DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "gc/Statistics.h"

#include "mozilla/ArrayUtils.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Sprintf.h"
#include "mozilla/TimeStamp.h"

#include <stdarg.h>
#include <stdio.h>
#include <type_traits>

#include "jsutil.h"

#include "debugger/DebugAPI.h"
#include "gc/GC.h"
#include "gc/Memory.h"
#include "util/Text.h"
#include "vm/HelperThreads.h"
#include "vm/Runtime.h"
#include "vm/Time.h"

#include "gc/PrivateIterators-inl.h"

using namespace js;
using namespace js::gc;
using namespace js::gcstats;

using mozilla::DebugOnly;
using mozilla::EnumeratedArray;
using mozilla::TimeDuration;
using mozilla::TimeStamp;

/*
 * If this fails, then you can either delete this assertion and allow all
 * larger-numbered reasons to pile up in the last telemetry bucket, or switch
 * to GC_REASON_3 and bump the max value.
 */
JS_STATIC_ASSERT(JS::GCReason::NUM_TELEMETRY_REASONS >=
                 JS::GCReason::NUM_REASONS);

static inline auto AllPhaseKinds() {
  return mozilla::MakeEnumeratedRange(PhaseKind::FIRST, PhaseKind::LIMIT);
}

static inline auto MajorGCPhaseKinds() {
  return mozilla::MakeEnumeratedRange(PhaseKind::GC_BEGIN,
                                      PhaseKind(size_t(PhaseKind::GC_END) + 1));
}

const char* js::gcstats::ExplainInvocationKind(JSGCInvocationKind gckind) {
  MOZ_ASSERT(gckind == GC_NORMAL || gckind == GC_SHRINK);
  if (gckind == GC_NORMAL) {
    return "Normal";
  } else {
    return "Shrinking";
  }
}

JS_PUBLIC_API const char* JS::ExplainGCReason(JS::GCReason reason) {
  switch (reason) {
#define SWITCH_REASON(name, _) \
  case JS::GCReason::name:     \
    return #name;
    GCREASONS(SWITCH_REASON)
#undef SWITCH_REASON

    case JS::GCReason::NO_REASON:
      return "NO_REASON";

    default:
      MOZ_CRASH("bad GC reason");
  }
}

const char* js::gcstats::ExplainAbortReason(gc::AbortReason reason) {
  switch (reason) {
#define SWITCH_REASON(name, _) \
  case gc::AbortReason::name:  \
    return #name;
    GC_ABORT_REASONS(SWITCH_REASON)

    default:
      MOZ_CRASH("bad GC abort reason");
#undef SWITCH_REASON
  }
}

static FILE* MaybeOpenFileFromEnv(const char* env) {
  FILE* file;
  const char* value = getenv(env);

  if (!value) {
    return nullptr;
  }

  if (strcmp(value, "none") == 0) {
    file = nullptr;
  } else if (strcmp(value, "stdout") == 0) {
    file = stdout;
  } else if (strcmp(value, "stderr") == 0) {
    file = stderr;
  } else {
    char path[300];
    if (value[0] != '/') {
      const char* dir = getenv("MOZ_UPLOAD_DIR");
      if (dir) {
        SprintfLiteral(path, "%s/%s", dir, value);
        value = path;
      }
    }

    file = fopen(value, "a");
    if (!file) {
      perror("opening log file");
      MOZ_CRASH("Failed to open log file.");
    }
  }

  return file;
}

struct PhaseKindInfo {
  Phase firstPhase;
  uint8_t telemetryBucket;
};

// PhaseInfo objects form a tree.
struct PhaseInfo {
  Phase parent;
  Phase firstChild;
  Phase nextSibling;
  Phase nextWithPhaseKind;
  PhaseKind phaseKind;
  uint8_t depth;
  const char* name;
  const char* path;
};

// A table of PhaseInfo indexed by Phase.
using PhaseTable = EnumeratedArray<Phase, Phase::LIMIT, PhaseInfo>;

// A table of PhaseKindInfo indexed by PhaseKind.
using PhaseKindTable =
    EnumeratedArray<PhaseKind, PhaseKind::LIMIT, PhaseKindInfo>;

#include "gc/StatsPhasesGenerated.inc"

static double t(TimeDuration duration) { return duration.ToMilliseconds(); }

inline Phase Statistics::currentPhase() const {
  return phaseStack.empty() ? Phase::NONE : phaseStack.back();
}

PhaseKind Statistics::currentPhaseKind() const {
  // Public API to get the current phase kind, suppressing the synthetic
  // PhaseKind::MUTATOR phase.

  Phase phase = currentPhase();
  MOZ_ASSERT_IF(phase == Phase::MUTATOR, phaseStack.length() == 1);
  if (phase == Phase::NONE || phase == Phase::MUTATOR) {
    return PhaseKind::NONE;
  }

  return phases[phase].phaseKind;
}

Phase Statistics::lookupChildPhase(PhaseKind phaseKind) const {
  if (phaseKind == PhaseKind::IMPLICIT_SUSPENSION) {
    return Phase::IMPLICIT_SUSPENSION;
  }
  if (phaseKind == PhaseKind::EXPLICIT_SUSPENSION) {
    return Phase::EXPLICIT_SUSPENSION;
  }

  MOZ_ASSERT(phaseKind < PhaseKind::LIMIT);

  // Search all expanded phases that correspond to the required
  // phase to find the one whose parent is the current expanded phase.
  Phase phase;
  for (phase = phaseKinds[phaseKind].firstPhase; phase != Phase::NONE;
       phase = phases[phase].nextWithPhaseKind) {
    if (phases[phase].parent == currentPhase()) {
      break;
    }
  }

  if (phase == Phase::NONE) {
    MOZ_CRASH_UNSAFE_PRINTF(
        "Child phase kind %u not found under current phase kind %u",
        unsigned(phaseKind), unsigned(currentPhaseKind()));
  }

  return phase;
}

inline auto AllPhases() {
  return mozilla::MakeEnumeratedRange(Phase::FIRST, Phase::LIMIT);
}

void Statistics::gcDuration(TimeDuration* total, TimeDuration* maxPause) const {
  *total = *maxPause = 0;
  for (auto& slice : slices_) {
    *total += slice.duration();
    if (slice.duration() > *maxPause) {
      *maxPause = slice.duration();
    }
  }
  if (*maxPause > maxPauseInInterval) {
    maxPauseInInterval = *maxPause;
  }
}

void Statistics::sccDurations(TimeDuration* total,
                              TimeDuration* maxPause) const {
  *total = *maxPause = 0;
  for (size_t i = 0; i < sccTimes.length(); i++) {
    *total += sccTimes[i];
    *maxPause = Max(*maxPause, sccTimes[i]);
  }
}

typedef Vector<UniqueChars, 8, SystemAllocPolicy> FragmentVector;

static UniqueChars Join(const FragmentVector& fragments,
                        const char* separator = "") {
  const size_t separatorLength = strlen(separator);
  size_t length = 0;
  for (size_t i = 0; i < fragments.length(); ++i) {
    length += fragments[i] ? strlen(fragments[i].get()) : 0;
    if (i < (fragments.length() - 1)) {
      length += separatorLength;
    }
  }

  char* joined = js_pod_malloc<char>(length + 1);
  if (!joined) {
    return UniqueChars();
  }

  joined[length] = '\0';
  char* cursor = joined;
  for (size_t i = 0; i < fragments.length(); ++i) {
    if (fragments[i]) {
      strcpy(cursor, fragments[i].get());
    }
    cursor += fragments[i] ? strlen(fragments[i].get()) : 0;
    if (i < (fragments.length() - 1)) {
      if (separatorLength) {
        strcpy(cursor, separator);
      }
      cursor += separatorLength;
    }
  }

  return UniqueChars(joined);
}

static TimeDuration SumChildTimes(
    Phase phase, const Statistics::PhaseTimeTable& phaseTimes) {
  TimeDuration total = 0;
  for (phase = phases[phase].firstChild; phase != Phase::NONE;
       phase = phases[phase].nextSibling) {
    total += phaseTimes[phase];
  }
  return total;
}

UniqueChars Statistics::formatCompactSliceMessage() const {
  // Skip if we OOM'ed.
  if (slices_.length() == 0) {
    return UniqueChars(nullptr);
  }

  const size_t index = slices_.length() - 1;
  const SliceData& slice = slices_.back();

  char budgetDescription[200];
  slice.budget.describe(budgetDescription, sizeof(budgetDescription) - 1);

  const char* format =
      "GC Slice %u - Pause: %.3fms of %s budget (@ %.3fms); Reason: %s; Reset: "
      "%s%s; Times: ";
  char buffer[1024];
  SprintfLiteral(buffer, format, index, t(slice.duration()), budgetDescription,
                 t(slice.start - slices_[0].start),
                 ExplainGCReason(slice.reason),
                 slice.wasReset() ? "yes - " : "no",
                 slice.wasReset() ? ExplainAbortReason(slice.resetReason) : "");

  FragmentVector fragments;
  if (!fragments.append(DuplicateString(buffer)) ||
      !fragments.append(
          formatCompactSlicePhaseTimes(slices_[index].phaseTimes))) {
    return UniqueChars(nullptr);
  }
  return Join(fragments);
}

UniqueChars Statistics::formatCompactSummaryMessage() const {
  const double bytesPerMiB = 1024 * 1024;

  FragmentVector fragments;
  if (!fragments.append(DuplicateString("Summary - "))) {
    return UniqueChars(nullptr);
  }

  TimeDuration total, longest;
  gcDuration(&total, &longest);

  const double mmu20 = computeMMU(TimeDuration::FromMilliseconds(20));
  const double mmu50 = computeMMU(TimeDuration::FromMilliseconds(50));

  char buffer[1024];
  if (!nonincremental()) {
    SprintfLiteral(buffer,
                   "Max Pause: %.3fms; MMU 20ms: %.1f%%; MMU 50ms: %.1f%%; "
                   "Total: %.3fms; ",
                   t(longest), mmu20 * 100., mmu50 * 100., t(total));
  } else {
    SprintfLiteral(buffer, "Non-Incremental: %.3fms (%s); ", t(total),
                   ExplainAbortReason(nonincrementalReason_));
  }
  if (!fragments.append(DuplicateString(buffer))) {
    return UniqueChars(nullptr);
  }

  SprintfLiteral(buffer,
                 "Zones: %d of %d (-%d); Compartments: %d of %d (-%d); "
                 "HeapSize: %.3f MiB; "
                 "HeapChange (abs): %+d (%d); ",
                 zoneStats.collectedZoneCount, zoneStats.zoneCount,
                 zoneStats.sweptZoneCount, zoneStats.collectedCompartmentCount,
                 zoneStats.compartmentCount, zoneStats.sweptCompartmentCount,
                 double(preTotalHeapBytes) / bytesPerMiB,
                 counts[COUNT_NEW_CHUNK] - counts[COUNT_DESTROY_CHUNK],
                 counts[COUNT_NEW_CHUNK] + counts[COUNT_DESTROY_CHUNK]);
  if (!fragments.append(DuplicateString(buffer))) {
    return UniqueChars(nullptr);
  }

  MOZ_ASSERT_IF(counts[COUNT_ARENA_RELOCATED], gckind == GC_SHRINK);
  if (gckind == GC_SHRINK) {
    SprintfLiteral(
        buffer, "Kind: %s; Relocated: %.3f MiB; ",
        ExplainInvocationKind(gckind),
        double(ArenaSize * counts[COUNT_ARENA_RELOCATED]) / bytesPerMiB);
    if (!fragments.append(DuplicateString(buffer))) {
      return UniqueChars(nullptr);
    }
  }

  return Join(fragments);
}

UniqueChars Statistics::formatCompactSlicePhaseTimes(
    const PhaseTimeTable& phaseTimes) const {
  static const TimeDuration MaxUnaccountedTime =
      TimeDuration::FromMicroseconds(100);

  FragmentVector fragments;
  char buffer[128];
  for (auto phase : AllPhases()) {
    DebugOnly<uint8_t> level = phases[phase].depth;
    MOZ_ASSERT(level < 4);

    TimeDuration ownTime = phaseTimes[phase];
    TimeDuration childTime = SumChildTimes(phase, phaseTimes);
    if (ownTime > MaxUnaccountedTime) {
      SprintfLiteral(buffer, "%s: %.3fms", phases[phase].name, t(ownTime));
      if (!fragments.append(DuplicateString(buffer))) {
        return UniqueChars(nullptr);
      }

      if (childTime && (ownTime - childTime) > MaxUnaccountedTime) {
        MOZ_ASSERT(level < 3);
        SprintfLiteral(buffer, "%s: %.3fms", "Other", t(ownTime - childTime));
        if (!fragments.append(DuplicateString(buffer))) {
          return UniqueChars(nullptr);
        }
      }
    }
  }
  return Join(fragments, ", ");
}

UniqueChars Statistics::formatDetailedMessage() const {
  FragmentVector fragments;

  if (!fragments.append(formatDetailedDescription())) {
    return UniqueChars(nullptr);
  }

  if (!slices_.empty()) {
    for (unsigned i = 0; i < slices_.length(); i++) {
      if (!fragments.append(formatDetailedSliceDescription(i, slices_[i]))) {
        return UniqueChars(nullptr);
      }
      if (!fragments.append(formatDetailedPhaseTimes(slices_[i].phaseTimes))) {
        return UniqueChars(nullptr);
      }
    }
  }
  if (!fragments.append(formatDetailedTotals())) {
    return UniqueChars(nullptr);
  }
  if (!fragments.append(formatDetailedPhaseTimes(phaseTimes))) {
    return UniqueChars(nullptr);
  }

  return Join(fragments);
}

UniqueChars Statistics::formatDetailedDescription() const {
  const double bytesPerMiB = 1024 * 1024;

  TimeDuration sccTotal, sccLongest;
  sccDurations(&sccTotal, &sccLongest);

  const double mmu20 = computeMMU(TimeDuration::FromMilliseconds(20));
  const double mmu50 = computeMMU(TimeDuration::FromMilliseconds(50));

  const char* format =
      "=================================================================\n\
  Invocation Kind: %s\n\
  Reason: %s\n\
  Incremental: %s%s\n\
  Zones Collected: %d of %d (-%d)\n\
  Compartments Collected: %d of %d (-%d)\n\
  MinorGCs since last GC: %d\n\
  Store Buffer Overflows: %d\n\
  MMU 20ms:%.1f%%; 50ms:%.1f%%\n\
  SCC Sweep Total (MaxPause): %.3fms (%.3fms)\n\
  HeapSize: %.3f MiB\n\
  Chunk Delta (magnitude): %+d  (%d)\n\
  Arenas Relocated: %.3f MiB\n\
  Trigger: %s\n\
";

  char thresholdBuffer[100] = "n/a";
  if (thresholdTriggered) {
    SprintfLiteral(thresholdBuffer, "%.3f MiB of %.3f MiB threshold\n",
                   triggerAmount / 1024.0 / 1024.0,
                   triggerThreshold / 1024.0 / 1024.0);
  }

  char buffer[1024];
  SprintfLiteral(
      buffer, format, ExplainInvocationKind(gckind),
      ExplainGCReason(slices_[0].reason), nonincremental() ? "no - " : "yes",
      nonincremental() ? ExplainAbortReason(nonincrementalReason_) : "",
      zoneStats.collectedZoneCount, zoneStats.zoneCount,
      zoneStats.sweptZoneCount, zoneStats.collectedCompartmentCount,
      zoneStats.compartmentCount, zoneStats.sweptCompartmentCount,
      getCount(COUNT_MINOR_GC), getCount(COUNT_STOREBUFFER_OVERFLOW),
      mmu20 * 100., mmu50 * 100., t(sccTotal), t(sccLongest),
      double(preTotalHeapBytes) / bytesPerMiB,
      getCount(COUNT_NEW_CHUNK) - getCount(COUNT_DESTROY_CHUNK),
      getCount(COUNT_NEW_CHUNK) + getCount(COUNT_DESTROY_CHUNK),
      double(ArenaSize * getCount(COUNT_ARENA_RELOCATED)) / bytesPerMiB,
      thresholdBuffer);

  return DuplicateString(buffer);
}

UniqueChars Statistics::formatDetailedSliceDescription(
    unsigned i, const SliceData& slice) const {
  char budgetDescription[200];
  slice.budget.describe(budgetDescription, sizeof(budgetDescription) - 1);

  const char* format =
      "\
  ---- Slice %u ----\n\
    Reason: %s\n\
    Reset: %s%s\n\
    State: %s -> %s\n\
    Page Faults: %" PRIu64
      "\n\
    Pause: %.3fms of %s budget (@ %.3fms)\n\
";
  char buffer[1024];
  SprintfLiteral(
      buffer, format, i, ExplainGCReason(slice.reason),
      slice.wasReset() ? "yes - " : "no",
      slice.wasReset() ? ExplainAbortReason(slice.resetReason) : "",
      gc::StateName(slice.initialState), gc::StateName(slice.finalState),
      uint64_t(slice.endFaults - slice.startFaults), t(slice.duration()),
      budgetDescription, t(slice.start - slices_[0].start));
  return DuplicateString(buffer);
}

static bool IncludePhase(TimeDuration duration) {
  // Don't include durations that will print as "0.000ms".
  return duration.ToMilliseconds() >= 0.001;
}

UniqueChars Statistics::formatDetailedPhaseTimes(
    const PhaseTimeTable& phaseTimes) const {
  static const TimeDuration MaxUnaccountedChildTime =
      TimeDuration::FromMicroseconds(50);

  FragmentVector fragments;
  char buffer[128];
  for (auto phase : AllPhases()) {
    uint8_t level = phases[phase].depth;
    TimeDuration ownTime = phaseTimes[phase];
    TimeDuration childTime = SumChildTimes(phase, phaseTimes);
    if (IncludePhase(ownTime)) {
      SprintfLiteral(buffer, "      %*s%s: %.3fms\n", level * 2, "",
                     phases[phase].name, t(ownTime));
      if (!fragments.append(DuplicateString(buffer))) {
        return UniqueChars(nullptr);
      }

      if (childTime && (ownTime - childTime) > MaxUnaccountedChildTime) {
        SprintfLiteral(buffer, "      %*s%s: %.3fms\n", (level + 1) * 2, "",
                       "Other", t(ownTime - childTime));
        if (!fragments.append(DuplicateString(buffer))) {
          return UniqueChars(nullptr);
        }
      }
    }
  }
  return Join(fragments);
}

UniqueChars Statistics::formatDetailedTotals() const {
  TimeDuration total, longest;
  gcDuration(&total, &longest);

  const char* format =
      "\
  ---- Totals ----\n\
    Total Time: %.3fms\n\
    Max Pause: %.3fms\n\
";
  char buffer[1024];
  SprintfLiteral(buffer, format, t(total), t(longest));
  return DuplicateString(buffer);
}

void Statistics::formatJsonSlice(size_t sliceNum, JSONPrinter& json) const {
  /*
   * We number each of the slice properties to keep the code in
   * GCTelemetry.jsm in sync.  See MAX_SLICE_KEYS.
   */
  json.beginObject();
  formatJsonSliceDescription(sliceNum, slices_[sliceNum], json);  // # 1-11

  json.beginObjectProperty("times");  // # 12
  formatJsonPhaseTimes(slices_[sliceNum].phaseTimes, json);
  json.endObject();

  json.endObject();
}

UniqueChars Statistics::renderJsonSlice(size_t sliceNum) const {
  Sprinter printer(nullptr, false);
  if (!printer.init()) {
    return UniqueChars(nullptr);
  }
  JSONPrinter json(printer);

  formatJsonSlice(sliceNum, json);
  return printer.release();
}

UniqueChars Statistics::renderNurseryJson(JSRuntime* rt) const {
  Sprinter printer(nullptr, false);
  if (!printer.init()) {
    return UniqueChars(nullptr);
  }
  JSONPrinter json(printer);
  rt->gc.nursery().renderProfileJSON(json);
  return printer.release();
}

#ifdef DEBUG
void Statistics::writeLogMessage(const char* fmt, ...) {
  va_list args;
  va_start(args, fmt);
  if (gcDebugFile) {
    TimeDuration sinceStart = TimeStamp::Now() - TimeStamp::ProcessCreation();
    fprintf(gcDebugFile, "%12.3f: ", sinceStart.ToMicroseconds());
    vfprintf(gcDebugFile, fmt, args);
    fprintf(gcDebugFile, "\n");
    fflush(gcDebugFile);
  }
  va_end(args);
}
#endif

UniqueChars Statistics::renderJsonMessage(uint64_t timestamp,
                                          Statistics::JSONUse use) const {
  /*
   * The format of the JSON message is specified by the GCMajorMarkerPayload
   * type in profiler.firefox.com
   * https://github.com/firefox-devtools/profiler/blob/master/src/types/markers.js#L62
   *
   * All the properties listed here are created within the timings property
   * of the GCMajor marker.
   */
  if (aborted) {
    return DuplicateString("{status:\"aborted\"}");  // May return nullptr
  }

  Sprinter printer(nullptr, false);
  if (!printer.init()) {
    return UniqueChars(nullptr);
  }
  JSONPrinter json(printer);

  json.beginObject();
  json.property("status", "completed");         // JSON Key #1
  formatJsonDescription(timestamp, json, use);  // #2-22

  if (use == Statistics::JSONUse::TELEMETRY) {
    json.beginListProperty("slices_list");  // #23
    for (unsigned i = 0; i < slices_.length(); i++) {
      formatJsonSlice(i, json);
    }
    json.endList();
  }

  json.beginObjectProperty("totals");  // #24
  formatJsonPhaseTimes(phaseTimes, json);
  json.endObject();

  json.endObject();

  return printer.release();
}

void Statistics::formatJsonDescription(uint64_t timestamp, JSONPrinter& json,
                                       JSONUse use) const {
  // If you change JSON properties here, please update:
  // Telemetry ping code:
  //   toolkit/components/telemetry/other/GCTelemetry.jsm
  // Telemetry documentation:
  //   toolkit/components/telemetry/docs/data/main-ping.rst
  // Telemetry tests:
  //   toolkit/components/telemetry/tests/browser/browser_TelemetryGC.js,
  //   toolkit/components/telemetry/tests/unit/test_TelemetryGC.js
  // Firefox Profiler:
  //   https://github.com/firefox-devtools/profiler
  //
  // Please also number each property to help correctly maintain the Telemetry
  // ping code

  json.property("timestamp", timestamp);  // # JSON Key #2

  TimeDuration total, longest;
  gcDuration(&total, &longest);
  json.property("max_pause", longest, JSONPrinter::MILLISECONDS);  // #3
  json.property("total_time", total, JSONPrinter::MILLISECONDS);   // #4
  // We might be able to omit reason if profiler.firefox.com was able to retrive
  // it from the first slice.  But it doesn't do this yet.
  json.property("reason", ExplainGCReason(slices_[0].reason));      // #5
  json.property("zones_collected", zoneStats.collectedZoneCount);   // #6
  json.property("total_zones", zoneStats.zoneCount);                // #7
  json.property("total_compartments", zoneStats.compartmentCount);  // #8
  json.property("minor_gcs", getCount(COUNT_MINOR_GC));             // #9
  uint32_t storebufferOverflows = getCount(COUNT_STOREBUFFER_OVERFLOW);
  if (storebufferOverflows) {
    json.property("store_buffer_overflows", storebufferOverflows);  // #10
  }
  json.property("slices", slices_.length());  // #11

  const double mmu20 = computeMMU(TimeDuration::FromMilliseconds(20));
  const double mmu50 = computeMMU(TimeDuration::FromMilliseconds(50));
  json.property("mmu_20ms", int(mmu20 * 100));  // #12
  json.property("mmu_50ms", int(mmu50 * 100));  // #13

  TimeDuration sccTotal, sccLongest;
  sccDurations(&sccTotal, &sccLongest);
  json.property("scc_sweep_total", sccTotal, JSONPrinter::MILLISECONDS);  // #14
  json.property("scc_sweep_max_pause", sccLongest,
                JSONPrinter::MILLISECONDS);  // #15

  if (nonincrementalReason_ != AbortReason::None) {
    json.property("nonincremental_reason",
                  ExplainAbortReason(nonincrementalReason_));  // #16
  }
  json.property("allocated_bytes", preTotalHeapBytes);  // #17
  if (use == Statistics::JSONUse::PROFILER) {
    json.property("post_heap_size", postTotalHeapBytes);
  }

  uint32_t addedChunks = getCount(COUNT_NEW_CHUNK);
  if (addedChunks) {
    json.property("added_chunks", addedChunks);  // #18
  }
  uint32_t removedChunks = getCount(COUNT_DESTROY_CHUNK);
  if (removedChunks) {
    json.property("removed_chunks", removedChunks);  // #19
  }
  json.property("major_gc_number", startingMajorGCNumber);  // #20
  json.property("minor_gc_number", startingMinorGCNumber);  // #21
  json.property("slice_number", startingSliceNumber);       // #22
}

void Statistics::formatJsonSliceDescription(unsigned i, const SliceData& slice,
                                            JSONPrinter& json) const {
  // If you change JSON properties here, please update:
  // Telemetry ping code:
  //   toolkit/components/telemetry/other/GCTelemetry.jsm
  // Telemetry documentation:
  //   toolkit/components/telemetry/docs/data/main-ping.rst
  // Telemetry tests:
  //   toolkit/components/telemetry/tests/browser/browser_TelemetryGC.js,
  //   toolkit/components/telemetry/tests/unit/test_TelemetryGC.js
  // Firefox Profiler:
  //   https://github.com/firefox-devtools/profiler
  //
  char budgetDescription[200];
  slice.budget.describe(budgetDescription, sizeof(budgetDescription) - 1);
  TimeStamp originTime = TimeStamp::ProcessCreation();

  json.property("slice", i);  // JSON Property #1
  json.property("pause", slice.duration(), JSONPrinter::MILLISECONDS);  // #2
  json.property("reason", ExplainGCReason(slice.reason));               // #3
  json.property("initial_state", gc::StateName(slice.initialState));    // #4
  json.property("final_state", gc::StateName(slice.finalState));        // #5
  json.property("budget", budgetDescription);                           // #6
  json.property("major_gc_number", startingMajorGCNumber);              // #7
  if (thresholdTriggered) {
    json.floatProperty("trigger_amount", triggerAmount, 0);        // #8
    json.floatProperty("trigger_threshold", triggerThreshold, 0);  // #9
  }
  int64_t numFaults = slice.endFaults - slice.startFaults;
  if (numFaults != 0) {
    json.property("page_faults", numFaults);  // #10
  }
  json.property("start_timestamp", slice.start - originTime,
                JSONPrinter::SECONDS);  // #11
}

void Statistics::formatJsonPhaseTimes(const PhaseTimeTable& phaseTimes,
                                      JSONPrinter& json) const {
  for (auto phase : AllPhases()) {
    TimeDuration ownTime = phaseTimes[phase];
    if (!ownTime.IsZero()) {
      json.property(phases[phase].path, ownTime, JSONPrinter::MILLISECONDS);
    }
  }
}

Statistics::Statistics(JSRuntime* rt)
    : runtime(rt),
      gcTimerFile(nullptr),
      gcDebugFile(nullptr),
      nonincrementalReason_(gc::AbortReason::None),
      allocsSinceMinorGC({0, 0}),
      preTotalHeapBytes(0),
      postTotalHeapBytes(0),
      preCollectedHeapBytes(0),
      thresholdTriggered(false),
      triggerAmount(0.0),
      triggerThreshold(0.0),
      startingMinorGCNumber(0),
      startingMajorGCNumber(0),
      startingSliceNumber(0),
      maxPauseInInterval(0),
      sliceCallback(nullptr),
      nurseryCollectionCallback(nullptr),
      aborted(false),
      enableProfiling_(false),
      sliceCount_(0) {
  for (auto& count : counts) {
    count = 0;
  }

  for (auto& stat : stats) {
    stat = 0;
  }

#ifdef DEBUG
  for (const auto& duration : totalTimes_) {
#  if defined(XP_WIN) || defined(XP_MACOSX) || \
      (defined(XP_UNIX) && !defined(__clang__))
    // build-linux64-asan/debug and static-analysis-linux64-st-an/debug
    // currently use an STL that lacks std::is_trivially_constructible.
    // This #ifdef probably isn't as precise as it could be, but given
    // |totalTimes_| contains |TimeDuration| defined platform-independently
    // it's not worth the trouble to nail down a more exact condition.
    using ElementType =
        typename mozilla::RemoveReference<decltype(duration)>::Type;
    static_assert(!std::is_trivially_constructible<ElementType>::value,
                  "Statistics::Statistics will only initialize "
                  "totalTimes_'s elements if their default constructor is "
                  "non-trivial");
#  endif  // mess'o'tests
    MOZ_ASSERT(duration.IsZero(),
               "totalTimes_ default-initialization should have "
               "default-initialized every element of totalTimes_ to zero");
  }
#endif

  MOZ_ALWAYS_TRUE(phaseStack.reserve(MAX_PHASE_NESTING));
  MOZ_ALWAYS_TRUE(suspendedPhases.reserve(MAX_SUSPENDED_PHASES));

  gcTimerFile = MaybeOpenFileFromEnv("MOZ_GCTIMER");
  gcDebugFile = MaybeOpenFileFromEnv("JS_GC_DEBUG");

  const char* env = getenv("JS_GC_PROFILE");
  if (env) {
    if (0 == strcmp(env, "help")) {
      fprintf(stderr,
              "JS_GC_PROFILE=N\n"
              "\tReport major GC's taking more than N milliseconds.\n");
      exit(0);
    }
    enableProfiling_ = true;
    profileThreshold_ = TimeDuration::FromMilliseconds(atoi(env));
  }
}

Statistics::~Statistics() {
  if (gcTimerFile && gcTimerFile != stdout && gcTimerFile != stderr) {
    fclose(gcTimerFile);
  }
  if (gcDebugFile && gcDebugFile != stdout && gcDebugFile != stderr) {
    fclose(gcDebugFile);
  }
}

/* static */
bool Statistics::initialize() {
#ifdef DEBUG
  // Sanity check generated tables.
  for (auto i : AllPhases()) {
    auto parent = phases[i].parent;
    if (parent != Phase::NONE) {
      MOZ_ASSERT(phases[i].depth == phases[parent].depth + 1);
    }
    auto firstChild = phases[i].firstChild;
    if (firstChild != Phase::NONE) {
      MOZ_ASSERT(i == phases[firstChild].parent);
      MOZ_ASSERT(phases[i].depth == phases[firstChild].depth - 1);
    }
    auto nextSibling = phases[i].nextSibling;
    if (nextSibling != Phase::NONE) {
      MOZ_ASSERT(parent == phases[nextSibling].parent);
      MOZ_ASSERT(phases[i].depth == phases[nextSibling].depth);
    }
    auto nextWithPhaseKind = phases[i].nextWithPhaseKind;
    if (nextWithPhaseKind != Phase::NONE) {
      MOZ_ASSERT(phases[i].phaseKind == phases[nextWithPhaseKind].phaseKind);
      MOZ_ASSERT(parent != phases[nextWithPhaseKind].parent);
    }
  }
  for (auto i : AllPhaseKinds()) {
    MOZ_ASSERT(phases[phaseKinds[i].firstPhase].phaseKind == i);
    for (auto j : AllPhaseKinds()) {
      MOZ_ASSERT_IF(i != j, phaseKinds[i].telemetryBucket !=
                                phaseKinds[j].telemetryBucket);
    }
  }
#endif

  return true;
}

JS::GCSliceCallback Statistics::setSliceCallback(
    JS::GCSliceCallback newCallback) {
  JS::GCSliceCallback oldCallback = sliceCallback;
  sliceCallback = newCallback;
  return oldCallback;
}

JS::GCNurseryCollectionCallback Statistics::setNurseryCollectionCallback(
    JS::GCNurseryCollectionCallback newCallback) {
  auto oldCallback = nurseryCollectionCallback;
  nurseryCollectionCallback = newCallback;
  return oldCallback;
}

TimeDuration Statistics::clearMaxGCPauseAccumulator() {
  TimeDuration prior = maxPauseInInterval;
  maxPauseInInterval = 0;
  return prior;
}

TimeDuration Statistics::getMaxGCPauseSinceClear() {
  return maxPauseInInterval;
}

// Sum up the time for a phase, including instances of the phase with different
// parents.
static TimeDuration SumPhase(PhaseKind phaseKind,
                             const Statistics::PhaseTimeTable& times) {
  TimeDuration sum = 0;
  for (Phase phase = phaseKinds[phaseKind].firstPhase; phase != Phase::NONE;
       phase = phases[phase].nextWithPhaseKind) {
    sum += times[phase];
  }
  return sum;
}

static bool CheckSelfTime(Phase parent, Phase child,
                          const Statistics::PhaseTimeTable& times,
                          const Statistics::PhaseTimeTable& selfTimes,
                          TimeDuration childTime) {
  if (selfTimes[parent] < childTime) {
    fprintf(
        stderr,
        "Parent %s time = %.3fms with %.3fms remaining, child %s time %.3fms\n",
        phases[parent].name, times[parent].ToMilliseconds(),
        selfTimes[parent].ToMilliseconds(), phases[child].name,
        childTime.ToMilliseconds());
    fflush(stderr);
    return false;
  }

  return true;
}

static PhaseKind LongestPhaseSelfTimeInMajorGC(
    const Statistics::PhaseTimeTable& times) {
  // Start with total times per expanded phase, including children's times.
  Statistics::PhaseTimeTable selfTimes(times);

  // We have the total time spent in each phase, including descendant times.
  // Loop over the children and subtract their times from their parent's self
  // time.
  for (auto i : AllPhases()) {
    Phase parent = phases[i].parent;
    if (parent != Phase::NONE) {
      bool ok = CheckSelfTime(parent, i, times, selfTimes, times[i]);

      // This happens very occasionally in release builds and frequently
      // in Windows debug builds. Skip collecting longest phase telemetry
      // if it does.
#ifndef XP_WIN
      MOZ_ASSERT(ok, "Inconsistent time data; see bug 1400153");
#endif
      if (!ok) {
        return PhaseKind::NONE;
      }

      selfTimes[parent] -= times[i];
    }
  }

  // Sum expanded phases corresponding to the same phase.
  EnumeratedArray<PhaseKind, PhaseKind::LIMIT, TimeDuration> phaseTimes;
  for (auto i : AllPhaseKinds()) {
    phaseTimes[i] = SumPhase(i, selfTimes);
  }

  // Loop over this table to find the longest phase.
  TimeDuration longestTime = 0;
  PhaseKind longestPhase = PhaseKind::NONE;
  for (auto i : MajorGCPhaseKinds()) {
    if (phaseTimes[i] > longestTime) {
      longestTime = phaseTimes[i];
      longestPhase = i;
    }
  }

  return longestPhase;
}

void Statistics::printStats() {
  if (aborted) {
    fprintf(gcTimerFile,
            "OOM during GC statistics collection. The report is unavailable "
            "for this GC.\n");
  } else {
    UniqueChars msg = formatDetailedMessage();
    if (msg) {
      double secSinceStart =
          (slices_[0].start - TimeStamp::ProcessCreation()).ToSeconds();
      fprintf(gcTimerFile, "GC(T+%.3fs) %s\n", secSinceStart, msg.get());
    }
  }
  fflush(gcTimerFile);
}

void Statistics::beginGC(JSGCInvocationKind kind,
                         const TimeStamp& currentTime) {
  slices_.clearAndFree();
  sccTimes.clearAndFree();
  gckind = kind;
  nonincrementalReason_ = gc::AbortReason::None;

  GCRuntime& gc = runtime->gc;
  preTotalHeapBytes = gc.heapSize.bytes();

  preCollectedHeapBytes = 0;

  startingMajorGCNumber = gc.majorGCCount();
  startingSliceNumber = gc.gcNumber();

  if (gc.lastGCTime()) {
    timeSinceLastGC = currentTime - gc.lastGCTime();
  }
}

void Statistics::measureInitialHeapSize() {
  MOZ_ASSERT(preCollectedHeapBytes == 0);
  for (GCZonesIter zone(runtime, WithAtoms); !zone.done(); zone.next()) {
    preCollectedHeapBytes += zone->gcHeapSize.bytes();
  }
}

void Statistics::adoptHeapSizeDuringIncrementalGC(Zone* mergedZone) {
  // A zone is being merged into a zone that's currently being collected so we
  // need to adjust our record of the total size of heap for collected zones.
  MOZ_ASSERT(runtime->gc.isIncrementalGCInProgress());
  preCollectedHeapBytes += mergedZone->gcHeapSize.bytes();
}

void Statistics::endGC() {
  postTotalHeapBytes = runtime->gc.heapSize.bytes();

  sendGCTelemetry();

  thresholdTriggered = false;
}

void Statistics::sendGCTelemetry() {
  runtime->addTelemetry(JS_TELEMETRY_GC_IS_ZONE_GC,
                        !zoneStats.isFullCollection());
  TimeDuration markTotal = SumPhase(PhaseKind::MARK, phaseTimes);
  TimeDuration markRootsTotal = SumPhase(PhaseKind::MARK_ROOTS, phaseTimes);
  double markTime = t(markTotal);
  size_t markCount = runtime->gc.marker.getMarkCount();
  double markRate = markCount / markTime;
  runtime->addTelemetry(JS_TELEMETRY_GC_MARK_MS, markTime);
  runtime->addTelemetry(JS_TELEMETRY_GC_MARK_RATE, markRate);
  runtime->addTelemetry(JS_TELEMETRY_GC_SWEEP_MS, t(phaseTimes[Phase::SWEEP]));
  if (runtime->gc.isCompactingGc()) {
    runtime->addTelemetry(JS_TELEMETRY_GC_COMPACT_MS,
                          t(phaseTimes[Phase::COMPACT]));
  }
  runtime->addTelemetry(JS_TELEMETRY_GC_MARK_ROOTS_MS, t(markRootsTotal));
  runtime->addTelemetry(JS_TELEMETRY_GC_MARK_GRAY_MS,
                        t(phaseTimes[Phase::SWEEP_MARK_GRAY]));
  runtime->addTelemetry(JS_TELEMETRY_GC_NON_INCREMENTAL, nonincremental());
  if (nonincremental()) {
    runtime->addTelemetry(JS_TELEMETRY_GC_NON_INCREMENTAL_REASON,
                          uint32_t(nonincrementalReason_));
  }

#ifdef DEBUG
  // Reset happens non-incrementally, so only the last slice can be reset.
  for (size_t i = 0; i < slices_.length() - 1; i++) {
    MOZ_ASSERT(!slices_[i].wasReset());
  }
#endif
  const auto& lastSlice = slices_.back();
  runtime->addTelemetry(JS_TELEMETRY_GC_RESET, lastSlice.wasReset());
  if (lastSlice.wasReset()) {
    runtime->addTelemetry(JS_TELEMETRY_GC_RESET_REASON,
                          uint32_t(lastSlice.resetReason));
  }

  runtime->addTelemetry(JS_TELEMETRY_GC_INCREMENTAL_DISABLED,
                        !runtime->gc.isIncrementalGCAllowed());

  TimeDuration sccTotal, sccLongest;
  sccDurations(&sccTotal, &sccLongest);
  runtime->addTelemetry(JS_TELEMETRY_GC_SCC_SWEEP_TOTAL_MS, t(sccTotal));
  runtime->addTelemetry(JS_TELEMETRY_GC_SCC_SWEEP_MAX_PAUSE_MS, t(sccLongest));

  TimeDuration total, longest;
  gcDuration(&total, &longest);

  runtime->addTelemetry(JS_TELEMETRY_GC_MS, t(total));
  runtime->addTelemetry(JS_TELEMETRY_GC_MAX_PAUSE_MS_2, t(longest));

  const double mmu50 = computeMMU(TimeDuration::FromMilliseconds(50));
  runtime->addTelemetry(JS_TELEMETRY_GC_MMU_50, mmu50 * 100);

  // Record scheduling telemetry for the main runtime but not for workers, which
  // are scheduled differently.
  if (!runtime->parentRuntime && timeSinceLastGC) {
    runtime->addTelemetry(JS_TELEMETRY_GC_TIME_BETWEEN_S,
                          timeSinceLastGC.ToSeconds());
    if (!nonincremental()) {
      runtime->addTelemetry(JS_TELEMETRY_GC_SLICE_COUNT, slices_.length());
    }
  }

  size_t bytesSurvived = 0;
  for (ZonesIter zone(runtime, WithAtoms); !zone.done(); zone.next()) {
    if (zone->wasCollected()) {
      bytesSurvived += zone->gcHeapSize.retainedBytes();
    }
  }

  MOZ_ASSERT(preCollectedHeapBytes >= bytesSurvived);
  double survialRate =
      100.0 * double(bytesSurvived) / double(preCollectedHeapBytes);
  runtime->addTelemetry(JS_TELEMETRY_GC_TENURED_SURVIVAL_RATE,
                        uint32_t(survialRate));
}

void Statistics::beginNurseryCollection(JS::GCReason reason) {
  count(COUNT_MINOR_GC);
  startingMinorGCNumber = runtime->gc.minorGCCount();
  if (nurseryCollectionCallback) {
    (*nurseryCollectionCallback)(
        runtime->mainContextFromOwnThread(),
        JS::GCNurseryProgress::GC_NURSERY_COLLECTION_START, reason);
  }
}

void Statistics::endNurseryCollection(JS::GCReason reason) {
  if (nurseryCollectionCallback) {
    (*nurseryCollectionCallback)(
        runtime->mainContextFromOwnThread(),
        JS::GCNurseryProgress::GC_NURSERY_COLLECTION_END, reason);
  }

  allocsSinceMinorGC = {0, 0};
}

void Statistics::beginSlice(const ZoneGCStats& zoneStats,
                            JSGCInvocationKind gckind, SliceBudget budget,
                            JS::GCReason reason) {
  MOZ_ASSERT(phaseStack.empty() ||
             (phaseStack.length() == 1 && phaseStack[0] == Phase::MUTATOR));

  this->zoneStats = zoneStats;

  TimeStamp currentTime = ReallyNow();

  bool first = !runtime->gc.isIncrementalGCInProgress();
  if (first) {
    beginGC(gckind, currentTime);
  }

  if (!runtime->parentRuntime && !slices_.empty()) {
    TimeDuration timeSinceLastSlice = currentTime - slices_.back().end;
    runtime->addTelemetry(JS_TELEMETRY_GC_TIME_BETWEEN_SLICES_MS,
                          uint32_t(timeSinceLastSlice.ToMilliseconds()));
  }

  if (!slices_.emplaceBack(budget, reason, currentTime, GetPageFaultCount(),
                           runtime->gc.state())) {
    // If we are OOM, set a flag to indicate we have missing slice data.
    aborted = true;
    return;
  }

  runtime->addTelemetry(JS_TELEMETRY_GC_REASON, uint32_t(reason));

  // Slice callbacks should only fire for the outermost level.
  bool wasFullGC = zoneStats.isFullCollection();
  if (sliceCallback) {
    JSContext* cx = runtime->mainContextFromOwnThread();
    JS::GCDescription desc(!wasFullGC, false, gckind, reason);
    if (first) {
      (*sliceCallback)(cx, JS::GC_CYCLE_BEGIN, desc);
    }
    (*sliceCallback)(cx, JS::GC_SLICE_BEGIN, desc);
  }

  writeLogMessage("begin slice");
}

void Statistics::endSlice() {
  MOZ_ASSERT(phaseStack.empty() ||
             (phaseStack.length() == 1 && phaseStack[0] == Phase::MUTATOR));

  if (!aborted) {
    auto& slice = slices_.back();
    slice.end = ReallyNow();
    slice.endFaults = GetPageFaultCount();
    slice.finalState = runtime->gc.state();

    writeLogMessage("end slice");

    sendSliceTelemetry(slice);

    sliceCount_++;
  }

  bool last = !runtime->gc.isIncrementalGCInProgress();
  if (last) {
    if (gcTimerFile) {
      printStats();
    }

    if (!aborted) {
      endGC();
    }
  }

  if (enableProfiling_ && !aborted &&
      slices_.back().duration() >= profileThreshold_) {
    printSliceProfile();
  }

  // Slice callbacks should only fire for the outermost level.
  if (!aborted) {
    bool wasFullGC = zoneStats.isFullCollection();
    if (sliceCallback) {
      JSContext* cx = runtime->mainContextFromOwnThread();
      JS::GCDescription desc(!wasFullGC, last, gckind, slices_.back().reason);
      (*sliceCallback)(cx, JS::GC_SLICE_END, desc);
      if (last) {
        (*sliceCallback)(cx, JS::GC_CYCLE_END, desc);
      }
    }
  }

  // Do this after the slice callback since it uses these values.
  if (last) {
    for (auto& count : counts) {
      count = 0;
    }

    // Clear the timers at the end of a GC, preserving the data for
    // PhaseKind::MUTATOR.
    auto mutatorStartTime = phaseStartTimes[Phase::MUTATOR];
    auto mutatorTime = phaseTimes[Phase::MUTATOR];

    for (mozilla::TimeStamp& t : phaseStartTimes) {
      t = TimeStamp();
    }
#ifdef DEBUG
    for (mozilla::TimeStamp& t : phaseEndTimes) {
      t = TimeStamp();
    }
#endif

    for (TimeDuration& duration : phaseTimes) {
      duration = TimeDuration();
      MOZ_ASSERT(duration.IsZero());
    }

    phaseStartTimes[Phase::MUTATOR] = mutatorStartTime;
    phaseTimes[Phase::MUTATOR] = mutatorTime;
  }

  aborted = false;
}

void Statistics::sendSliceTelemetry(const SliceData& slice) {
  TimeDuration sliceTime = slice.end - slice.start;
  runtime->addTelemetry(JS_TELEMETRY_GC_SLICE_MS, t(sliceTime));

  if (slice.budget.isTimeBudget()) {
    int64_t budget_ms = slice.budget.timeBudget.budget;
    runtime->addTelemetry(JS_TELEMETRY_GC_BUDGET_MS, budget_ms);
    if (IsCurrentlyAnimating(runtime->lastAnimationTime, slice.end)) {
      runtime->addTelemetry(JS_TELEMETRY_GC_ANIMATION_MS, t(sliceTime));
    }

    // Record any phase that goes 1.5 times or 5ms over its budget.
    double longSliceThreshold = std::min(1.5 * budget_ms, budget_ms + 5.0);
    if (sliceTime.ToMilliseconds() > longSliceThreshold) {
      PhaseKind longest = LongestPhaseSelfTimeInMajorGC(slice.phaseTimes);
      reportLongestPhaseInMajorGC(longest, JS_TELEMETRY_GC_SLOW_PHASE);

      // If the longest phase was waiting for parallel tasks then
      // record the longest task.
      if (longest == PhaseKind::JOIN_PARALLEL_TASKS) {
        PhaseKind longestParallel =
            LongestPhaseSelfTimeInMajorGC(slice.parallelTimes);
        reportLongestPhaseInMajorGC(longestParallel, JS_TELEMETRY_GC_SLOW_TASK);
      }
    }

    // Record how long we went over budget.
    int64_t overrun = int64_t(sliceTime.ToMicroseconds()) - (1000 * budget_ms);
    if (overrun > 0) {
      runtime->addTelemetry(JS_TELEMETRY_GC_BUDGET_OVERRUN, uint32_t(overrun));
    }
  }
}

void Statistics::reportLongestPhaseInMajorGC(PhaseKind longest,
                                             int telemetryId) {
  if (longest != PhaseKind::NONE) {
    uint8_t bucket = phaseKinds[longest].telemetryBucket;
    runtime->addTelemetry(telemetryId, bucket);
  }
}

bool Statistics::startTimingMutator() {
  if (phaseStack.length() != 0) {
    // Should only be called from outside of GC.
    MOZ_ASSERT(phaseStack.length() == 1);
    MOZ_ASSERT(phaseStack[0] == Phase::MUTATOR);
    return false;
  }

  MOZ_ASSERT(suspendedPhases.empty());

  timedGCTime = 0;
  phaseStartTimes[Phase::MUTATOR] = TimeStamp();
  phaseTimes[Phase::MUTATOR] = 0;
  timedGCStart = TimeStamp();

  beginPhase(PhaseKind::MUTATOR);
  return true;
}

bool Statistics::stopTimingMutator(double& mutator_ms, double& gc_ms) {
  // This should only be called from outside of GC, while timing the mutator.
  if (phaseStack.length() != 1 || phaseStack[0] != Phase::MUTATOR) {
    return false;
  }

  endPhase(PhaseKind::MUTATOR);
  mutator_ms = t(phaseTimes[Phase::MUTATOR]);
  gc_ms = t(timedGCTime);

  return true;
}

void Statistics::suspendPhases(PhaseKind suspension) {
  MOZ_ASSERT(suspension == PhaseKind::EXPLICIT_SUSPENSION ||
             suspension == PhaseKind::IMPLICIT_SUSPENSION);
  while (!phaseStack.empty()) {
    MOZ_ASSERT(suspendedPhases.length() < MAX_SUSPENDED_PHASES);
    Phase parent = phaseStack.back();
    suspendedPhases.infallibleAppend(parent);
    recordPhaseEnd(parent);
  }
  suspendedPhases.infallibleAppend(lookupChildPhase(suspension));
}

void Statistics::resumePhases() {
  MOZ_ASSERT(suspendedPhases.back() == Phase::EXPLICIT_SUSPENSION ||
             suspendedPhases.back() == Phase::IMPLICIT_SUSPENSION);
  suspendedPhases.popBack();

  while (!suspendedPhases.empty() &&
         suspendedPhases.back() != Phase::EXPLICIT_SUSPENSION &&
         suspendedPhases.back() != Phase::IMPLICIT_SUSPENSION) {
    Phase resumePhase = suspendedPhases.popCopy();
    if (resumePhase == Phase::MUTATOR) {
      timedGCTime += ReallyNow() - timedGCStart;
    }
    recordPhaseBegin(resumePhase);
  }
}

void Statistics::beginPhase(PhaseKind phaseKind) {
  // No longer timing these phases. We should never see these.
  MOZ_ASSERT(phaseKind != PhaseKind::GC_BEGIN &&
             phaseKind != PhaseKind::GC_END);

  // PhaseKind::MUTATOR is suspended while performing GC.
  if (currentPhase() == Phase::MUTATOR) {
    suspendPhases(PhaseKind::IMPLICIT_SUSPENSION);
  }

  recordPhaseBegin(lookupChildPhase(phaseKind));
}

void Statistics::recordPhaseBegin(Phase phase) {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(runtime));

  // Guard against any other re-entry.
  MOZ_ASSERT(!phaseStartTimes[phase]);

  MOZ_ASSERT(phaseStack.length() < MAX_PHASE_NESTING);

  Phase current = currentPhase();
  MOZ_ASSERT(phases[phase].parent == current);

  TimeStamp now = ReallyNow();

  if (current != Phase::NONE) {
    MOZ_ASSERT(now >= phaseStartTimes[currentPhase()],
               "Inconsistent time data; see bug 1400153");
    if (now < phaseStartTimes[currentPhase()]) {
      now = phaseStartTimes[currentPhase()];
      aborted = true;
    }
  }

  phaseStack.infallibleAppend(phase);
  phaseStartTimes[phase] = now;
  writeLogMessage("begin: %s", phases[phase].path);
}

void Statistics::recordPhaseEnd(Phase phase) {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(runtime));

  MOZ_ASSERT(phaseStartTimes[phase]);

  TimeStamp now = ReallyNow();

  // Make sure this phase ends after it starts.
  MOZ_ASSERT(now >= phaseStartTimes[phase],
             "Inconsistent time data; see bug 1400153");

#ifdef DEBUG
  // Make sure this phase ends after all of its children. Note that some
  // children might not have run in this instance, in which case they will
  // have run in a previous instance of this parent or not at all.
  for (Phase kid = phases[phase].firstChild; kid != Phase::NONE;
       kid = phases[kid].nextSibling) {
    if (phaseEndTimes[kid].IsNull()) {
      continue;
    }
    if (phaseEndTimes[kid] > now) {
      fprintf(stderr,
              "Parent %s ended at %.3fms, before child %s ended at %.3fms?\n",
              phases[phase].name, t(now - TimeStamp::ProcessCreation()),
              phases[kid].name,
              t(phaseEndTimes[kid] - TimeStamp::ProcessCreation()));
    }
    MOZ_ASSERT(phaseEndTimes[kid] <= now,
               "Inconsistent time data; see bug 1400153");
  }
#endif

  if (now < phaseStartTimes[phase]) {
    now = phaseStartTimes[phase];
    aborted = true;
  }

  if (phase == Phase::MUTATOR) {
    timedGCStart = now;
  }

  phaseStack.popBack();

  TimeDuration t = now - phaseStartTimes[phase];
  if (!slices_.empty()) {
    slices_.back().phaseTimes[phase] += t;
  }
  phaseTimes[phase] += t;
  phaseStartTimes[phase] = TimeStamp();

#ifdef DEBUG
  phaseEndTimes[phase] = now;
  writeLogMessage("end: %s", phases[phase].path);
#endif
}

void Statistics::endPhase(PhaseKind phaseKind) {
  Phase phase = currentPhase();
  MOZ_ASSERT(phase != Phase::NONE);
  MOZ_ASSERT(phases[phase].phaseKind == phaseKind);

  recordPhaseEnd(phase);

  // When emptying the stack, we may need to return to timing the mutator
  // (PhaseKind::MUTATOR).
  if (phaseStack.empty() && !suspendedPhases.empty() &&
      suspendedPhases.back() == Phase::IMPLICIT_SUSPENSION) {
    resumePhases();
  }
}

void Statistics::recordParallelPhase(PhaseKind phaseKind,
                                     TimeDuration duration) {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(runtime));

  Phase phase = lookupChildPhase(phaseKind);

  // Record the duration for all phases in the tree up to the root. This is
  // not strictly necessary but makes the invariant that parent phase times
  // include their children apply to both phaseTimes and parallelTimes.
  while (phase != Phase::NONE) {
    if (!slices_.empty()) {
      slices_.back().parallelTimes[phase] += duration;
    }
    parallelTimes[phase] += duration;
    phase = phases[phase].parent;
  }
}

TimeStamp Statistics::beginSCC() { return ReallyNow(); }

void Statistics::endSCC(unsigned scc, TimeStamp start) {
  if (scc >= sccTimes.length() && !sccTimes.resize(scc + 1)) {
    return;
  }

  sccTimes[scc] += ReallyNow() - start;
}

/*
 * MMU (minimum mutator utilization) is a measure of how much garbage collection
 * is affecting the responsiveness of the system. MMU measurements are given
 * with respect to a certain window size. If we report MMU(50ms) = 80%, then
 * that means that, for any 50ms window of time, at least 80% of the window is
 * devoted to the mutator. In other words, the GC is running for at most 20% of
 * the window, or 10ms. The GC can run multiple slices during the 50ms window
 * as long as the total time it spends is at most 10ms.
 */
double Statistics::computeMMU(TimeDuration window) const {
  MOZ_ASSERT(!slices_.empty());

  TimeDuration gc = slices_[0].end - slices_[0].start;
  TimeDuration gcMax = gc;

  if (gc >= window) {
    return 0.0;
  }

  int startIndex = 0;
  for (size_t endIndex = 1; endIndex < slices_.length(); endIndex++) {
    auto* startSlice = &slices_[startIndex];
    auto& endSlice = slices_[endIndex];
    gc += endSlice.end - endSlice.start;

    while (endSlice.end - startSlice->end >= window) {
      gc -= startSlice->end - startSlice->start;
      startSlice = &slices_[++startIndex];
    }

    TimeDuration cur = gc;
    if (endSlice.end - startSlice->start > window) {
      cur -= (endSlice.end - startSlice->start - window);
    }
    if (cur > gcMax) {
      gcMax = cur;
    }
  }

  return double((window - gcMax) / window);
}

void Statistics::maybePrintProfileHeaders() {
  static int printedHeader = 0;
  if ((printedHeader++ % 200) == 0) {
    printProfileHeader();
    if (runtime->gc.nursery().enableProfiling()) {
      Nursery::printProfileHeader();
    }
  }
}

void Statistics::printProfileHeader() {
  if (!enableProfiling_) {
    return;
  }

  fprintf(stderr, "MajorGC:               Reason States FSNR ");
  fprintf(stderr, " %6s", "budget");
  fprintf(stderr, " %6s", "total");
#define PRINT_PROFILE_HEADER(name, text, phase) fprintf(stderr, " %6s", text);
  FOR_EACH_GC_PROFILE_TIME(PRINT_PROFILE_HEADER)
#undef PRINT_PROFILE_HEADER
  fprintf(stderr, "\n");
}

/* static */
void Statistics::printProfileTimes(const ProfileDurations& times) {
  for (auto time : times) {
    fprintf(stderr, " %6" PRIi64, static_cast<int64_t>(time.ToMilliseconds()));
  }
  fprintf(stderr, "\n");
}

void Statistics::printSliceProfile() {
  const SliceData& slice = slices_.back();

  maybePrintProfileHeaders();

  bool shrinking = gckind == GC_SHRINK;
  bool reset = slice.resetReason != AbortReason::None;
  bool nonIncremental = nonincrementalReason_ != AbortReason::None;
  bool full = zoneStats.isFullCollection();

  fprintf(stderr, "MajorGC: %20s %1d -> %1d %1s%1s%1s%1s ",
          ExplainGCReason(slice.reason), int(slice.initialState),
          int(slice.finalState), full ? "F" : "", shrinking ? "S" : "",
          nonIncremental ? "N" : "", reset ? "R" : "");

  if (!nonIncremental && !slice.budget.isUnlimited() &&
      slice.budget.isTimeBudget()) {
    fprintf(stderr, " %6" PRIi64,
            static_cast<int64_t>(slice.budget.timeBudget.budget));
  } else {
    fprintf(stderr, "       ");
  }

  ProfileDurations times;
  times[ProfileKey::Total] = slice.duration();
  totalTimes_[ProfileKey::Total] += times[ProfileKey::Total];

#define GET_PROFILE_TIME(name, text, phase)                    \
  times[ProfileKey::name] = SumPhase(phase, slice.phaseTimes); \
  totalTimes_[ProfileKey::name] += times[ProfileKey::name];
  FOR_EACH_GC_PROFILE_TIME(GET_PROFILE_TIME)
#undef GET_PROFILE_TIME

  printProfileTimes(times);
}

void Statistics::printTotalProfileTimes() {
  if (enableProfiling_) {
    fprintf(stderr, "MajorGC TOTALS: %7" PRIu64 " slices:                  ",
            sliceCount_);
    printProfileTimes(totalTimes_);
  }
}