

  using ArenaCellBits = BitArray<MaxArenaCellIndex>;

  // The arena this relates to.
  Arena* arena;

  // Pointer to next set forming a linked list.
  ArenaCellSet* next;

  // Bit vector for each possible cell start position.
  ArenaCellBits bits;

#ifdef DEBUG
  // The minor GC number when this was created. This object should not survive
  // past the next minor collection.
  const uint64_t minorGCNumberAtCreation;
#endif

  // Construct the empty sentinel object.
  constexpr ArenaCellSet()
      : arena(nullptr),
        next(nullptr)
#ifdef DEBUG
        ,
        minorGCNumberAtCreation(0)
#endif
  {
  }

 public:
  using WordT = ArenaCellBits::WordT;
  const size_t BitsPerWord = ArenaCellBits::bitsPerElement;
  const size_t NumWords = ArenaCellBits::numSlots;

  ArenaCellSet(Arena* arena, ArenaCellSet* next);

  bool hasCell(const TenuredCell* cell) const {
    return hasCell(getCellIndex(cell));
  }

  void putCell(const TenuredCell* cell) { putCell(getCellIndex(cell)); }

  bool isEmpty() const { return this == &Empty; }

  bool hasCell(size_t cellIndex) const;

  void putCell(size_t cellIndex);

  void check() const;

  WordT getWord(size_t wordIndex) const { return bits.getWord(wordIndex); }

  // Sentinel object used for all empty sets.
  //
  // We use a sentinel because it simplifies the JIT code slightly as we can
  // assume all arenas have a cell set.
  static ArenaCellSet Empty;

  static size_t getCellIndex(const TenuredCell* cell);
  static void getWordIndexAndMask(size_t cellIndex, size_t* wordp,
                                  uint32_t* maskp);

  // Attempt to trigger a minor GC if free space in the nursery (where these
  // objects are allocated) falls below this threshold.
  static const size_t NurseryFreeThresholdBytes = 64 * 1024;

  static size_t offsetOfArena() { return offsetof(ArenaCellSet, arena); }
  static size_t offsetOfBits() { return offsetof(ArenaCellSet, bits); }
};

} /* namespace gc */
} /* namespace js */

#endif /* gc_StoreBuffer_h */